首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using Eggleton's stellar evolution code, we carry out 150 runs of Population I binary evolution calculations with the initial primary mass between 1 and 8 M, the initial mass ratio     between 1.1 and 4, and the onset of Roche lobe overflow (RLOF) at an early, middle or late Hertzsprung-gap stage. We assume that RLOF is conservative in the calculations, and find that the remnant mass of the primary may change by more than 40 per cent over the range of initial mass ratio or orbital period, for a given primary mass. This is contrary to the often-held belief that the remnant mass depends only on the progenitor mass if mass transfer begins in the Hertzsprung gap. We fit a formula, with an error less than 3.6 per cent, for the remnant (white dwarf) mass as a function of the initial mass M 1i of the primary, the initial mass ratio q i and the radius of the primary at the onset of RLOF. We also find that a carbon–oxygen white dwarf with mass as low as 0.33 M may be formed if the initial mass of the primary is around 2.5 M.  相似文献   

2.
We present results of evolutionary computations for massive close binaries with the Brussels simultaneous evolution code for conservative and non-conservative Roche lobe overflow (RLOF). We discuss mass transfer in massive close binaries during phases of RLOF, common envelope, spiral-in and merging. We examine the effects of stellar wind during successive stellar evolution phases and the final fate of primaries. We show how our library can be used to explain well-known binaries such as the WR + OB system V444 Cyg, HMXBs Vela X-1 and Wray 977, LMXBs like Her X-1, and binary pulsars. More details on the evolution of massive close binaries can be found in “The Brightest Binaries” (Vanbeveren et al., 1998).  相似文献   

3.
We discuss the effects of convective overshooting in the pre-main-sequence (PMS) evolution of intermediate-mass stars, by analysing in detail the early evolution towards the main sequence of a  2 M  stellar model. These effects can be extremely important in the end of the PMS, when the abundances in CNO elements approach the equilibrium in the centre. We provide a possible physical explanation on why a moderate amount of overshooting produces, as the star approaches the zero-age main-sequence, an extra loop in the evolutionary tracks on the Hertzsprung–Russell diagram.
An interesting feature is that there is a very well defined amount of overshooting (for a given stellar mass and chemical composition) beyond which a loop is produced. For smaller amounts of overshooting such a loop does not take place and the evolutionary tracks are similar to those found in the literature. The amount of overshooting needed to produce the loop decreases with stellar mass.
We discuss the underlining physical reasons for the behaviour predicted by the evolution models and argue that it provides a crucial observational test for convective overshooting in the core of intermediate-mass stars.  相似文献   

4.
We examine the possibility of probing dynamo action in mass-losing stars, components of Algol-type binaries. Our analysis is based on the calculation of non-conservative evolution of these systems. We model the systems U Sge and β Per where the more massive companion fills its Roche lobe at the main sequence (case AB) and where it has a small helium core (early case B) respectively. We show that to maintain evolution of these systems at the late stages which are presumably driven by stellar 'magnetic braking', an efficient mechanism for producing large-scale surface magnetic fields in the donor star is needed. We discuss the relevance of dynamo operation in the donor star to the accelerated mass transfer during the late stages of evolution of Algol-type binaries. We suggest that the observed X-ray activity in Algol-type systems may be a good indicator of their evolutionary status and internal structure of the mass-losing stellar components.  相似文献   

5.
We present a grid of evolutionary tracks of 240 binaries with a B-type primary at birth and initial mass ratios: 0.4, 0.6 and 0.9. Conservative calculations are done for cases A and A/B RLOF. For pure RLOF B, conservative and liberal evolutionary sequences have both been computed. In order to compare statistically our computations with the observed distributions of orbital periods and mass ratios of Algols, we enlightened the Algol appearance in every evolutionary sequence. Conservative RLOF reproduces the observed distribution of orbital periods well, but it underestimates the observed mass ratios in the range q ε [0.4–1].  相似文献   

