首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
An atmospheric general circulation model is used in a series of three experiments to simulate the intraseasonaloscillation in the tropical atmosphere.Analyses of the model daily data show that various physical variables,from sever-al different regions,exhibit fluctuations with a spectral peak between 30 and 60 days.This represents a 30—60 dayoscillation in the tropical atmosphere and possesses several features which are consistent with observations.These in-clude a horizontal structure dominated by zonal wavenumber 1 and a vertical structure which is predominantlybaroclinic.The effect of warm SST (sea surface temperature) anomalies on the 30—60 day oscillation in the tropical atmos-phere is also simulated by prescribing global SST as observed in 1983.This has the effect of weakening the oscillationwhile at the same time the vertical structure becomes less baroclinic.The importance of cumulus convection to the propagational characteristics of this oscillation is demonstrated by acomparison of results based on different parameterizations for convection.In one case,where the maximum convectionover the Pacific is simulated to be too far east,the simulated 30—60 day oscillation shows evidence of westward propa-gation.In the second case,where the convection maximum is located near the observed position in the western Pacific,there is more clearly evidence of eastward propagation.Both results suggest that the location of maximum convection in the Pacific can have an important influence on thestrength,structure and propagation of the 30—60 day oscillation.  相似文献   

2.
In this paper, five-year simulated data from a low-resolution global spectral model with triangular trunca-lion at wavenumber 10 are analyzed in order to study dynamical features and propagation characteristics ofintraseasonal oxillations over the mid-latitudes and the tropical atmosphere. The simulations show that thereis the 30-50 day periodic oscillation in the low-resolution spectral model without non-seasonal external forcing,and spatial scale of the intraseasonal oscihations is of the globe .Further analysis finds that propagation charac-ters of intraseasonal oscillations over the mid-latitudes and the tropics are different. The 30-50 day oscillationover the tropics exhibits structure of the velocity potential wave with wavenumber 1 in the latitudinal and thecharacter of the traveling wave eastward at speed of 8 longitudes/day. However, the 30-50 day oscillationsin mid-latitude atmosphere exhibit phase and amplitude oscillation of the standing planetary waves and theyare related to transform of teleconnection patterns over the mid-latitudes. The energy is not only transferredbetween the tropics and the middle-high latitudes, but also between different regions over the tropics. Based on the analysis of 5-year band pass filtered data from a 5-layer global spectral model of Jow-ordetwith truncated wavenumber l0,investigation is done of the source of intraseasonal oscillations in the extratropicalmodel atmosphere and its mechanism. Results show that (1) the convective heat transferred eastward alongthe equator serves as the source of the intraseasonal oxillation both in the tropical and the extratropical atmos--phere; (2) the velocity-potential wave of a zonal structure of wavenumber 1 gives rise to oxillation in divergentand convergent wind fields of a dipole-form as seen from the equatorial Indian Ocean to the western Pacificduring its eastward propagation, thus indicating the oscillation in the dipole-form heat soure:e/sink pattertl; (3)the tropical heat-source oscillation is responsible for the variation in phase and intensity of the extratropicalstationary wave train, and the interaction between the oscillating low-frequency inertial gravity and stationaryRossby modes that are probably mechanisms for the oscillations ip the middle-high latitudes.  相似文献   

3.
The mechanisms of the maintenance and oscillation of 1982 summer tropical 200-hPa mean easterly flow and extra-long waves are investigated in terms of the energy equations in wavenumber-frequency space. Calculation results show that the difference in heating between land and sea and the boundary effect serve as the main source of energy; frictional dissipation as the sink; the conversion of available potential energy into kinetic takes place dominantly in the waves of number 1-2; such transformation is accomplished in just a small amount in zonal mean flow and therefore can be ignored because of the value.In the interaction between wave and zonal mean flow, the latter loses its available potential and gains kinetic energy. The tropical easterly belt over 20°N-5°S is found barotropically stable and that over 10°N-5°S, unstable. The waves of number 2 and 1 manifest themselves a primary source and sink of kinetic energy, respectively, in the interplay between waves and between zonal mean flow and wave.  相似文献   

