首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bathymetric data along the Southwest Indian Ridge (SWIR) between 57°E and 70° E have been used to analyze the characteristics of thesegmentation and the morphotectonic variations along this ridge. Higheraxial volcanic ridges on the SWIR than on the central Mid-Atlantic Ridge(MAR) indicate that the lithosphere beneath the SWIR axis that supportsthese volcanic ridges, is thicker than the lithosphere beneath the MAR. Astronger/thicker lithosphere allows less along-axis melt flow andenhances the large crustal thickness variations due to 3D mantle upwellings.Magmatic processes beneath the SWIR are more focused, producing segmentsthat are shorter (30 km mean length) with higher along-axis relief (1200 mmean amplitude) than on the MAR. The dramatic variations in the length andamplitude of the swells (8–50 km and 500–2300 m respectively),the height of axial volcanic ridges (200–1400 m) and the number ofvolcanoes (5–58) between the different types of segments identifiedon the SWIR presumably reflect large differences in the volume, focusing andtemporal continuity of magmatic upwelling beneath the axis. To the east ofMelville fracture zone (60°42 E), the spreading center isdeeper, the bathymetric undulation of the axial-valley floor is less regularand the number of volcanoes is much lower than to the west. The spreadingsegments are also shorter and have higher along-axis amplitudes than to thewest of Melville fracture zone where segments are morphologically similar tothose observed on the central MAR. The lower magmatic activity together withshorter and higher segments suggest colder mantle temperatures withgenerally reduced and more focused magma supply in the deepest part of thesurvey area between 60°42 E and 70° E. The non-transformdiscontinuities show offsets as large as 70 km and orientations up toN36° E as compared to the N0° E spreading direction. We suggest thatin regions of low or sporadic melt generation, the lithosphere neardiscontinuities is laterally heterogeneous and mechanically unable tosustain focused strike-slip deformation.  相似文献   

2.
Various wind velocitiesu *,U /2,U andU 10 are correlated to the measured growth rate of water waves , whereu * is the friction velocity of the wind, andU /2,U andU 10 are the wind speeds respectively at the heights /2, and 10m above sea surface (: wave length). It is shown that within a range of the dimensionless wind speed, 0.1<u * /C<0.6, there are no appreciable differences in the correlations, whereC is the phase velocity of water waves. The present relation between andU shows qualitatively similar properties as the one obtained by Al'Zanaidi and Hui (1984); the growth rate for waves with rough surface is larger than that with smooth surface. However, our present relations give, for the both waves with different surface roughness, larger values by factors 1.71.8 than those given by Al'Zanaidi and Hui's relation.  相似文献   

3.
A seismic refraction study on old (110 Myr) lithosphere in the northwest Pacific Basin has placed constraints on crustal and uppermantle seismic structure of old oceanic lithosphere, and lithospheric aging processes. No significant lateral variation in structure other than azimuthally anisotropic mantle velocities was found, allowing the application of powerful amplitude modeling techniques. The anisotropy observed is in an opposite sense to that expected, suggesting the tectonic setting of the area may be more complex than originally thought. Upper crustal velocities are generally larger than for younger crust, supporting current theories of decreased porosity with crustal aging. However, there is no evidence for significant thickening of the oceanic crust with age, nor is there any evidence of a lower crustal layer of high or low velocity relative to the velocity of the rest of Layer 3. The compressional and shear wave velocities rule out a large component of serpentinization of mantle materials. The only evidence for a basal crustal layer of olivine gabbro cumulates is a 1.5 km thick Moho transition zone. In the slow direction of anisotropy, upper mantle velocities increase from 8.0 km s-1 to 8.35 km s-1 in the upper 15 km below the Moho. This increase is inconsistent with an homogeneous upper mantle and suggests that compositinal or phase changes occur near the Moho.  相似文献   

