首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
本文收集了733个四川地区的实测钻孔数据,从中筛选出深度大于30m的268个钻孔剖面资料。分别获得了10m、15m、20m、25m和28m不同深度处的平均剪切波速 与 的对数线性相关关系。同时还与Boore(2004)的结果做了对比分析,比较了采用常数外推法和对数线性外推法得到的不同深度处剪切波速的残差分布。结果表明,不同深度处剪切波速 与 的对数相关关系可能具有一定的区域性特征,本文得到的对数关系更适合四川地区。对数线性外推法与常数外推法相比,前者的系统偏差更小;随着深度的增加,两种方法的外推误差均逐渐减小,但常数外推法普遍低估了 值;当深度较浅时,低估的情况更为明显。本文的研究结果为利用大量的不足30m的钻孔资料估计 值提供了参考。  相似文献   

2.
利用四川和云南地区共973个工程场地钻孔资料,分别基于常速度外推模型、对数线性模型和条件独立模型的经验外推方法建立了该区域20 m和30 m平均剪切波速vS20和vS30的经验预测模型.研究表明常速度外推模型的预测误差最大,当波速资料深度小于10 m时,常速度外推方法会显著低估实际场地平均波速.基于对数线性外推方法建立...  相似文献   

3.
本文通过收集喀什—乌恰地区20个钻孔深度大于30 m的钻孔实测数据,分别获得了5、10、15及20 m深度处的等效剪切波速V_(SZ)与V_(S30)的对数线性关系,根据对数线性和对数二次回归的方法,得到了V_(SZ)与V_(S30)的经验关系。结果显示:速度梯度模型外推方法获得的V_(S30)经验模型,更加适合深度超过10 m的钻孔数据的估计。速度梯度模型外推方法中,对数二次回归和对数线性回归外推得到的V_(S30)经验模型呈现相同的规律,拟合优度差别不大,利用速度梯度外推方法获得V_(S30)经验模型,使用简单的线性模型就可以满足精度需求。  相似文献   

4.
张肖  张合  云萌  汪飞 《震灾防御技术》2022,17(2):401-408
本文基于雄安新区起步区区域性地震安全性评价工程435个钻孔剖面数据,选取其中300个钻孔剖面进行回归分析,利用剩余的135个钻孔剖面数据进行模型可靠性检验。研究结果表明,当钻孔剖面深度小于15 m时,Boore等模型明显低估了VS30;当深度小于10 m时,本研究中对数线性模型、对数二次模型、对数三次模型存在约3%的低估现象;对数三次模型相对误差、残差标准差均较小,因此,对数三次模型更适用于估算雄安新区缺乏钻孔资料或钻孔剖面深度未达30 m的 VS30。  相似文献   

5.
从新疆乌鲁木齐市2004—2015年得到的841个钻孔中选择深度达30 m以下且钻孔资料记录完整的有效钻孔123个,通过计算5~30 m范围内不同深度的等效剪切波速,分别利用线性拟合、二次拟合和三次拟合对各深度vSd)及其vS30进行拟合。通过对比发现,三个方程的拟合误差都随深度的增加而减少,且三次拟合方程的误差始终小于同深度的线性拟合和二次拟合方程,因此推荐使用三次拟合方程来估计新疆乌鲁木齐市钻孔的vS30值。同时将此结果和Boore的结果进行比较后发现,不同深度处的等效剪切波速vSd)和vS30具有地域差异性;Boore得到的结果在钻孔深度小于20 m时明显高估vS30值,拟合曲线偏离实际数据点较远,所以本文拟合结果更适用于新疆乌鲁木齐市。综合比较可知,三次拟合得到的研究结果可以为新疆乌鲁木齐市钻孔深度不足30 m的地区求解vS30值提供参考。最后,利用新疆克拉玛依市2004—2015年钻孔资料检验三个拟合公式对克拉玛依市的适用性,发现深度越接近30 m,误差越小;线性模型和二次模型相对来说比较可靠,平均误差接近于0,并且对深度大于10 m的钻孔有高估现象;三次模型相对来说误差比较大,并且几乎在所有深度都有低估现象。  相似文献   

