首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Modification of a turbulent flow due to a change from a smooth to a rough surface has been studied by means of a stream function-vorticity model. Results of four models of eddy viscosity (or turbulent exchange coefficient) K mhave been compared. The models are: (1) K m = l2S, where l is the mixing length and S is the deformation of mean flow; (2) K m E/S, which is based on the assumption that turbulent momentum flux is proportional to turbulent kinetic energy E; (3) K m lE1/2, the so called Prandtl-Kolmogoroff approach; and (4) K m E2/, the E — closure, where is the dissipation of turbulent kinetic energy.It is found that net-production, i.e., the difference of production and dissipation of turbulent kinetic energy counteracts the influence of mean shear on turbulent shear stress and diminishes turbulent shear stress. The reduction of mixing-length, being predicted by Model 4 only, adds to this attenuation. As a consequence, in Models 2 and 4, loss of horizontal mean momentum is concentrated close to the ground, which results in an inflexion point in the logarithmic, vertical profile of horizontal mean velocity. By contrast, in Models 1 and 3, modification of turbulent shear stress reaches larger heights causing deeper internal boundary layers. Concerning the existence of an inflexion point in U(lnz), the depth of the internal boundary layer for mean velocity, and the modification of bottom shear stress, Model 4 comes closest to experimental data.A remarkable difference of Models 1, 2, 3 and Model 4 is that only Model 4 predicts a very slow relaxation of eddy viscosity which can be attributed to the reduction of mixing-length.  相似文献   

2.
An E- turbulence model is used to study air-sea interaction characteristics and turbulence structure using a coupled model for air-sea boundary layers. The E- turbulence model consists of equations for the turbulent kinetic energy, the energy-dissipation, and for the turbulent exchange coefficient expressed in terms of turbulent kinetic energy and energy-dissipation. The energy-dissipation equations for the air-sea interface are solved analytically to obtain boundary conditions for energy-dissipation at the interface. The air-sea interaction and turbulence characteristics of the E- model are compared with those of the mixing-length model and with available observations.The simulations demonstrate that the air-sea interaction parameters obtained by the E- model agree well with observations. The numerical studies also show that the E- turbulence model with appropriate constants can give good results in modeling coupled air-sea boundary-layer flows.  相似文献   

3.
From measured one-dimensional spectra of velocity and temperature variance, the universal functions of the Monin-Obukhov similarity theory are calculated for the range –2 z/L + 2. The calculations show good agreement with observations with the exception of a range –1 z/L 0 in which the function m , i.e., the nondimensional mean shear, is overestimated. This overestimation is shown to be caused by neglecting the spectral divergence of a vertical transport of turbulent kinetic energy. The integral of the spectral divergence over the entire wave number space is suggested to be negligibly small in comparison with production and dissipation of turbulent kinetic energy.Notation a,b,c contants (see Equations (–4)) - Ci constants i=u, v, w, (see Equation (5) - kme,kmT peak wave numbers of 3-d moel spectra of turbulent kinetic energy and of temperature variance, respectively - kmi peak wave numbers of 1-d spectra of velocity components i=u, v, w and of temperature fluctuations i= - ksb, kc characteristics wave numbers of energy-feeding by mechanical effects being modified by mean buoyancy, and of convective energy feeding, respectively - L Monin-Obukhov length - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gabeivayaaraaaaa!3C5B!\[{\rm{\bar T}}\] difference of mean temperature and mean potential temperature - T* Monin-Obukhov temperature scale - velocity of mean flow in positive x-direction - u* friction velocity - u, v, w components of velocity fluctuations - z height above ground - von Kármanán constant - temperature fluctuation - m nondimensional mean shear - H nondimensional mean temperature gradient - nondimensional rate of lolecular dissipation of turbulent kinetic energy - D nondimensional divergence of vertical transports of turbulent linetic energy  相似文献   