4.
To add to the growing mature research on the tropical 30-50 day oscillations from a new prospective, the current work bases on dynamic analysis of baroclinic quasi-geostrophic models to discuss dynamic mechanisms for the generation and propagation of CISK-Rossby waves, and to understand restraints and effects of different wave structures and thermodynamic forcing on the 30-50 day oscillations in the tropical atmosphere. Some important properties of the oscillation propagation have been explained and, in detail, with respect to its meridional propagation and vertical “baroclinic” structure. The work has come up with some new opinions and viewpoints. New opinions about the propagation and energy dispersion are to be proved by more observations and study.  相似文献   

5.
A study is made of the distribution of the diagnostic quantity vector E and the teleconnection structure of 30-50 (quasi-40) day oscillation, together with the dependence on the conversion of barotropic unstable energy of mean flow in terms of ECWMF daily 500 hPa grid data in winter, indicating that the energy transportation is closely associated with the westerly jet position, with zonal (meridional) propagation in the strong (weak) wind region, that considerable conversion of barotropic energy occurs at the jet exit region where low-frequency oscillation gains energy from the mean flow, leading to maximum kinetic energy for the oscillation observed there, which is marked by evident barotropy in striking contrast to the baroclinicity at low latitudes and that the teleconnection core is related to the center of action in the atmosphere and bound up with the pattern of the west wind.  相似文献   

6.
Based on the 1979 FGGE Level III b data, calculation is made of the transfer of sensible and latent heat and momentum due to a quasi-40-day periodic oscillation (QDPO) on a cross-equatorial meridional vertical cross-section, and analysis is done of the characteristics of the transfer at all phases of QDPO, with the following results obtained:1) During the monsoon's QDPO activation and break phases, a strong transfer of sensible heat to the SH is felt in the upper troposphere over the Asian monsoon region; the conversion of perturbation effective potential into its kinetic energy attains its maximum at 500-300 hPa (15°N), serving as the source of kinetic energy for the quasi-40-day periodic perturbation; an intense transfer of potential energy is found above 200 hPa from the monsoon area to the SH to maintain the QDPO at the tropical latitudes;2) During the QDPO activation-break (and reverse) transitional phase the conversion of perturbation effective potential into kinetic energy reaches its maximum in  相似文献   

7.
Observational data of mesoscale surface weather stations and weather radars of Guangdong province are employed to analyze the asymmetric distribution of convection prior to, during and after landfall for tropical cyclones of Chanchu and Prapiroon making landfall on the south China coast in 2006. The results showed that strong convection is located in the eastern and northern sectors of the landfalling Chanchu and Prapiroon, namely in the front and right portions of the TC tracks, for a period of time starting from 12 h prior to landfall to 6 h after it. Their convection also had distinct differences in the vertical direction. The analysis indicated that although the landfall of Chanchu and Prapiroon has the same asymmetric distribution of convection, the causes are not exactly the same. The asymmetric distribution of convection in the case of Chanchu is mainly correlated with the impacts of a strong environmental vertical wind shear, low-level horizontal wind shear, and low-level convergence and divergence. In the case of Prapiroon, however, the asymmetric distribution of convection is mainly associated with the impacts of low-level convergence and divergence.  相似文献   

8.
IAP-GCM is used to document the forced teleresponse of the atmosphere to anomalies of the Antarctic sea ice as the important triggering mechanism for intraseasonal atmospheric oscillations across the globe. The time series of pentad-averaged deviations are then focused on and. with the band-pass filter approach, to address essential features of the 30-60 day low-frequency oscillation in the response field. It is found that tile atmospheric response to the retreat of the Antarctic sea ice is of low frequency at a period of 30-60 days. The main component is the 30-60 day intraseasonal oscillation in the forced field, with the vertical structure and distribution features similar to real atmosphere.  相似文献   