6.
In a previous paper, using Eggleton's stellar evolution code, we have discussed the structure and evolution of low-mass W Ursae Majoris (W UMa) type contact binaries with angular momentum loss owing to gravitational radiation or magnetic braking. We find that gravitational radiation is almost insignificant for cyclic evolution of low-mass W UMa type systems, and it is possible for angular momentum to be lost from W UMa systems in a magnetic stellar wind. The weaker magnetic activity shown by observations in W UMa systems is likely caused by the lower mass of the convective envelopes in these systems than in similar but non-contact binaries. The spin angular momentum cannot be neglected at any time for W UMa type systems, especially for those with extreme mass ratios. The spin angular momenta of both components are included in this paper and they are found to have a significant influence on the cyclic evolution of W UMa systems. We investigate the influence of the energy transfer on the common convective envelopes of both components in detail. We find that the mass of the convective envelope of the primary in contact evolution is slightly more than that in poor thermal contact evolution, and that the mass of the convective envelope of the secondary in contact evolution is much less than that in poor thermal contact evolution. Meanwhile, the rate of angular momentum loss of W UMa type systems is much lower than that of poor thermal contact systems. This is indeed caused by the lower masses of the convective envelopes of the components in W UMa type systems. Although the models with angular momentum loss for W UMa systems exhibit cyclic evolution, they seem to show that a W UMa system cannot continue this type of cyclic evolution indefinitely, and it might coalesce into a fast-rotating star after about 1200 cycles of evolution (about  7.0 × 109 yr  ).  相似文献   

7.
We have developed a detailed stellar evolution code capable of following the simultaneous evolution of both stars in a binary system, together with their orbital properties. To demonstrate the capabilities of the code, we investigate potential progenitors for the Type IIb Supernova 1993J, which is believed to have been an interacting binary system prior to its primary exploding. We use our detailed binary stellar evolution code to model this system to determine the possible range of primary and secondary masses that could have produced the observed characteristics of this system, with particular reference to the secondary. Using the luminosities and temperatures for both stars (as determined by Maund et al.) and the remaining mass of the hydrogen envelope of the primary at the time of explosion, we find that if mass transfer is 100 per cent efficient, the observations can be reproduced by a system consisting of a  15 M  primary and a  14 M  secondary in an orbit with an initial period of 2100 days. With a mass transfer efficiency of 50 per cent, a more massive system consisting of a  17 M  primary and a  16 M  secondary in an initial orbit of 2360 days is needed. We also investigate some of the uncertainties in the evolution, including the effects of tidal interaction, convective overshooting and thermohaline mixing.  相似文献   

8.
We have calculated a grid of empirically well tested evolutionary tracks with masses M between 0.5 and 50 M⊙, spaced by approximately 0.1 in log M , and with metallicities Z  = 0.0001, 0.0003, 0.001, 0.004, 0.01, 0.02 and 0.03. We use a robust and fast evolution code with a self-adaptive non-Lagrangian mesh, which employs the mixing-length theory but treats convective mixing as a diffusion process, solving simultaneously for the structure and the chemical composition. The hydrogen and helium abundances are chosen as functions of the metallicity: X  = 0.76 − 3.0 Z Y  = 0.24 + 2.0 Z .   Two sets of models were computed, one without and one with a certain amount of enhanced mixing or 'overshooting'. This amount has been empirically chosen by means of various sensitive tests for overshooting: (1) the luminosity of core helium burning (blue loop) giants of well-known mass, (2) the width of the main sequence as defined by double-lined eclipsing binaries with well-measured masses and radii, and (3) the shape and implied stellar distribution of isochrones of various open clusters. The first two tests have been the subject of previous papers, the third test is discussed in this paper. On the basis of these tests, we recommend the use of the overshooting models for masses above about 1.5M ⊙.   We describe here the characteristics of the models, the procedure for constructing isochrones for arbitrary age and metallicity from the models, and the performance of these isochrones for several intermediate-age and old open clusters. All original models are available in electronic form and we describe the means by which they may be obtained.  相似文献   

9.
In massive stars,convection in the interior is different from that of intermediate and small mass stars. In the main-sequence phase of small mass stars,there is a convective core and a radiative envelope,between which are the radiative intermediate layers with uneven chemical abundances. Semiconvection would occur in the intermediate layers between the convective core and the homogeneous envelope in massive stars. We treat core convective overshooting and semiconvection together as a process. We found that when decreasing overshooting,the semiconvection is more pronounced. In these two processes,we introduce one diffusive parameter D,which is different from other authors who have introduced different parameters for these two zones. The influences of the turbulent diffusion process on chemical evolution and other quantities of the stellar structure are shown in the present paper.  相似文献   