4.
We estimated the turbulent kinetic energy (TKE) dissipation rate for thirty-two 1-h intervals of unstable stratification covering the stability range 0.12 ≤ −z/L ≤ 43 (z/L is the ratio of instrument height to the Obukhov length), by fitting Kolmogorov’s inertial subrange spectrum to streamwise spectra observed over a desert flat. Estimated values are compatible with the existence of local equilibrium, in that the TKE dissipation rate approximately equalled the sum of shear and buoyant production rates. Only in the neutral limit was the turbulent transport term in the TKE budget measured to be small.  相似文献   

5.
This paper summarizes some measurements of high-frequency turbulence made at Cardington during the years 1968, 1969 and 1970 at heights up to 900 m. It discusses the statistical distribution of the data which appears to be closely log-normal. Also it is shown how the mean profiles of the derived dissipation of turbulent kinetic energy () can be rationalized to some extent in terms of atmospheric stability and low-level wind speed. A close correlation between and the mean wind and temperature profiles up to 900 m is illustrated and some discussion of the turbulent energy budget throughout the boundary layer is presented. The use and limitations of the constant flux layer relations in calculatingz 0 andL from the estimates of, at the lower heights, is brought out.  相似文献   

6.
The relation between the turbulence Reynolds numberR and a Reynolds numberz* based on the friction velocity and height from the ground is established using direct measurements of the r.m.s. longitudinal velocity and turbulent energy dissipation in the atmospheric surface layer. Measurements of the relative magnitude of components of the turbulent kinetic energy budget in the stability range 0 >z/L 0.4 indicate that local balance between production and dissipation is maintained. Approximate expressions, in terms of readily measured micrometeorological quantities, are proposed for the Taylor microscale and the Kolmogorov length scale .  相似文献   

7.
The spectral equations of turbulent kinetic energy and temperature variance have been solved by using Onsager's energy cascade model and by extending Onsager's model to closure of terms that embody the interaction of turbulent and mean flow.The spectral model yields the following results: In a stably stratified shear flow, the peak wave numbers of the spectra of energy and temperature variance shift toward larger wave numbers as stability increases. In an unstably stratified flow, the peak wave numbers of energy spectra move toward smaller wave numbers as instability increases, whereas the opposite trend is observed for the peak wave numbers of temperature variance spectra. Hence, the peak wave numbers of temperature spectra show a discontinuity at the transition from stable to unstable stratification. At near neutral stratification, both spectra reveal a bimodal structure.The universal functions of the Monin-Obukhov similarity theory are predicted to behave as m ~ H ~ (- Z/L)-1/3 in an extremely unstable stratification and as m ~ H ~ z/L in an extremely stable stratification. For a stably stratified flow, a constant turbulent Prandtl number is expected.  相似文献   

8.
The mean structure within the internal boundary layer (IBL) near the shore, which develop from the coast in the presence of a sea breeze, has been described in Part I of this study (Ogawa and Ohara, 1984). This paper presents the results of the similarity and energy budget analysis for the purpose of parameterization of the turbulent structure within the IBL. The analysis of the turbulent kinetic energy balance, turbulent intensities and spectra show that the wind is strongly affected by mechanical turbulence in comparison with the past results in a fully developed convective layer where thermal convection dominated. The standard deviations of the wind velocities normalized by the friction velocity u * (surface-layer scaling parameter) are functions only of the normalized height z/Z i within 160 m of the shoreline, where Z i is the IBL. On the other hand, the standard deviations of temperature normalized by * (mixing-layer scaling parameter) have less scatter with distance than those normalized by T * (surface-layer scaling parameter). The data showed that both u * (not a mixed-layer parameter), and Z i (not a surface-layer parameter) are necessary to describe the turbulent characteristics of the IBL near the shore.Deceased March, 1984.  相似文献   