9.
In this paper, the hydrographical and meteorological data observed by the R/Vs "Xiang Yang Hong No. 5", "Experiment No. 3"and "Ke Xue No. 1 "during TOGA-COARE IOP are used to analyze the variability of surface wind and upper layer thermal structure, and to reveal the periods of intraseasonal oscillation of surface wind components and certain layers of sea temperature from November 6, 1992 to February 18, 1993 in the western tropical Pacific warm pool region. It is shown that the variation of the sea surface temperature (SST) was inversely correlated to that of surface wind components. It is also indicated from spectral analysis that the significant periods of intraseasonal oscillation of daily mean zonal wind (MZW) were 30-to 60-day and 8-to 9-day long, and that of mean meridional wind (MMW)was 6-to 7-day long. The fluctuation of daily mean sea temperature (MST) in certain layers from surface to the 250 m layer also had the 30-to 60-day low frequency oscillation except for the 150 m layer,and the fluctuations of the daily MST in 100, 150, 200 and 250 m layers had the same 3-day period,their coherence and phase differences were over 0. 90 and between 319° and 353° respectively, which implies the fluctuations of daily MST from 100 to 250 m layers were in phase with each other in the same 3-day period. The analysis of in situ observations revealed a physical evidence of the westerly wind bursts (WWBs) which trigger off the eastward movement of warm water through intraseasonal oscillation and induce the onset of E1 Nino event.  相似文献   

10.
AN ANALYSIS OF THE CHARACTERISTICS OF EQUATORIAL WESTERLIES   总被引:1,自引:0,他引:1  
The real-time data of the high level atmosphere obtained by the R/V Xiangyanghong No.5 involved in the international TOGA-COARE project at 2°S, 155°E and at fixed real time of 05, 11, 19 and 23 h GMT each day from Nov. 5, 1992 to Feb. 18, 1993 are used to analyze diagnostically the vertical structure of wind and humidity over the central area of the warm pool. The results show that (1) the lowfrequency oscillation of the equatorial westerlies (i. e. reconstruction-development-decline) is closely related to the vigour and interruption of the Asian-Australian monsoon (including air flow across the equator caused by East Asia cold wave), (2) the variabilities of the vertical structure of wind and humidity, and the processes of precipitation and gale weather in the troposphere of the warm pool area are closely related to the intensity of the equatorial westerlies, and (3) there are strong wind belts over the high and low level atmosphere in the western equatorial Pacific at the inception of the ENSO event, and jet flow at the high and low level atmosphere during the equatorial westerly burst.  相似文献   

11.
Apparent moisture sink and water vapor transport flux are calculated by using NCAR/NCEP reanalyzed daily data for water vapor and wind fields at various levels from 1980 to 1989.With the aid of EOF analysis method,temporal and spatial characteristics of moisture budgets over Asian and Australian monsoon regions are studied.The results show that there is apparent seasonal transition of moistrue sink and water vapor transport between Asian monsoon region and Australian monsoon region.In winter,the Asian monsoon region is a moisture source,in which three cross-equatorial water vapor transport channels in the “continent bridge“,at 80°E and 40°E~50° transport water vapor to the Australian monsoon region and southern Indian Ocean which are moistrue sinks.In summer,Australian Monsoon region anmd southern Indian Ocean are moistrue sources and by the three cross-equatorial transport channels water vapor is transport to the Asian monsoon region which is a moisture sink.In spring and autumn,ITCZ is the main moisture sink and there is no apparent water vapor transport between Asian monsoon region and Australian monsoon region.  相似文献   