4.
Joseph  E. John  Toh  H.  Fujimoto  H.  Iyengar  R.V.  Singh  B.P.  Utada  H.  Segawa  J. 《Marine Geophysical Researches》2000,21(1-2):1-21
Seafloor magnetometer array experiments were conducted in the Bay of Bengal to delineate the subsurface conductivity structure in the close vicinity of the 85°E Ridge and Ninety East Ridge (NER), and also to study the upper mantle conductivity structure of the Bay of Bengal. The seafloor experiments were conducted in three phases. Array 1991 consisted of five seafloor stations across the 85°E Ridge along 14°N latitude with a land reference station at Selam (SLM). Array 1992 also consisted of five seafloor stations across 85°E Ridge along 12°N latitude. Here we used the data from Annamalainagar Magnetic Obervatory (ANN) as land reference data. Array 1995 consisted of four seafloor stations across the NER along 9°N latitude with land reference station at Tirunelveli (TIR). OBM-S4 magnetometers were used for seafloor measurements. The geomagnetic Depth Sounding (GDS) method was used to investigate the subsurface lateral conductivity contrasts. The vertical gradient sounding (VGS) method was used to deliniate the depth-resistivity structure of the oceanic crust and upper mantle. 1-D inversion of the VGS responses were conducted and obtained a 3-layer depth-resistivity model. The top layer has a resistivity of 150–500 m and a thickness of about 15–50 km. The second layer is highly resistive (2000–9000 m) followed by a very low resistive (0.1–50 m) layer at a depth of about 250–450 km. The 3-component magnetic field variations and the observed induction arrows indicated that the electromagnetic induction process in the Bay of Bengal is complex. We made an attempt to solve this problem numerically and followed two approaches, namely (1) thin-sheet modelling and (2) 3-D forward modelling. These model calculations jointly show that the observed induction arrows could be explained in terms of shallow subsurface features such as deep-sea fans of Bay of Bengal, the resistive 85°E Ridge and the sea water column above the seafloor stations. VGS and 3-D forward model responses agree fairly well and provided depth-resistivity profile as a resistive oceanic crust and upper mantle underlained by a very low resistive zone at a depth of about 250–400 km. This depth-range to the low resistive zone coincide with the seismic low velocity zone of the northeastern Indian Ocean derived from the seismic tomography. Thus we propose an electrical conductivity structure for the oceanic crust and upper mantle of the Bay of Bengal.  相似文献   

5.
A widespread seamount province, the Rano Rahi Field, is located near the superfast spreading Southern East Pacific Rise (SEPR) between 15°–19° S. Particularly abundant volcanic edifices are found on Pacific Plate aged 0 to 6.5 Ma between 17°–19° S, an area greater than 100,000 km2. The numbers of seamounts and their volume are several times greater than those of a comparablysurveyed area near the Northern East Pacific Rise (NEPR), 8°–17° N. Most of the Rano Rahi seamounts belong to chains, which vary in length from 25 km to >240 km and which are very nearly collinear with the Pacific absolute and relative plate motion directions. Bends of 10°–15° occur along a few of the chains, and some adjacent chains converge or diverge slightly. Many seamount chains have fluctuations in volume along their length, and statistical tests suggest that some adjacent chains trade-off in volume. Several seamount chains split into two lines of volcanoes approaching the axis. In general, seamount chains composed of individual circular volcanoes are found near the axis; the chains consist of variably-overlapping edifices in the central part of the survey; to the west, volcanic ridges predominate. Near the SEPR, the volume of nearaxis seamount edifices is generally reduced near areas of deflated cross-sectional area of the axial ridge. Fresh lava flows, as imaged by sidescan sonar and sampled by dredging, exist around some seamounts throughout the entire survey area, in sharp contrast to the absence of fresh flows beyond 30 km from the NEPR. Also, the increases in seamount abundance and volume extend to much greater crustal ages than near the NEPR. Seamount magnetization analysis is also consistent with this wider zone of seamount growth, and it demonstrates the asynchronous formation of most of the seamount chains and volcanic ridges. The variety of observations of the SEPR seamounts suggests that a number of factors and mechanisms might bring about their formation, including the mantle upwelling associated with superfast spreading, off-axis mantle heterogeneities, miniplumes and local upwelling, and the vulnerability of the lithosphere to penetration by volumes of magma. In particular, we note the association of extensive, recent volcanism with intermediate wavelength gravity lineaments lows on crust aged 6 Ma. This suggests that the lineaments and some of the seamounts share a common cause which may be related to ridge-perpendicular asthenospheric convection and/or some manner of extension in the lithosphere.  相似文献   

