首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ambiguity resolved precise point positioning with GPS and BeiDou   总被引:1,自引:1,他引:1  
This paper focuses on the contribution of the global positioning system (GPS) and BeiDou navigation satellite system (BDS) observations to precise point positioning (PPP) ambiguity resolution (AR). A GPS + BDS fractional cycle bias (FCB) estimation method and a PPP AR model were developed using integrated GPS and BDS observations. For FCB estimation, the GPS + BDS combined PPP float solutions of the globally distributed IGS MGEX were first performed. When integrating GPS observations, the BDS ambiguities can be precisely estimated with less than four tracked BDS satellites. The FCBs of both GPS and BDS satellites can then be estimated from these precise ambiguities. For the GPS + BDS combined AR, one GPS and one BDS IGSO or MEO satellite were first chosen as the reference satellite for GPS and BDS, respectively, to form inner-system single-differenced ambiguities. The single-differenced GPS and BDS ambiguities were then fused by partial ambiguity resolution to increase the possibility of fixing a subset of decorrelated ambiguities with high confidence. To verify the correctness of the FCB estimation and the effectiveness of the GPS + BDS PPP AR, data recorded from about 75 IGS MGEX stations during the period of DOY 123-151 (May 3 to May 31) in 2015 were used for validation. Data were processed with three strategies: BDS-only AR, GPS-only AR and GPS + BDS AR. Numerous experimental results show that the time to first fix (TTFF) is longer than 6 h for the BDS AR in general and that the fixing rate is usually less than 35 % for both static and kinematic PPP. An average TTFF of 21.7 min and 33.6 min together with a fixing rate of 98.6 and 97.0 % in static and kinematic PPP, respectively, can be achieved for GPS-only ambiguity fixing. For the combined GPS + BDS AR, the average TTFF can be shortened to 16.9 min and 24.6 min and the fixing rate can be increased to 99.5 and 99.0 % in static and kinematic PPP, respectively. Results also show that GPS + BDS PPP AR outperforms single-system PPP AR in terms of convergence time and position accuracy.  相似文献   

2.
3.
Pan  Lin  Zhang  Xiaohong  Li  Xingxing  Liu  Jingnan  Li  Xin 《GPS Solutions》2017,21(2):811-822
GPS Solutions - The latest generation of GPS satellites, termed Block IIF, provides a new L5 signal. Multi-frequency signals open new prospects for precise positioning and fast ambiguity resolution...  相似文献   

4.
我国北斗卫星导航系统(BDS)处于最后阶段BDS-3的建设之中,其定位精度一直是国内外研究的热点.本文基于IGS连续跟踪站实测数据,阐述了BDS三频精密单点定位模型,初步对比分析了BDS-2与BDS-3的观测数据质量以及精密单点定位精度.经研究发现,BDS-3数据质量良好,相比BDS-2有所提高,单独利用BDS-3卫星进行精密单点定位精度相比于BDS-2略差,收敛时间也略慢,二者结合下的精密单点定位精度与收敛时间相比单独定位有很大的提升.   相似文献   