9.
Observations over grassland of the turbulent kinetic energy in a band of frequencies in the inertial subrange of the spectrum of the streamwise wind component are related to the stress indicated by the wind profiles. The object is to determine the effective Kolmogoroff constant, UB , which accords with the assumption of balance between turbulent energy production and dissipation. The mean from 60 half-hour runs made under stability conditions ranging from neutral to moderate instability is UB = 0.62.This result is compared with those from other studies; four over grassland and six over the sea or a lake. There is no significant difference between the means of the land and sea values, but the latter are more scattered, partly because of difficulties in securing suitable exposure of the instruments for the stress measurements. The mean value from all ten sets of observations is UB = 0.59 ± 0.025. So the dissipation method should be capable of giving the drag coefficient of the sea in strong winds with an uncertainty of no more than about 10%.  相似文献   

10.
Atmospheric measurements from several field experiments have been combined to develop a better understanding of the turbulence structure of the stable atmospheric boundary layer. Fast response wind velocity and temperature data have been recorded using 3-dimensional sonic anemometers, placed at severalheights (1 m to 4.3 m) above the ground. The measurements wereused to calculate the standard deviations of the three components of the windvelocity, temperature, turbulent kinetic energy (TKE) dissipation andtemperature variance dissipation. These data were normalized and plottedaccording to Monin–Obukhov similarity theory. The non-dimensional turbulencestatistics have been computed, in part, to investigate the generalapplicability of the concept of z-less stratification for stable conditions. From the analysis of a data set covering almost five orders ofmagnitude in the stability parameter = z/L (from near-neutral tovery stable atmospheric stability), it was found that this concept does nothold in general. It was only for the non-dimensional standard deviation oftemperature and the average dissipation rate of turbulent kinetic energythat z-less behaviour has been found. The other variables studied here(non-dimensional standard deviations of u, v, and w velocity components and dissipation of temperature variance) did not follow the concept of z-less stratification for the very stable atmospheric boundary layer. An imbalance between production and dissipation of TKE was found for the near-neutral limit approached from the stable regime, which matches with previous results for near-neutral stability approached from the unstable regime.  相似文献   

11.
The effects of an air-temperature inversion in the atmosphere and a seawater density jump in the ocean on the structure of the atmospheric and oceanic boundary layers are studied by use of a coupled model. The numerical model consists of a closed system of equations for velocities, turbulent kinetic energy, turbulent exchange coefficient, local turbulent length scale, and stratification expressions for both air and sea boundary layers. The effects of the temperature inversion and the density jump are incorporated into the equations of turbulent kinetic energy of the atmosphere and ocean by a parameterization. A series of numerical experiments was conducted to determine the effects of various strengths of the inversion layer and surface heat fluxes in the atmosphere and of the density-jump layer in the ocean on the structure of the interacting boundary layers.The numerical results show that the temperature inversion in the atmosphere and density jump in the ocean have strong influences on turbulent structure [especially on the turbulent exchange coefficient (TEC) and turbulent kinetic energy (TKE)] and on air-sea interaction characteristics. Maxima of TKE and TEC strongly decrease with increasing strength of the inversion layer, and they disappear for strong inversions in the atmosphere. Certain strengths (density differences between the upper and the lower layers) of the density-jump layer in the ocean (2 0.1 g/cm3) produce double maxima in TEC-profiles and TKE-profiles in the ocean. The magnitudes of air-sea interaction characteristics such as geostrophic drag coefficient, and surface drift current increase with increasing strength of the density-jump layer in the ocean. The density-jump layer plays the role of a barrier that limits vertical mixing in the ocean. The numerical results agree well with available observed data and accepted quantitive understanding of the influences of a temperature inversion layer and a density-jump layer on the interacting atmospheric and oceanic boundary layers.  相似文献   

12.
A one-dimensional numerical model based on the equations of mean motion and turbulent kinetic energy (TKE), with Delage's (1974) mixing-length parameterization has been used to simulate the mean and turbulent structure of the evolving stably stratified nocturnal boundary layer (NBL). The model also includes a predictive equation for the surface temperature and longwave radiational cooling effects.In the absence of advective and gravity wave effects, it is found that the model-simulated structure, after a few hours of evolution, could be ordered fairly well by a similarity scaling (u *0, *0, L 0, and h) based on surface fluxes and the NBL height. Simple expressions are suggested to describe the normalized profiles of momentum and heat fluxes, TKE, eddy-viscosity and energy dissipation. A good ordering of the same variables is also achieved by a local scaling (u *0, * and L) based on the height-dependent local fluxes. The normalized TKE, eddy viscosity and energy dissipation are unique functions of z/L and approach constant values as z/L , where L is the local Monin-Obukhov length. These constants are close to the values predicted for the surface layer as z/L , thus suggesting that the Monin-Obukhov similarity theory can be extended to the whole NBL, by using the local (height-dependent) scales in place of surface-layer scales. The observed NBL structure has been shown to follow local similarity (Nieuwstadt, 1984).  相似文献   