10.
The new approach outlined in Paper I to follow the individual formation and evolution of binaries in an evolving, equal point-mass star cluster is extended for the self-consistent treatment of relaxation and close three- and four-body encounters for many binaries (typically a few per cent of the initial number of stars in the cluster mass). The distribution of single stars is treated as a conducting gas sphere with a standard anisotropic gaseous model. A Monte Carlo technique is used to model the motion of binaries, their formation and subsequent hardening by close encounters, and their relaxation (dynamical friction) with single stars and other binaries. The results are a further approach towards a realistic model of globular clusters with primordial binaries without using special hardware. We present, as our main result, the self-consistent evolution of a cluster consisting of 300 000 equal point-mass stars, plus 30 000 equal-mass binaries over several hundred half-mass relaxation times, well into the phase where most of the binaries have been dissolved and evacuated from the core. The cluster evolution is about three times slower than found by Gao et al. Other features are rather comparable. At every moment we are able to show the individual distribution of binaries in the cluster.  相似文献   

11.
The presence of low-mass, degenerate secondaries in millisecond pulsar binaries offers the opportunity to determine an age for the binary system independently of the rotational properties of the pulsar. To this end, we present here a detailed calculation of the evolution of a grid of low-mass (< 0.05 M⊙) helium core white dwarfs. We investigate the effects of different hydrogen layer masses and provide results for well-known optical bandpasses. We supplement the OPAL opacity calculations with our own calculations for low effective temperatures ( T eff < 6000 K) and also provide fitting formulae for the gravity as a function of mass and effective temperature. In Paper II we apply these results to individual cases.  相似文献   

12.
To measure the onset of mass transfer in eccentric binaries, we have developed a two-phase smoothed particle hydrodynamics (SPH) technique. Mass transfer is important in the evolution of close binaries, and a key issue is to determine the separation at which mass transfer begins. The circular case is well understood and can be treated through the use of the Roche formalism. To treat the eccentric case, we use a newly developed two-phase system. The body of the donor star is made up from high-mass water particles, whilst the atmosphere is modelled with low-mass oil particles. Both sets of particles take part fully in SPH interactions. To test the technique, we model circular mass-transfer binaries containing a  0.6 M  donor star and a  1 M  white dwarf; such binaries are thought to form cataclysmic variable (CV) systems. We find that we can reproduce a reasonable CV mass-transfer rate, and that our extended atmosphere gives a separation that is too large by approximately 16 per cent, although its pressure scale height is considerably exaggerated. We use the technique to measure the semimajor axis required for the onset of mass transfer in binaries with a mass ratio of   q = 0.6  and a range of eccentricities. Comparing to the value obtained by considering the instantaneous Roche lobe at pericentre, we find that the radius of the star required for mass transfer to begin decreases systematically with increasing eccentricity.  相似文献   

13.
Using a non-local theory of convection, we calculated the structure of the solar convection zone, paying special attention to the detailed structure of the lower overshooting zone. Our results show that an extended transition zone exists near the bottom of the convection zone, where the temperature gradient turns smoothly from adiabatic in the convection zone to radiative in solar interior. A super-radiative temperature region is found in the overshooting zone under the solar convection zone, where     ,     ,     and     . The extension of the super-radiative region (defined by     l is about 0.63  H P (0.053 R). A careful comparison of the distribution of adiabatic sound speed and density with the local one is carried out. It is found, strikingly, that the distribution of adiabatic sound speed and density of our model is roughly consistent with the results of reversion from solar oscillation observations.  相似文献   

14.
Thanks to their past history on the main-sequence phase, supergiant massive stars develop a convective shell around the helium core. This intermediate convective zone (ICZ) plays an essential role in governing which g-modes are excited. Indeed, a strong radiative damping occurs in the high-density radiative core but the ICZ acts as a barrier preventing the propagation of some g-modes into the core. These g-modes can thus be excited in supergiant stars by the κ-mechanism in the superficial layers due to the opacity bump of iron, at  log  T = 5.2  . However, massive stars are submitted to various complex phenomena such as rotation, magnetic fields, semiconvection, mass loss, overshooting. Each of these phenomena exerts a significant effect on the evolution and some of them could prevent the onset of the convective zone. We develop a numerical method which allows us to select the reflected, thus the potentially excited, modes only. We study different cases in order to show that mass loss and overshooting, in a large enough amount, reduce the extent of the ICZ and are unfavourable to the excitation of g-modes.  相似文献   

15.
A revision of Stodółkiewicz's Monte Carlo code is used to simulate the evolution of million-body star clusters. The new method treats each superstar as a single star and follows the evolution and motion of all individual stellar objects. The evolution of N -body systems influenced by the tidal field of a parent galaxy and by stellar evolution is presented. All models consist of 1 000 000 stars. The process of energy generation is realized by means of appropriately modified versions of Spitzer's and Mikkola's formulae for the interaction cross-section between binaries and field stars and binaries themselves. The results presented are in good agreement with theoretical expectations and the results of other methods. During the evolution, the initial mass function (IMF) changes significantly. The local mass function around the half-mass radius closely resembles the actual global mass function. At the late stages of evolution, the mass of the evolved stars inside the core can be as high as 97 per cent of the total mass in this region. For the whole system, the evolved stars can compose up to 75 per cent of the total mass. The evolution of cluster anisotropy strongly depends on initial cluster concentration, IMF and the strength of the tidal field. The results presented are the first step in the direction of simulating the evolution of real globular clusters by means of the Monte Carlo method.  相似文献   