5.
Precise positioning with the current Chinese BeiDou Navigation Satellite System is proven to be of comparable accuracy to the Global Positioning System, which is at centimeter level for the horizontal components and sub-decimeter level for the vertical component. But the BeiDou precise point positioning (PPP) shows its limitation in requiring a relatively long convergence time. In this study, we develop a numerical weather model (NWM) augmented PPP processing algorithm to improve BeiDou precise positioning. Tropospheric delay parameters, i.e., zenith delays, mapping functions, and horizontal delay gradients, derived from short-range forecasts from the Global Forecast System of the National Centers for Environmental Prediction (NCEP) are applied into BeiDou real-time PPP. Observational data from stations that are capable of tracking the BeiDou constellation from the International GNSS Service (IGS) Multi-GNSS Experiments network are processed, with the introduced NWM-augmented PPP and the standard PPP processing. The accuracy of tropospheric delays derived from NCEP is assessed against with the IGS final tropospheric delay products. The positioning results show that an improvement in convergence time up to 60.0 and 66.7% for the east and vertical components, respectively, can be achieved with the NWM-augmented PPP solution compared to the standard PPP solutions, while only slight improvement in the solution convergence can be found for the north component. A positioning accuracy of 5.7 and 5.9 cm for the east component is achieved with the standard PPP that estimates gradients and the one that estimates no gradients, respectively, in comparison to 3.5 cm of the NWM-augmented PPP, showing an improvement of 38.6 and 40.1%. Compared to the accuracy of 3.7 and 4.1 cm for the north component derived from the two standard PPP solutions, the one of the NWM-augmented PPP solution is improved to 2.0 cm, by about 45.9 and 51.2%. The positioning accuracy for the up component improves from 11.4 and 13.2 cm with the two standard PPP solutions to 8.0 cm with the NWM-augmented PPP solution, an improvement of 29.8 and 39.4%, respectively.  相似文献   

6.
受实测气象参数的限制,使用标准大气参数的传统对流层模型的精度并不高;使用参数估计法的精密对流层模型增加了观测方程的待估参数,影响收敛速度. 针对实测气象参数缺失的情况,提出一种融合对流层模型,使用两种非实测气象参数模型分别计算出平均海平面处和测站处的气象参数,再利用Saastamoinen模型经验公式求解天顶对流层延迟(ZTD). 利用RTKLIB软件进行精密单点定位(PPP)实验. 提出的融合对流层模型摆脱了实测气象参数的限制,解算结果表明:使用该模型时,在东、北、天方向的定位精度分别比Saastamoinen模型提高16 mm、1 mm、2.2 mm,比MOPS模型提高13.8 mm、0.7 mm、1.6 mm,比GPT/UNB3m+Sa模型提高2.9 mm、0.4 mm、0.7 mm,在天、北方向的定位精度接近参数估计模型,实现了PPP定位精度的提高.   相似文献   

7.
Pan  Lin  Zhang  Xiaohong  Liu  Jingnan 《GPS Solutions》2019,23(4):1-14
GPS Solutions - The EUREF Permanent Network (EPN) is a network of continuously operating GNSS stations installed throughout the European continent. The EPN Central Bureau (CB) performs the...  相似文献   

8.
陈展鹏 《测绘科学》2019,44(4):20-25
针对传统双频BDS精密单点定位收敛速度及定位精度如何进一步提高的问题,该文提出了一种基于两组消电离层组合的BDS新三频精密单点定位(PPP)定位算法,并且对由于引入第3个频段观测量所导致的函数和随机模型与传统双频PPP模型存在的差异进行了公式推导。最后利用实测数据以动态和静态模式对新三频PPP模型进行了测试,以传统双频PPP解算结果为参照,对新三频PPP模型的收敛速度及定位精度进行了评估分析。基于实测数据的测试结果表明,新三频算法有利于提升定位解算的精度并有效缩短初始收敛过程,而且这一改善效果在动态模式下较静态模式更为显著。  相似文献   

9.
周锋  徐天河 《测绘学报》2021,50(1):61-70
在精细考虑伪距和载波相位硬件偏差时变特性的基础上,导出了更为严谨的非差非组合观测方程,并给出了非组合模式下两类GNSS偏差的数学表达形式.基于此,本文详细研究了3种常用的三频精密单点定位(PPP),即无电离层两两组合IF1213、单个无电离层组合IF123与非组合UC123函数模型的独立参数化方法,系统分析了3种PPP...  相似文献   