13.
Large-eddy simulations of the neutrally-stratified flow over an extended homogeneous forest were used to calibrate a canopy model for the Reynolds-averaged Navier–Stokes (RaNS) method with the $k-\varepsilon $ k - ε turbulence model. It was found that, when modelling the forest as a porous medium, the canopy drag dissipates the turbulent kinetic energy (acts as a sink term). The proposed model was then tested in more complex flows: a finite length forest and a forested hill. In the finite length forest, the destruction of the turbulent kinetic energy by the canopy was overestimated near the edge, for a length approximately twice the tree height. In the forested hill, the model was less accurate inside the recirculation zone and overestimated the turbulent kinetic energy, due to an incorrect prediction of the production term. Nevertheless, the canopy model presented here provided consistent results in both a priori and a posteriori tests and improved the accuracy of RaNS simulations with the $k-\varepsilon $ k - ε model.  相似文献   

14.
Averaging procedures for flow within vegetation canopies   总被引:13,自引:5,他引:13  
Most one-dimensional models of flow within vegetation canopies are based on horizontally averaged flow variables. This paper formalizes the horizontal averaging operation. Two averaging schemes are considered: pure horizontal averaging at a single instant, and time averaging followed by horizontal averaging. These schemes produce different forms for the mean and turbulent kinetic energy balances, and especially for the wake production term describing the transfer of energy from large-scale motion to wake turbulence by form drag. The differences are primarily due to the appearance, in the covariances produced by the second scheme, of dispersive components arising from the spatial correlation of time-averaged flow variables. The two schemes are shown to coincide if these dispersive fluxes vanish.  相似文献   

15.
The integral length-scalesL for the three orthogonal components of diffusivityK=L are derived from spectral analysis of velocity time series measurements. A 3-D sonic anemometer was used to make these velocity measurements at heights in the range 0.7–7.0 m in and above a 2 m orchard canopy with near-neutral atmospheric boundary-layer stability conditions. The integral length-scale is compared with another length-scale of diffusionL obtained by fitting an exponential model to the auto-correlation spectrumR E (t) in the region 0.95<R E (t)<0.5 for smallt. This length-scale is appropriate to a high frequency region of the energy spectrum where turbulent momentum transport becomes diffusion-like and the turbulent energy varies with the inverse square of frequence. This region has been shown by others to determine the magnitude of the dissipation rate of turbulent energy by the action of viscosity even though the dominant dynamics are inviscid. Within the crop, the ratio of the length-scalesL/L were found to be smaller than the values measured above the crop for vertical turbulence. This was attributed to the enhanced decay rate of turbulent energy due to the effect of the airflow interaction with the crop. It is unclear whether similar effects are present in the horizontal plane because of greater scatter in the data, resulting from the more variable nature of the wind direction in the horizontal plane.  相似文献   

16.
In this paper a simple mixing length formulation for the eddy-diffusivityparameterization of dry convection is suggested. The new formulation relates the mixinglength to the square root of the turbulent kinetic energy (e) and a time scale ( ):l = e. To close the parameterization the time scale is calculated as a functionof the boundary-layer height (h) and the convective velocity scale (w*), h/w*. Thesimpler approach of a constant time scale is also studied. The simulation of a case of dry atmosphericconvection with a one-dimensional boundary-layer model shows that the model with the new formulationreproduces quite well the main properties of the convective boundary layer. In particular,the entrainment is realistically represented by the new mixing length, which has the advantage of naturallydecreasing with the turbulent kinetic energy. Sensitivity studies to the surface flux and the lapserate, in the context of a simplified situation, show the robustness of the new formulation.  相似文献   