6.
The Ninetyeast Ridge north of the equator in the eastern Indian Ocean is actively deforming as evidenced by seismicity and its eastward subduction below the Andaman Trench. Basement of the ridge is elevated nearly 2 km with respect to the Bengal Fan; seismic surveys demonstrate continuity of the ridge beneath sediment for 700 km north of 10° N where the ridge plunges below the Fan sediment. The ridge is characterised by a free-air gravity high of 50 mgal amplitude and 350 km wavelength, and along-strike continuity of 1500 km in a north-south direction, closely fringing (locally, even abutting) the Andaman arc-trench bipolar gravity field. Regression analysis between gravity and bathymetry indicates that the ridge gravity field cannot be explained solely by its elevation. The ridge gravity field becomes gradually subdued northwards where overlying Bengal Fan sediments have a smaller density contrast with the ridge material. Our gravity interpretation, partly constrained by seismic data, infers that the ridge overlies significant crustal mass anomalies consistent with the hot spot model for the ridge. The anomalous mass is less dense by about 0.27 g cm–3 than the surrounding oceanic upper mantle, and acts as a cushion for isostatic compensation of the ridge at the base of the crust. This cushion is up to 8 km thick and 400–600 km wide. Additional complexities are created by partial subduction of the ridge below the Andaman Trench that locally modifies the arc-trench gravity field.  相似文献   

7.
Chlorophyll a concentrations (chla) and the absorption coefficients of total particulate matter [a p()], phytoplankton [a ph()], detritus [a d()], and colored dissolved organic matter: CDOM [a CDOM()] were measured in seawater samples collected in the subarctic North Pacific and the southern Bering Sea during the summer of 1997. We examined the specific spectral properties of absorption for each material, and compared the light fields in the Western subarctic Gyre (area WSG) with those in the Alaskan Gyre (area AG), and the southern Bering Sea (area SB). In the area WSG, the irradiance in the surface layer decreased markedly, indicating high absorption. In the area AG, the radiant energy penetrated deeply, and the chl a and absorption values were low throughout the water column. In the area SB, light absorption was high in the surface layer on the shelf edge and decreased with increasing depth; on the other hand, light absorption was low in the surface layer in the shelf area and increased with increasing depth.  相似文献   

8.
Sea Beam bathymetry and SeaMARC II side-scan sonar data are used to constrain the width of the zone of active faulting (plate boundary zone) to be 90 km (0.8 Ma) wide along the East Pacific Rise 8° 30N – 10° 00N. Fault scarps, identified on the basis of contoured, shaded relief and slope intensity maps of bathymetry, are measured. These scarp measurements, used in conjunction with data from a separate near-axis study, show that both inward- and outward-facing fault scarps increase in height away from the ridge axis, reaching average heights of 100 m at 0.8±0.2 Ma, 45±10 km from the ridge axis. Beyond this distance, there is no significant increase in scarp height. Earlier studies had suggested that the width of the zone of active faulting for outward-dipping faults might be significantly narrower than for inward-dipping faults. A lower crustal decoupling zone between brittle crust and strong upper mantle is predicted to exist out to 20–200 km from the ridge based on previously published lithospheric models. Such a decoupling zone may explain why outward-dipping faults continue to be active as far off-axis as inward-dipping faults. If the width of the zone of active faulting is controlled by the width of a lower crustal decoupling zone, our observations predict an 90 km wide decoupling zone in the lower oceanic crust at this location.  相似文献   