6.
四川、甘肃地区VS30经验估计研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目前我国建筑工程抗震设计规范中对于工程场地条件的判断依据主要是地表以下20m深度范围内土层的等效剪切波速,简称VS20。相比之下,国外应用较广的是地表以下30m深度范围内的等效剪切波速,简称VS30。这种差别导致国内科研工作者在应用国外的地震工程、工程抗震模型时经常遇到对场地条件描述不准确的困难。为了解决这个问题,本文根据147个四川、甘肃地区国家强震动台站20m左右深度的钻孔剪切波速数据,利用延拓方法、场地分类统计方法以及基于地形特征的VS30估计方法研究各台站VS30与VS20的经验关系,对比发现基于速度梯度延拓的结果最为可取。参考国际上通用的Geomatrix Classification场地分类标准,最终得到四川、甘肃地区各类场地的平均VS30,此结果可以为缺乏钻孔数据的工程场地的VS30估计提供参考。  相似文献   

7.
工程场地分类中等效剪切波速计算深度问题的讨论   总被引:2,自引:1,他引:1       下载免费PDF全文
根据中国华北、华东、华南、东北和西北等地918个实测钻孔资料的计算统计,探讨了工程场地分类中等效剪切波速计算深度取值20m和30m的实际差别,并对中国、美国、欧洲现有规范利用等效剪切波速进行场地类别划分的方法特点和具体指标进行了对比讨论。结果表明:1)计算深度由20m增加至30m时,钻孔等效剪切波速值的增大范围约为15~50m/s,平均增加值为25m/s;2)与欧美规范相比,中国现行规范(GB50011-2001)在划分场地类别时要求同时考虑20m计算深度的等效剪切波速值和覆盖层厚度,而在许多实际工程中,因较准确的覆盖层厚度不易获取而难以具体进行场地分类。因此,有必要借鉴欧美规范,通过增大等效剪切波速的计算深度至30m来强化该指标在场地类别判定中的作用  相似文献   

8.
基于瑞雷波法的都江堰市区场地剪切波速结构   总被引:1,自引:0,他引:1  
场地剪切波速是建筑抗震设计中不可缺少的基础资料。因此,本文通过多道面波法对都江堰市区进行了剪切波速调查,为都江堰市区的建筑抗震设计及汶川地震的进一步研究提供基本数据。文中利用多道面波分析方法在都江堰市区(E:103°35’~103°41’,N:30°57’~31°02’)布置了35个面波测点进行场地剪切波速结构和覆盖层厚度的调查,测点间距约2 km。获得了都江堰市区场地等效剪切波速(VS20)和场地覆盖层厚度分布。结果显示,都江堰市区的等效剪切波速介于267m/s与389 m/s之间;覆盖层厚度在6~20 m之间。另外,本文利用欧美规范的方法计算了都江堰市区的5 m至20 m的平均剪切波速(TAV),通过对比各个深度的平均剪切波速发现,各个深度的平均剪切波速和VS20具有较高的线性相关性。利用这一特征,本文建立了都江堰市区利用不同深度的平均剪切波速估计VS20的经验公式(VS20=(a±Δa)+(b±Δb).VSz+σ)。利用这一经验关系式可以在都江堰市区钻孔深度或其它测试深度达不到20 m的情况下估计VS20。  相似文献   

9.
以玉溪盆地16个钻孔的柱状图和波速数据为基础,统计分析了具有不同颗粒特征的土层埋深与剪切波速之间的关系,给出了玉溪盆地内角砾、砾石、圆砾、砾砂、细砂和淤泥质黏土等土层在80 m深度范围内深度与剪切波速的经验关系.通过分析不同颗粒大小、不同磨圆程度土层剪切波速特征,认为土层的波速特征与其形成时所处的沉积环境有一定的关系,并以玉溪盆地浅层土层为例,给出了一种根据具有明显颗粒特征土层估算未测波速钻孔的等效剪切波速的方法.   相似文献   