17.
A numerical case study with a second-order turbulence closure model is proposed to study the role of urban canopy layer (UCL) for the formation of the nocturnal urban boundary layer (UBL). The turbulent diffusion coefficient was determined from an algebraic stress model. The concept of urban building surface area density is proposed to represent the UCL. Calculated results were also compared with field observation data. The height of the elevated inversion above an urban center was simulated and found to be approximately twice the average building height. The turbulent kinetic energy k, energy dissipation rate , and turbulence intensities u 2 and w 2 increase rapidly at the upwind edge of the urban area. The Reynolds stress uw displayed a nearly uniform profile inside the UBL, and the vertical sensible heat flux w had a negative value at the inversion base height. This indicates that the downward transport of sensible heat from the inversion base may play an important role in the formation of the nocturnal UBL.  相似文献   

18.
The turbulent flow inside dense canopies is characterized by wake production and short-circuiting of the energy cascade. How these processes affect passive scalar concentration variability in general and their spectral properties in particular remains a vexing problem. Progress on this problem is frustrated by the shortage of high resolution spatial concentration measurements, and by the lack of simplified analytical models that connect spectral modulations in the turbulent kinetic energy (TKE) cascade to scalar spectra. Here, we report the first planar two-dimensional scalar concentration spectra (ϕ cc ) inside tall canopies derived from flow visualization experiments. These experiments were conducted within the deeper layers of a model canopy composed of densely arrayed cylinders welded to the bottom of a large recirculating water channel. We found that in the spectral region experiencing wake production, the ϕ cc exhibits directional scaling power laws. In the longitudinal direction (x), or the direction experiencing the largest drag force, the ϕ cc (k x ) was steeper than and followed an approximate at wavenumbers larger than the injection scale of wake energy, where k x is the longitudinal wavenumber. In the lateral direction (y), the spectra scaled as up to the injection scale, and then decayed at an approximate power law. This departure from the classical inertial subrange scaling (i.e., k −5/3) was reproduced using a newly proposed analytical solution to a simplified scalar spectral budget equation. Near the velocity viscous dissipation range, the scalar spectra appear to approach an approximate k −3, a tantalizing result consistent with dimensional analysis used in the inertial-diffusive range. Implications to subgrid modelling for large-eddy simulations (LES) inside canopies are briefly discussed.  相似文献   

19.
Large-eddy simulations of the neutrally stratified flow over the Askervein Hill were performed, to improve the knowledge of the flow obtained from field measurements and numerical simulations with Reynolds averaged Navier-Stokes (RANS) methods. A Lagrangian dynamic subgrid model was used but, to avoid the underdissipative character near the ground, it was merged with a damped Smagorinsky model. Simulations of a flat boundary-layer flow with this subgrid model showed that the turbulent vertical motions and shear stress were better resolved using grids with a stream to spanwise aspect ratio Δx / Δy = 2 than with an aspect ratio Δx / Δy = 1. Regarding the flow over the Askervein Hill, it was found that large-eddy simulations provide an acceptable solution for the mean-velocity field and better predictions of the turbulent kinetic energy in the upstream side of the hill than the model. However, as with the model, grid convergence was not achieved in the lee side and the size of the zone with reversed flow increased with the grid refinement. Nevertheless, the existence of the intermittent separation predicted with unsteady RANS in part one of this work seems unquestionable, due to the deceleration of the flow. In our opinion, a better modelling of the decelerating boundary layer in the lee side is required to improve the results obtained using equilibrium assumptions and achieve grid convergence.  相似文献   

20.
Possibilities of laboratory simulation of two different atmospheric layers — stratospheric and boundary layer — are considered. The laboratory simulation is performed by fully developed turbulent flows of mercury (Re7×104) in strong magnetic fields. The processes of direct and inverse transfer of energy and passive scalar are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号