9.
High inside corners at ridge-transform intersections   总被引:1,自引:0,他引:1  
A large topographic high commonly occurs near the intersection of a rifted spreading center and a transform fault. The high occurs at the inside of the 90° bend in the plate boundary, and is called the high inside corner, while the area across the spreading center, the outside corner, is often anomalously low. To better understand the origin of this topographic asymmetry, we examine topographic maps of 53 ridge-transform intersections. We conclude the following: (1) High inside corners occur at 41 out of 42 ridge-transform intersections at slow spreading ridges, and thus should be considered characteristic and persistent features of rifted slow spreading ridges. They are conspicuously absent at fast spreading ridges or at spreading centers that lack a rift valley. (2) High inside corners occur wherever an axial rift valley is present, and an approximate 1:1 correlation exists between the relief of the rift valley and the magnitude of the asymmetry. (3) Large high inside corners occur at both long and short transform offsets. (4) High inside corners at long offsets decay off-axis faster than predicted by the square root of age cooling model, precluding a thermalisostatic origin, but consistent with dynamic or flexural uplift models.These observations support the existing hypothesis that the asymmetry is due to the contrast in lithospheric coupling that occurs in the active transform versus the inactive fracture zone. Active faulting in the transform breaks the lithosphere along a high angle fault, permitting vertical movement of the inside corner block, whereas the inactive fracture zone forms a weld that couples the outside corner to the adjacent block, preventing it from rising. Large asymmetry at very short transform offsets appears to be caused by the added effect of a second uplift mechanism. Young lithosphere in the rift valley couples to the older plate, and when it leaves the rift valley it lifts the older plate with it. At very short offsets, this coupled uplift acts upon the high inside corner; at long offsets, it may upwarp the older plate or its expression may be muted.  相似文献   

10.
A surface buoy was moored from 20 April to 2 November 1988 at 28°48 N and 135°01 E where the water depth was 4900 m to measure temperature and velocity in the upper 150 m. The Typhoon 8824 passed at 0300 (JST) on 8 October about 50 km north to the mooring station with a maximum wind speed of 43.5 m s–1. The buoy was shifted about 30 km to southwest, and the instruments were damaged. The records of temperature at 0.5 m and velocity at 50 m were obtained. The inertial oscillation caused by the typhoon is described using the current record. The oscillation endured for about 20 days. Deep mixing and vertical, heart transport by the typhoon are discussed based on the data from the Ocean Data Buoy of the Japan Meteorological Agency moored at 29°N and 135°E.  相似文献   

11.
An analysis is given of air-gun profiler and magnetic data obtained in the central North Atlantic between 12° and 18°N. Eight fracture zones were crossed, one of which (the 15°20N fracture zone) was traced over a distance of 1500 km. The mode of adjustment of fracture zones to a change in direction of spreading is discussed. It is shown that also if this new direction would lead to an opening of the fracture zone, and adjustment fracture can originate and actually does so in several instances.The about E-W fracture zones dominate the structure of the Ridge province entirely, both with regard to the topography and to the magnetics. A magnetic model is proposed accounting for the different types of anomalies found over fracture zones. No intrusive bodies are needed to explain these anomalies.The origin of fracture zones is related to thermal contraction of a cooling lithosphere while moving from the ridge. Thermal contraction may also explain how the American and the African plates are freed from the grip they are caught in by the fanning of the fracture zones in the central North Atlantic. The fanning of fracture zones has consequences for the determination of the pole of spreading. This pole can only be found as a best fit from a synthesis of the total plate boundary, i.e. from the Azores to Bouvet Island. Local poles have only restricted value, since deviations up to 5 deg occur from a small circle pattern based on existing data.Several huge structures, viz. Researcher Ridge and Royal Trough, are found in the area which seem to parallel the flow lines of the fracture zone system. No adequate explanation exists for these structures.  相似文献   