10.
以云南省昆明地区为例,对28个钻孔分别以20 m、25 m、30 m厚度计算等效剪切波速和卓越频率,同时测定场地脉动优势频率.结果显示:以20 m、25 m、30 m厚度计算的等效剪切波速,其后者一般都大于前者.对多数钻孔,用25 m厚等效剪切波速和卓越频率判定的场地土类别一致;少数钻孔在靠近30 m时二者判定结果一致.经测定,场地脉动优势频率与20 m厚波速卓越频率相近,但却明显高于25 m厚波速卓越频率.脉动优势频率与不同计算厚度的等效剪切波速度相关性基本相同,对同一厚度(深度)脉动优势频率随等效剪切波速度增加而增加.若等效剪切波速度相等,则深度小的脉动优势频率高.由此推出,脉动优势频率主要由地表层20 m厚岩土力学性质决定,而且越靠近表层的岩土力学性质对脉动优势频率的影响越大.本文从弹性力学理论证明了脉动优势频率和剪切波速度的关系式.通过进一步分析证明,用25 m厚等效剪切波速判定场地土类别更可靠,用脉动优势频率判定场地土类别可作为有效的辅助方法.它们将影响对场地类别的判定.  相似文献   

11.
场地条件对地震动具有显著影响,是确定抗震设计地震动参数时需要考虑的重要因素,因此,探究场地条件对地震动的影响规律具有重要意义。地震作用下产生的地面运动(地震动)是震源特征、路径特性和场地特征三方面因素的体现,其直接、客观地反映了场地条件对地震动的影响,因此是研究场地条件影响机制的重要数据基础。虽然目前全球强震记录较为丰富,但是受限于强震台站场地资料的完整性,大量已获取的强震记录无法应用,进而严重制约了对场地条件影响的研究。为了改变这一现状,本文提出了通过强震记录及部分台站的剪切波速数据估计缺乏勘测试验数据、或钻孔深度小于30 m的强震台站的场地条件参数V_(S30),利用日本、美国加州等地区强震资料对方法的效果进行检验。将方法应用于中国西部地区,估计了部分强震台站的场地参数V_(S30)。在确定中国西部地区台站场地V_(S30)的前提下,以其为变量建立了定量估计场地放大系数的经验模型。完成的主要工作包括以下几方面:(1)通过广义反演技术获取了强震台站的场地放大,再利用均方根阻抗比方法,建立了不同强震台站的场地1/4波长深度内等效剪切波速间的关系,根据剪切波速已知的台站,确定了缺乏剪切波速数据的台站的场地V_(S30)。利用日本、美国加州和中国西部地区的强震资料验证了估计方法的效果。将方法应用于中国西部地区,确定了部分强震台站的场地V_(S30)。(2)基于台站场地的浅层(深度小于30 m)土体剪切波速以及单台场地放大曲线,提出了确定钻孔深度小于30 m的台站的场地V_(S30)的方法。利用日本、美国加州等地区的强震资料验证了估计方法的效果。该方法避免了估计V_(S30)时对速度梯度延拓模型的依赖。将方法应用于中国西部地区,确定了部分钻孔深度小于30 m的台站的场地V_(S30)。(3)以中国西部地区强震台站的场地资料和数据为基础,通过分析场地卓越周期T0与场地V_(S30)的关系,建立了两者的经验模型。利用经验模型确定了中国西部地区缺乏剪切波速、且不满足广义反演前提的台站的场地V_(S30)。将经验模型与其他方法估计结果相比较表明:经验模型估计值在表征场地放大方面具有优势,其与场地放大系数之间表现出更强的相关性,利用其估计场地放大系数的离散性更小。(4)以中国西部地区实际钻孔资料为基础,利用数值方法研究了土体非线性特性对场地放大系数的影响规律,结合强震记录建立了考虑土体非线性效应的场地放大系数模型。对模型结果的分析表明,该模型符合中国西部地区场地条件对地震动的影响规律。利用包含这一场地放大系数模型的衰减关系计算了加速度反应谱,结果表明衰减关系能够反映土体非线性反应对加速度反应谱的影响。  相似文献   

12.
结合海侵地质成因,收集了2009年以来常州市城区358个钻孔2 691条土层剪切波速测试资料进行统计分析。采用线性v_S=a+bH、多项式式v_S=a+bH+cH~2及幂函数v_S=cH~d对各类土剪切波速随深度变化进行回归分析,给出各类土剪切波速随深度变化的三种关系式及相应的回归参数,并利用实际工程钻孔进行剪切波速预测与检验。检验结果表明,给出的各类岩土体的剪切波速与埋深经验关系是可靠的,可用文中得出的公式对土层剪切波速进行推测,为今后常州市区的工程抗震工作提供可靠的剪切波速值。  相似文献   