12.
Temporal and spatial evolution characteristics of the 30-60 day oscillation (intraseasonal oscillation, ISO) of summer rainfall in China and the effects of East Asian monsoon on the rainfall ISO are analyzed in this paper. Results show that the annual and decadal variations of the oscillation exist between 1960 and 2008, and the intensity is weakest in the late 1970s and early 1980s. In the typical strong years of the rainfall ISO obtained from empirical orthogonal functions (EOF mode 1), an anticyclone is in northwestern Pacific and a cyclone is in the east of China. In the typical weak years, the wind ISO is much weaker. The low-frequency zonal wind and water vapor transport from the low latitudes to mid-latitudes in the typical strong years, and the oscillation strength of diabatic heating is much stronger than that in the weak years of the rainfall ISO. The anomaly characteristics of the rainfall ISO show anti-phases between the Yangtze River basin and south of China. As for the typical strong years of the rainfall ISO in the Yangtze River basin (EOF mode 2), the main oscillation center of water vapor is in the east of China (20-30°N, 110-130°E). In the peak (break) phase of the rainfall oscillation, a low-frequency cyclone (anticyclone) is in the Yangtze River basin and an anticyclone (cyclone) is near Taiwan Island. In addition, the peak rainfall corresponds to the heat source in the Yangtze River basin and the heat sink in the Qinghai-Tibet Plateau. As for the typical strong years of the rainfall ISO in the south of China, the main oscillation center of water vapor is south of 20°N. In the peak (break) phase of the rainfall ISO, a low-frequency cyclone (anticyclone) is in the south of China and an anticyclone (cyclone) is in the Philippines. The peak rainfall corresponds to the heat source in the south of China and the South China Sea, and the heat sink in the west of Indochina.  相似文献   

13.
Using the turbulent statistical form of the vertical vortex diffusion coefficient K2, in the planetary boundary layer (PBL) and Ekman spiral wind profile, the three-dimensional diffusion equation is solved by the numerical method. The influences of vertical shear of both wind direction and wind speed on pollution trajectory and horizontal diffusion parameters σy are numerically analysed. The expressions of both pollution trajectory and σy, including the factor of wind shear, are obtained. The results show that the vertical shear of wind is important among all factors affecting the mesoscale dispersion. Specifically, from neutral to stable atmospheric conditions, vertical shear of wind makes greater contribution to σy than turbulence, thus it is the most important factor. In this paper, we have compared horizontal dispersion pattern with both Pasquill's dispersion pattern considering wind direction shear, and experimental data collected at 9 different sites ranging from 10 to 100 km, and the results show that our dispersion pattern is closer to the experimental values than Pasquill's results, and his correction to shear of wind direction is too large under the stable conditions.  相似文献   

14.
The surface and atmospheric heating fields over the Qinghai-Xizang Plateau are computed by using theobservational data of solar radiation during 1982—1983.The mian results are as follows:The central andnorthern parts of the Plateau act as heat sinks in winter from November to January.Both eastern and south-ern parts of the Plateau are of heat sources.In summer,the main part of the Plateau acts as a strong heatsource,and the center of the heating field is in the southeastern Plateau.However the main part of thePlateau acts as a heat sink for the atmospheric heating fields from October to March.The maximum intensityof the atmospheric heat sink over the central Plateau appears in December and January.From April toSeptember,the main part of the Plateau acts as a heat source for the atmospheric heating fields.  相似文献   

15.
The three-dimensional propagations of the forced stationary planetary waves in a realistic summer current, in which the vertical and horizontal wind shears are included, are discussed by using the refractive index squared of waves in a spherical coordinate system.The results show that there is no polar wave guide in stationary planetary wave propagations in summer. Thus, stationary planetary waves cannot propagate into the stratosphere. However, there are a wave guide pointing from the subtropics toward middle and high latitudes in the troposphere and another wave guide pointing from the lower troposphere at middle latitudes toward the upper troposphere near 30°oN in the forced stationary planetary wave propagations.A linearized, steady-state, quasi-geostrophic 34-level spherical coordinate model with Rayleigh friction and Newtonian cooling, horizontal kinematic thermal diffusivity is used to simulate the wave guides of three-dimensional propagations of stationary planetary waves in summer.  相似文献   