12.
The basement topography and the free-air gravity along two profiles in the central North Atlantic between 16° and 25° N, crossing a number of fracture zones, were divided in three wavelength intervals. Two-dimensional modelling shows that the short wavelength (>50 km) gravity is well explained by uncompensated topography (mainly spreading topography). For the long wavelengths (>200 km) there is no correlation of topography and gravity. In principle this topography is compensated. Residual anomalies comprise the Ridge effect as well as regional anomalies related to depth anomalies. The 50 to 200km band-pass filtered topography and gravity contain relevant information on fracture zones. Models require a base of the crust that parallels the topography rather than a form of regional compensation. For an explanation of this crustal model that has the appearance of frozen in normal faults we have to consider the typical morphology as created in the transform domain. The geophysical processes that cause this morphology are still an object of study.  相似文献   

13.
Transverse ridges are elongate reliefs running parallel and adjacent to transform/fracture zones offsetting mid-ocean ridges. A major transverse ridge runs adjacent to the Vema transform (Central Atlantic), that offsets the Mid-Atlantic Ridge by 320 km. Multibeam morphobathymetric coverage of the entire Vema Transverse ridge shows it is an elongated (300 km), narrow (<30 km at the base) relief that constitutes a topographic anomaly rising up to 4 km above the predicted thermal contraction level. Morphology and lithology suggest that the Vema Transverse ridge is an uplifted sliver of oceanic lithosphere. Topographic and lithological asymmetry indicate that the transverse ridge was formed by flexure of a lithospheric sliver, uncoupled on its northern side by the transform fault. The transverse ridge can be subdivided in segments bound by topographic discontinuities that are probably fault-controlled, suggesting some differential uplift and/or tilting of the different segments. Two of the segments are capped by shallow water carbonate platforms, that formed about 3–4 m.y. ago, at which time the crust of the transverse ridge was close to sea level. Sampling by submersible and dredging indicates that a relatively undisturbed section of oceanic lithosphere is exposed on the northern slope of the transverse ridge. Preliminary studies of mantle-derived ultramafic rocks from this section suggest temporal variations in mantle composition. An inactive fracture zone scarp (Lema fracture zone) was mapped south of the Vema Transverse ridge. Based on morphology, a fossil RTI was identified about 80 km west of the presently active RTI, suggesting that a ridge jump might have occurred about 2.2 m.a. Most probable causes for the formation of the Vema Transverse ridge are vertical motions of lithospheric slivers due to small changes in the direction of spreading of the plates bordering the Vema Fracture Zone.  相似文献   

14.
This paper describes GLORIA sidescan sonar data from a single swath along the Cocos-Nazca Spreading Centre between the 95.5° W propagating rift and the Pacific-Cocos-Nazca triple junction. Almost the whole of the plate boundary was imaged. Five medium sized offsets of the spreading centre, ranging from 10 to 25 km, were seen. Of these, at least one (at 99° W) is a previously unknown propagating rift, propagating westwards away from the Galapagos hotspot at about 40 mm a-1. Two other offsets have some, but not all, of the characteristics of propagating rifts, and may be poorly developed (possibly duelling) propagating rifts or migrating overlapping spreading centres. In each case the apparent propagation rate is between one and two times the half spreading rate. The average length of ridge segments in this region is 70 km, but lengths range from 12 to 135 km. The longest segments are those immediately behind actively propagating ridge offsets. The overall plan shape of the ridge axis is roughly sinusoidal, with a wavelength of 400–500 km and an amplitude of ±20 km. This nonlinear shape has arisen since the spreading centre was created, and may reflect an instability in the mantle plumes that control ridge segmentation.  相似文献   