10.
In order to improve the performance of precise point positioning (PPP), this paper presents a new data processing scheme to shorten the convergence time and the observation time required for a reliable ambiguity-fixing. In the new scheme, L1 and L2 raw observations are used and the slant ionospheric delays are treated as unknown parameters. The empirical spatial and temporal constraints and the ionospheric delays derived from a real-time available ionospheric model are all considered as pseudo-observations into the estimation for strengthening the solution. Furthermore, we develop a real-time computational procedure for generating uncalibrated phase delays (UPDs) on L1 and L2 frequencies. The PPP solution is first carried out on all reference stations based on the proposed scheme, undifferenced float ambiguities on L1 and L2 frequencies can be directly obtained from the new scheme. The L1 and L2 UPDs are then generated and broadcasted to users in real-time. This data product and also the performance of the new PPP scheme are evaluated. Our results indicate that the new processing scheme considering ionospheric characteristics can reduce the convergence time by about 30 % for float kinematic solutions. The observation time for a reliable ambiguity-fixing is shortened by 25 % compared to that of the traditional ambiguity-fixed kinematic solution. When the new method is used for static reference stations, the observation time for ambiguity-fixing is about 10 min in static mode and only 5  min if the coordinates are fixed to well-known values.  相似文献   

11.
The features and differences of various GPS differential code bias (DCB)s are discussed. The application of these biases in dual- and triple-frequency satellite clock estimation is introduced based on this discussion. A method for estimating the satellite clock error from triple-frequency uncombined observations is presented to meet the need of the triple-frequency uncombined precise point positioning (PPP). In order to evaluate the estimated satellite clock error, the performance of these biases in dual- and triple-frequency positioning is studied. Analysis of the inter-frequency clock bias (IFCB), which is a result of constant and time-varying frequency-dependent hardware delays, in ionospheric-free code-based (P1/P5) single point positioning indicates that its influence on the up direction is more pronounced than on the north and east directions. When the IFCB is corrected, the mean improvements are about 29, 35 and 52% for north, east and up directions, respectively. Considering the contribution of code observations to PPP convergence time, the performance of DCB(P1–P2), DCB(P1–P5) and IFCB in GPS triple-frequency PPP convergence is investigated. The results indicate that the DCB correction can accelerate PPP convergence by means of improving the accuracy of the code observation. The performance of these biases in positioning further verifies the correctness of the estimated dual- and triple-frequency satellite clock error.  相似文献   

12.
Significant time-varying inter-frequency clock biases (IFCBs) within GPS observations prevent the application of the legacy L1/L2 ionosphere-free clock products on L5 signals. Conventional approaches overcoming this problem are to estimate L1/L5 ionosphere-free clocks in addition to their L1/L2 counterparts or to compute IFCBs between the L1/L2 and L1/L5 clocks which are later modeled through a harmonic analysis. In contrast, we start from the undifferenced uncombined GNSS model and propose an alternative approach where a second satellite clock parameter dedicated to the L5 signals is estimated along with the legacy L1/L2 clock. In this manner, we do not need to rely on the correlated L1/L2 and L1/L5 ionosphere-free observables which complicates triple-frequency GPS stochastic models, or account for the unfavorable time-varying hardware biases in undifferenced GPS functional models since they can be absorbed by the L5 clocks. An extra advantage over the ionosphere-free model is that external ionosphere constraints can potentially be introduced to improve PPP. With 27 days of triple-frequency GPS data from globally distributed stations, we find that the RMS of the positioning differences between our GPS model and all conventional models is below 1 mm for all east, north and up components, demonstrating the effectiveness of our model in addressing triple-frequency observations and time-varying IFCBs. Moreover, we can combine the L1/L2 and L5 clocks derived from our model to calculate precisely the L1/L5 clocks which in practice only depart from their legacy counterparts by less than 0.006 ns in RMS. Our triple-frequency GPS model proves convenient and efficient in combating time-varying IFCBs and can be generalized to more than three frequency signals for satellite clock determination.  相似文献   