16.
We introduce a set of stellar models for massive stars whose evolution has been affected by mass transfer in a binary system, at a range of metallicities. As noted by other authors, the effect of such mass transfer is frequently more than just rejuvenation. We find that, whilst stars with convective cores which have accreted only H-rich matter rejuvenate as expected, those stars which have accreted He-rich matter (e.g. at the end stages of conservative mass transfer) evolve in a way that is qualitatively similar to rejuvenated stars of much higher metallicity. Thus, the effects of non-conservative evolution depend strongly on whether He-rich matter is amongst the portion accreted or ejected. This may lead to a significant divergence in binary evolution paths with only a small difference in initial assumptions. We compare our models to observed systems and find approximate formulae for the effect of mass accretion on the effective age and metallicity of the resulting star.  相似文献   

17.
The results of evolutionary computations for massive binary systems (initial masses of the primary 10M ) with mass ratios between 0.3 and 0.8 are summarized and compared with observations in order to verify how far one can go with the conservative assumption of mass exchange. It is found that conservative mass exchange leads to acceptable first-order models of W-R and massive X-ray binaries. However, the comparison between this theory and observation reveals that for the observed systems (W-R and X-ray binaries) a preference exists for low intial mass ratios; moreover, the X-ray luminosities of the theoretical models are systematically too low, though this may be due to the adopted wind model. In addition, the influences of several parameters (distance between the components, chemical composition, primary mass, mass ratio and atmosphere) are examined. These parameters influence the remnant mass and any further evolution only marginally. Attention is also given to the effect on the system parameters of a supernova explosion of the remnant of the mass-losing component. For a large range of systems a disruption probability smaller than 25% is found.  相似文献   

18.
We apply the turbulent convection model (TCM) to investigate properties of tur-bulence in the solar convective envelope, especially in overshooting regions. The results show TCM gives negative turbulent heat flux uγ′T′in overshooting regions, which is sim-ilar to other nonlocal turbulent convection theories. The turbulent temperature fluctuation T′T′shows peaks in overshooting regions. Most important, we find that the downward overshooting region below the base of the solar convection zone is a thin cellular layer filled with roll-shaped convective cells. The overshooting length for the temperature gradi-ent is much shorter than that for element mixing because turbulent heat flux of downward and upward moving convective cells counteract each other in this cellular overshooting region. Comparing the models' sound speed with observations, we find that raking the convective overshooting into account helps to improve the sound speed profile of our nonlocal solar models. Comparing the p-mode oscillation frequencies with observations,we validated that increasing the diffusion parameters and decreasing the dissipation pa-rameters of TCM make the p-mode oscillation frequencies of the solar model be in betteragreement with observations.  相似文献   

19.
20.
Cygnus X-2 appears to be the descendant of an intermediate-mass X-ray binary (IMXB). Using Mazzitelli's stellar code we compute detailed evolutionary sequences for the system and find that its prehistory is sensitive to stellar input parameters, in particular the amount of core overshooting during the main-sequence phase. With standard assumptions for convective overshooting a case B mass transfer starting with a 3.5-M donor star is the most likely evolutionary solution for Cygnus X-2. This makes the currently observed state rather short-lived, of order 3 Myr, and requires a formation rate > 10−7–10−6 yr−1 of such systems in the Galaxy. Our calculations show that neutron star IMXBs with initially more massive donors (≳4 M) encounter a delayed dynamical instability; they are unlikely to survive this rapid mass transfer phase. We determine limits for the age and initial parameters of Cygnus X-2 and calculate possible dynamical orbits of the system in a realistic Galactic potential, given its observed radial velocity. We find trajectories which are consistent with a progenitor binary on a circular orbit in the Galactic plane inside the solar circle that received a kick velocity ≤200 km s−1 at the birth of the neutron star. The simulations suggest that about 7 per cent of IMXBs receiving an arbitrary kick velocity from a standard kick velocity spectrum would end up in an orbit similar to Cygnus X-2, while about 10 per cent of them reach yet larger Galactocentric distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号