15.
Possibilities of using the GLORIA system for manganese nodule assessment   总被引:1,自引:0,他引:1  
The I.O.S. long range side-scan sonar GLORIA has been widely used over a variety of seabed types, but until recently had not been used over an independently authenticated field of manganese nodules. In the Eastern Atlantic Ocean at approximately 31°25 N 25°15 W, a field of nodules approximately 3–6 cm in diameter covering up to 18% of the seafloor was observed using an underwater camera. The nodule field occurred over approximately 2.8 km of the 8.3 km camera run. The corresponding GLORIA image shows an area of medium intensity backscattering, approximately 3.7 km in diameter. Considering the likely contrast in acoustic reflectivity between manganese nodules and deep sea sediments, we propose a correlation between the nodules observed in the photographs and the medium intensity echo target revealed by the GLORIA system.  相似文献   

16.
Sea Beam and Deep-Tow were used in a tectonic investigation of the fast-spreading (151 mm yr-1) East Pacific Rise (EPR) at 19°30 S. Detailed surveys were conducted at the EPR axis and at the Brunhes/Matuyama magnetic reversal boundary, while four long traverses (the longest 96 km) surveyed the rise flanks. Faulting accounts for the vast majority of the relief. Both inward and outward facing fault scarps appear in almost equal numbers, and they form the horsts and grabens which compose the abyssal hills. This mechanism for abyssal hill formation differs from that observed at slow and intermediate spreading rates where abyssal hills are formed by back-tilted inward facing normal faults or by volcanic bow-forms. At 19°30 S, systematic back tilting of fault blocks is not observed, and volcanic constructional relief is a short wavelength signal (less than a few hundred meters) superimposed upon the dominant faulted structure (wavelength 2–8 km). Active faulting is confined to within approximately 5–8 km of the rise axis. In terms of frequency, more faulting occurs at fast spreading rates than at slow. The half extension rate due to faulting is 4.1 mm yr-1 at 19°30 S versus 1.6 mm yr-1 in the FAMOUS area on the Mid-Atlantic Ridge (MAR). Both spreading and horizontal extension are asymmetric at 19°30 S, and both are greater on the east flank of the rise axis. The fault density observed at 19°30 S is not constant, and zones with very high fault density follow zones with very little faulting. Three mechanisms are proposed which might account for these observations. In the first, faults are buried episodically by massive eruptions which flow more than 5–8 km from the spreading axis, beyond the outer boundary of the active fault zone. This is the least favored mechanism as there is no evidence that lavas which flow that far off axis are sufficiently thick to bury 50–150 m high fault scarps. In the second mechanism, the rate of faulting is reduced during major episodes of volcanism due to changes in the near axis thermal structure associated with swelling of the axial magma chamber. Thus the variation in fault spacing is caused by alternate episodes of faulting and volcanism. In the third mechanism, the rate of faulting may be constant (down to a time scale of decades), but the locus of faulting shifts relative to the axis. A master fault forms near the axis and takes up most of the strain release until the fault or fault set is transported into lithosphere which is sufficiently thick so that the faults become locked. At this point, the locus of faulting shifts to the thinnest, weakest lithosphere near the axis, and the cycle repeats.  相似文献   