13.
During past decades, precise point positioning (PPP) has been proven to be a well-known positioning technique for centimeter or decimeter level accuracy. However, it needs long convergence time to get high-accuracy positioning, which limits the prospects of PPP, especially in real-time applications. It is expected that the PPP convergence time can be reduced by introducing high-quality external information, such as ionospheric or tropospheric corrections. In this study, several methods for tropospheric wet delays modeling over wide areas are investigated. A new, improved model is developed, applicable in real-time applications in China. Based on the GPT2w model, a modified parameter of zenith wet delay exponential decay wrt. height is introduced in the modeling of the real-time tropospheric delay. The accuracy of this tropospheric model and GPT2w model in different seasons is evaluated with cross-validation, the root mean square of the zenith troposphere delay (ZTD) is 1.2 and 3.6 cm on average, respectively. On the other hand, this new model proves to be better than the tropospheric modeling based on water-vapor scale height; it can accurately express tropospheric delays up to 10 km altitude, which potentially has benefits in many real-time applications. With the high-accuracy ZTD model, the augmented PPP convergence performance for BeiDou navigation satellite system (BDS) and GPS is evaluated. It shows that the contribution of the high-quality ZTD model on PPP convergence performance has relation with the constellation geometry. As BDS constellation geometry is poorer than GPS, the improvement for BDS PPP is more significant than that for GPS PPP. Compared with standard real-time PPP, the convergence time is reduced by 2–7 and 20–50% for the augmented BDS PPP, while GPS PPP only improves about 6 and 18% (on average), in horizontal and vertical directions, respectively. When GPS and BDS are combined, the geometry is greatly improved, which is good enough to get a reliable PPP solution, the augmentation PPP improves insignificantly comparing with standard PPP.  相似文献   

14.
15.
With the development of precise point positioning (PPP), the School of Geodesy and Geomatics (SGG) at Wuhan University is now routinely producing GPS satellite fractional cycle bias (FCB) products with open access for worldwide PPP users to conduct ambiguity-fixed PPP solution. We provide a brief theoretical background of PPP and present the strategies and models to compute the FCB products. The practical realization of the two-step (wide-lane and narrow-lane) FCB estimation scheme is described in detail. With GPS measurements taken in various situations, i.e., static, dynamic, and on low earth orbit (LEO) satellites, the quality of FCB estimation and the effectiveness of PPP ambiguity resolution (AR) are evaluated. The comparison with CNES FCBs indicated that our FCBs had a good consistency with the CNES ones. For wide-lane FCB, almost all the differences of the two products were within ±0.05 cycles. For narrow-lane FCB, 87.8 % of the differences were located between ±0.05 cycles, and 97.4 % of them were located between ±0.075 cycles. The experimental results showed that, compared with conventional ambiguity-float PPP, the averaged position RMS of static PPP can be improved from (3.6, 1.4, 3.6) to (2.0, 1.0, 2.7) centimeters for ambiguity-fixed PPP. The average accuracy improvement in the east, north, and up components reached 44.4, 28.6, and 25.0 %, respectively. A kinematic, ambiguity-fixed PPP test with observation of 80 min achieved a position accuracy of better than 5 cm at the one-sigma level in all three coordinate components. Compared with the results of ambiguity-float, kinematic PPP, the positioning biases of ambiguity-fixed PPP were improved by about 78.2, 20.8, and 65.1 % in east, north, and up. The RMS of LEO PPP test was improved by about 23.0, 37.0, and 43.0 % for GRACE-A and GRACE-B in radial, tangential, and normal directions when AR was applied to the same data set. These results demonstrated that the SGG FCB products can be produced with high quality for users anywhere around the world to carry out ambiguity-fixed PPP solutions.  相似文献   