16.
Energy budgets were analyzed to study the development of an eastward propagating southwest vortex (SWV) associated with heavy rainfall over southern China(11-13 June 2008).The results show that kinetic energy(KE) generation and advection were the most important KE sources,while friction and sub-grid processes were the main KE sinks.There was downward conversion from divergent to rotational wind KE consistent with the downward stretching of SWVs.The Coriolis force was important for the formation and maintenance of the SWV.Convergence was also an important factor for maintenance,as was vertical motion during the mature stage of the SWV and the formation stage of a newly formed vortex(vortex B).The conversion from available potential energy(APE) to KE of divergent wind can lead to strong convection.Vertical motion influenced APE by dynamical and thermal processes which had opposite effects. The variation of APE was related to the heavy rainfall and convection;in this case,vertical motion with direct thermal circulation was the most important way in which APE was released,while latent heat release and vertical temperature advection were important for APE generation.  相似文献   

17.
Based on calculations of data from FGGE Level III b, a discussion is made of the energy balance in the 40-50 day periodic oscillation over the Asian monsoon region during the 1979 summer. It is found that the main source of 40-50 day periodic perturbation is the monsoon region extending from central South Asia to Southeast Asia. In the upper layer over the North Pacific subtropical area (10-20oN, 150oE-150oW) pres-sure work turns into kinetic energy that maintains 40-50 day periodic perturbation associated with the variation in position and intensity of the mid-Pacific trough. The mean energy budget in the three-dimensional space (0-30oE, 30oE-150oW, 100-1000 hPa) indicates that the 40-50 day periodic perturbation transports kinetic energy to a seasonal mean and a transient perturbation wind field.  相似文献   

18.
By using the 2-D stratospheric-tropospheric dynamic-radiative-chemical coupled model,somesensitivity experiments have been done,which are interactions among ozone,radiation andtemperature,vapor effects,as well as effects of source and sink.The result of temperatureexperiment shows that feedback interaction among ozone,radiation and temperature,mainlyoccurs in the upper and middle stratosphere,the maximum of ozone concentration decrease is 1ppm,the maximum of temperature change is 6 K,and the maximum of total ozone change is 20DU.From the experiment of water vapor,we can see that the area of the middle and high latitudesof the Northern Hemisphere is sensitive to vapor change.When the maximum difference betweenboth surface sources is in the Antarctic,the maximum of ozone change is also there.Because thecharacter of surface varies with latitude,dry deposition is different in different latitudes.Thechange of dry deposition makes ozone in boundary layer quite obvious,especially in both poles.The maximum change of total volume ozone in experiments of vapor,source and sink is more than12 DU.  相似文献   

19.
Based on calculations of data from FGGE Level III b, a discussion is made of the energy balance in the 40-50 day periodic oscillation over the Asian monsoon region during the 1979 summer. It is found that the main source of 40-50 day periodic perturbation is the monsoon region extending from central South Asia to Southeast Asia. In the upper layer over the North Pacific subtropical area (10-20oN, 150oE-150oW) pres-sure work turns into kinetic energy that maintains 40-50 day periodic perturbation associated with the variation in position and intensity of the mid-Pacific trough. The mean energy budget in the three-dimensional space (0-30oE, 30oE-150oW, 100-1000 hPa) indicates that the 40-50 day periodic perturbation transports kinetic energy to a seasonal mean and a transient perturbation wind field.  相似文献   

20.
In considering the weak non-linear effect, and using the small parameter expansion method, the analytical expressions of the wind distribution within PBL (planetary boundary layer) and the vertical velocity at the top of the PBL are obtained when the PBL is divided into three layers and different eddy transfer coefficients K are adopted for the three layers. The conditions of barotropy and neutrality for the PBL are extended to that of baroclinity and non-neutral stratification. An example of a steady circular vortex is used to display the characteristics of the horizontal wind within the PBL and the vertical velocity at the top of the PBL. Some new results have been obtained, indicating that the magnitude of the speed in the lower height calculated by the present model is larger than that by the model in which k is a constant within the whole boundary layer, for example, in the classical Ekman boundary layer model and the model by Wu (1984). The angle between the wind at the top of the PBL and the wind  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号