17.
Hekinian  R.  Juteau  T.  Gràcia  E.  Sichler  B.  Sichel  S.  Udintsev  G.  Apprioual  R.  Ligi  M. 《Marine Geophysical Researches》2000,21(6):529-560
The St. Paul F.Z. is a large structural domain made up of multiple transform faults interrupted by several Intra-Transform Ridge (ITR) spreading segments. Two regions were studied in details by submersible: (1) The ITR short (<20 km in length) segment near 0° 37N–25° 27W and 1° N–27° 42W and (2) The St. Peter and St. Paul's Rocks (SPPR) massif located at 29° 25W (¡3700 m depth). (1) The short ITR segments consist of a magma starved rift valley with recent volcanic activities at 4700 m depth. A geological profile made along the rift valley wall showed localized volcanics (basalts and dykes) which are believed to overlay and intrude the ultramafics. The geological setting and the high ultramafic/volcanic ratio suggest an extremely low magmatic supply and crustal-mantle uplift during lithospheric stretching and denudation. (2) The St. Peter and St. Paul's Rocks (SPPR) massif consists of a sigmoidal ridge within the active transform zone. The SPPR is divided into two different geological domains called the North and the South Ridges. The North Ridge consists of strongly tectonized fault scarps composed of banded and mylonitized peridotite, sporadic gabbros (3900–2500 m) and metabasalts (2700–1700 m). The South Ridge is less tectonized with undeformed, serpentinized spinel lherzolite (2000–1400 m) and basalts. Extensional motion and denudation accompanied by diapirism affected the South Ridge within a transform domain. Instead, the North Ridge was formed during an important strike-slip and faulting motion resulting in the uplifted portion of the St. Paul F.Z. transverse ridge. There is a regional compositional variation of the volcanics where E-MORBs and alkali basalts are produced on the SPPR massif and are comparable to the adjacent northern segments of the Mid-Atlantic Ridge. On the other hand, N and T- MORBs collected from the eastern part of the St. Paul F.Z. (25° 27W IRT) are similar to the volcanics from the southern segments of the MAR. The peridotites exposed in these provinces (SPPR and ITR) are similar in their REE and trace element distribution. Different degrees (3–15%) of partial melting of a mixed composite mantle consisting of spinel and amphibole bearing lherzolite veined with 5–40% clinopyroxenite gave rise to the observed MORBs and alkali basalts.  相似文献   

18.
In this study, we construct a 3-D shear wave velocity structure of the crust and upper mantle in South China Sea and its surrounding regions by surface wave dispersion analysis. We use the multiple filter technique to calculate the group velocity dispersion curves of fundamental mode Rayleigh and Love waves with periods from 14 s to 120 s for earthquakes occurred around the Southeast Asia. We divide the study region (80° E–140° E, 16° S–32° N) into 3° × 3° blocks and use the constrained block inversion method to get the regionalized dispersion curve for each block. At some chosen periods, we put together laterally the regionalized group velocities from different blocks at the same period to get group velocity image maps. These maps show that there is significant heterogeneity in the group velocity of the study region. The dispersion curve of each block was then processed by surface wave inversion method to obtain the shear wave velocity structure. Finally, we put the shear wave velocity structures of all the blocks together to obtain the three-dimensional shear wave velocity structure of crust and upper mantle. The three-dimensional shear wave velocity structure shows that the shear wave velocity distribution in the crust and upper mantle of the South China Sea and its surrounding regions displays significant heterogeneity. There are significant differences among the crustal thickness, the lithospheric thickness and the shear wave velocity of the lid in upper mantle of different structure units. This study shows that the South China Sea Basin, southeast Sulu Sea Basin and Celebes Sea Basin have thinner crust. The thickness of crust in South China Sea Basin is 5–10 km; in Indochina is 25–40 km; in Peninsular Malaysia is 30–35 km; in Borneo is 30–35 km; in Palawan is 35 km; in the Philippine Islands is 30–35 km, in Sunda Shelf is 30–35 km, in Southeast China is 30–40 km, in West Philippine Basin is 5–10 km. The South China Sea Basin has a lithosphere with thickness of about 45–50 km, and the shear wave velocity of its lid is about 4.3–4.7 km/s; Indochina has a lithosphere with thickness of about 55–70 km, and the shear wave velocity of its lid is about 4.3–4.5 km/s; Borneo has a lithosphere with thickness of about 55–60 km, and the shear wave velocity of its lid is about 4.1–4.3 km/s; the Philippine Islands has a lithosphere with thickness of about 55–60 km, and the shear wave velocity of its lid is about 4.2–4.3 km/s, West Philippine Basin has a lithosphere with thickness of about 50–55 km, and the shear wave velocity of its lid is about 4.7–4.8 km/s, Sunda Self has a lithosphere with thickness of about 55–65 km, and the shear wave velocity of its lid is about 4.3 km/s. The Red-River Fault Zone probably penetrates to a depth of at least 200 km and is plausibly the boundary between the South China Block and the Indosinia Block.  相似文献   