16.
To ensure the consistent use of the current GPS precise satellite clock products, the inter-frequency clock bias (IFCB) should be carefully considered for triple-frequency precise point positioning (PPP). It is beneficial to investigate the modeling of the IFCB for multi-frequency PPP, especially for real-time users suffering from difficulties in real-time IFCB estimations. Our analysis is based on datasets from 129 stations spanning a whole year. A harmonic analysis is performed for all single-day IFCB time series, and periodic IFCB variations with periods of 12, 8, 6, 4.8, 4 and 3 h are identified. An empirical model composed of a sixth-order harmonic function and a linear function is presented to describe daily variations in the IFCB, and the modeling accuracy is 4 mm. A least squares fit is adopted to estimate the single-day harmonic coefficients phase and amplitude. The prediction accuracy of the IFCB models degrades from 7.2 to 12.3 mm when the time span of prediction is increased from a day to a week. When using IFCB models of the previous day to obtain the IFCB correction values, the positioning accuracy of triple-frequency PPP is improved by 21, 11 and 16% over the triple-frequency PPP neglecting the IFCB in the post-processing mode in the east, north and up directions, respectively. As to the real-time triple-frequency PPP, the corresponding accuracy improvement is 24, 9 and 10% in the three directions, respectively.  相似文献   

17.
Banville  Simon  Sieradzki  Rafal  Hoque  Mainul  Wezka  Kinga  Hadas  Tomasz 《GPS Solutions》2017,21(4):1817-1828
GPS Solutions - Higher-order ionospheric effects, if not properly accounted for, can propagate into geodetic parameter estimates. For this reason, several investigations have led to the development...  相似文献   

18.
严丽 《测绘学报》2020,49(6):803-803
正北斗卫星导航系统是首个异构星座,是目前完全运行的唯一的三频导航系统,集导航定位、授时、用户监测、短报文通信于一体。BDS具有的独特优势,有利于改善DOP(dilution of precision)值、削弱大气误差、缩短模糊度初始化时间等。BDS与GPS融合卫星资源的利用,将成为BDS逐步走向国际卫星导航领域的一个过程。本文分析BDS与GPS在时空参考框架、星座结构、信号内容、数据质量等方面的差异性,研究BDS/GPS融合高精度相对定位关键技术。提出了一套BDS/GPS静态与动态相对定位算法,并开展了大量的试验研究,如铁路CPI控制网静态数据处理,基于相对定位精度因子RPDOP(relative positioning dilution of precision)分析的快速静态定位,不同范围与挑战性环境下RTK(real time kinematic)定位等,验证本文理论算法研究的正确性。本文主要内容如下。  相似文献   

19.
本文系统地分析了多种精密卫星钟差加密方法,以IGS提供的GPSweek 1421周第2天的2号、11号、21号和28号卫星的30s间隔的精密卫星钟差为基准,然后以从中提取的15min和5min间隔的钟差为例,将其用内插或拟合等不同方法分别加密到30s,将加密结果与30s间隔的精密卫星钟差基准进行比较分析,得出样条函数内插法精度较高、较可靠,拟合法精度较差,在个别历元处,内插或拟合卫星钟差的误差仍然很大。  相似文献   

20.
潘林 《测绘学报》2020,49(5):668-668
全球导航卫星系统(GNSS)提供多频信号,多频融合已经成为一种趋势。在精密钟差估计(PCE)的过程中,卫星钟差参数会吸收卫星端稳定的伪距偏差和时变的相位偏差,这些偏差均与频率相关。因而使用不同的观测值进行PCE时,得到的卫星钟差估值是不同的,它们之间的差值被定义为频率间卫星钟偏差(IFCB)。按组成成分,IFCB可以分成伪距相关的IFCB(CIFCB)和相位相关的IFCB(PIFCB)两部分。国际GNSS服务(IGS)提供的精密卫星钟差产品是基于双频消电离层(IF)组合观测值生成的。由于IFCB的存在,导致IGS卫星钟差产品不能直接应用于多频精密单点定位(PPP)。IFCB的精确考虑已经成为多频PPP的一个关键问题。本研究旨在对IFCB特性和估计方法开展系统深入的研究,并评估其对多频PPP解的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号