19.
The Central Spreading Ridge (CSR) is located in the central part of the North Fiji Basin, a complex back-arc basin created 12 Ma ago between the Pacific and Indo-Australian plates. The 3.5 Ma old CSR is the best developed, for both structure and magmatism, of all the spreading centers identified in the basin, and may be one of the largest spreading systems of the west Pacific back-arc basins. It is more than 800 km long and 50–60 km wide, and has been intensively explored during the French-Japanese STARMER project (1987–1991).The CSR is segmented into three first order segments named, from north to south, N160°, N15° and N-S according to their orientation. This segmentation pattern is similar to that found at mid-ocean ridges. The calculated spreading rate is intermediate and ranges from 83 mm/yr at 20°30 S to 50 mm/yr at 17°S. In addition, there is a change in the axial ridge morphology and gravity structure between the northern and southern sections of the CSR. The axial morphology changes from a deep rift valley (N160° segment), to a dome split by an axial graben (N15° segment) and to a rectangular flat top high (N-S segment). The Mantle Bouguer Anomalies obtained on the northern part of the CSR (N160°/N15° segments) show bull's eye structures associated with mantle upwelling at the 16°50S triple junction and also in the middle of the segments. The Mantle Bouguer Anomalies of the southern part of the ridge (N-S segment) are more homogeneous and consistent with the observed smooth topography associated with axial isostatic compensation.At these intermediate spreading rates the contrast in bathymetry and gravity structure between the segments may reflect differences in heat supply. We suggest that the N160° and N15° segments are cold with respect to the hot N-S segment. We use a non-steady-state thermal model to test this hypothesis. In this model, the accretion is simulated as a nearly steady-state seafloor spreading upon which are superimposed periodic thermal inputs. With the measured spreading rate of 50 mm/yr, a cooling cycle of 200,000 yr develops a thermal state that permits to explain the axial morphology and gravity structure observed on the N160° segment. A spreading rate of 83 mm/yr and a cooling cycle of 120,000 yr would generate the optimal thermal structure to explain the characteristics of the N-S segment. The boundaries between the hot N-S segment and its cold bounding segments are the 18°10 S and 20°30 S propagating rifts. A heat propagation event along the N-S segment at the expense of the adjacent colder failing segments, can explain the sharp changes in the observed morphology and structure between the segments.  相似文献   

20.
南海区域岩石圈的壳-幔耦合关系和纵向演化   总被引:11,自引:2,他引:11  
南海区域岩石圈由地壳层和上地幔固结层两部分组成。具典型大洋型地壳结构的南海海盆区莫霍面深度为9~13km,并向四周经陆坡、陆架至陆区逐渐加深;陆缘区莫霍面一般为15~28km,局部区段深达30~32km,总体呈与水深变化反相关的梯度带;东南沿海莫霍面深约28~30km,往西北方向逐渐增厚,最大逾36km。南海区域上地幔天然地震面波速度结构明显存在横向分块和纵向分层特征。岩石圈底界深度变化与地幔速度变化正相关;地幔岩石圈厚度与地壳厚度呈互补性变化,莫霍面和岩石圈底界呈立交桥式结构,具有陆区厚壳薄幔—洋区薄壳厚幔的岩石圈壳-幔耦合模式。南海区域白垩纪末以来的岩石圈演化主要表现为陆缘裂离—海底扩张—区域沉降的过程,现存的壳-幔耦合模式显然为岩石圈纵向演化产物,其过程大致可分为白垩纪末至中始新世的陆缘裂离、中始新世晚期至中新世早期的海底扩张和中新世晚期以来的区域沉降等三个阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号