13.
基于朔州市地震小区划工作中大量钻孔的剪切波速数据,利用最小二乘法,分别采用线性模型、幂函数模型和多项式函数模型建立了不同地质单元、不同场地类别、不同土体物理状态下常规土层剪切波速随深度变化的统计关系式。结果表明,4个地质单元的剪切波速与埋深间的散点图均呈非线性关系,且其分段性较为明显;以拟合度为评价指标对比了常规土类的分段拟合关系式及拟合参数,结果表明采用二次多项式函数模型的拟合优度要好于线性模型及幂函数模型的拟合优度;为了验证优选出的拟合公式的可靠程度,选定了不同地质单元的钻孔进行剪切波速实测,并将实测结果与拟合公式的预测结果进行对比,结果表明拟合公式预测的剪切波速值与场地实测剪切波速值基本吻合,可作为该地区无剪切波速测试场地的参考依据。  相似文献   

14.
本文选取山东地区2个Ⅲ类场地的工程地质勘探及土层剪切波速等资料,将土层厚度按5个深度段,每个分段给出了4个土层剪切波速的改变量,通过改变不同深度段土层剪切波速,建立了19种土层地震反应分析模型,分析了不同深度段,不同概率水平下土层剪切波速的变化对场地地震动参数的影响。研究表明,不同深度段土层剪切波速的变化对场地地震动参数的影响有差异。具体表现为,土层剪切波速的改变在1—10m、11—40m和地震输入界面处三个深度段对地震动加速度峰值影响较大;其中,41—70m和71—100m两个深度段剪切波速的改变对地震动加速度峰值影响小;在土层深度1—10m时,剪切波速降低,峰值变大,剪切波速的改变与峰值的改变呈负相关;在其它深度段,剪切波速降低,峰值变小,剪切波速的改变与峰值的改变呈正相关。剪切波速的改变在1—10m和11—40m两个深度段对地震加速度反应谱影响较大;在41—70m、71—100m和地震输入界面三个深度段对地震加速度反应谱影响很小。  相似文献   

15.
苏州城区场地等效剪切波速计算深度取值探讨   总被引:3,自引:0,他引:3  
鉴于场地等效剪切波速的计算深度是否需要由地表以下20 m增至30 m的争论尚未有定论,依据苏州城区场地143组实测剪切波速资料的统计分析,对GB50011-2010《建筑抗震设计规范》场地类别分类标准与欧美抗震设计规范场地分类标准进行了对比,比较了苏州城区场地等效剪切波速计算深度取为20 m和30 m的差异性,结果表明:苏州城区场地剪切波速在地表以下20 ~ 60m范围的变异性较大,采用分段函数描述剪切波速随土层深度的变化关系是合适的;Ⅲ类场地等效剪切波速大小的分布偏向Ⅲ类场地类别的下界限值,当计算深度由20 m增至30 m时,场地等效剪切波速的均值增大16%,如果直接沿用欧美规范的场地分类界限值,将会整体提高苏州城区场地类别的划分标准,苏州城区Ⅲ类和Ⅳ类场地的等效剪切波速分界值取为170 m/s是适宜的.  相似文献   

16.
利用天津市78个钻孔2 212组不同岩土体的剪切波速数据,分析天津地区土层剪切波速随土层深度、岩土类型等影响因素的变化规律,利用灰色关联分析方法研究上述影响因素与天津地区土层剪切波速之间的相关性,获得该区土层剪切波速各影响因素的灰色关联排序,继而得到区分岩土类型的剪切波速回归公式,利用所得公式对实际钻孔不同深度剪切波速进行预测,并基于实测结果对预测结果进行分析。在天津地区,应综合利用岩土类型和土层深度对剪切波速进行评价。不同岩土类型、剪切波速与深度的相关性大小存在较为明显的差异,其中粘土的剪切波速和深度之间的相关性最强。同等深度条件下,由粘土到细砂粒径逐渐增大,其相应的剪切波速也逐渐增大。各类主要岩土体剪切波速与埋深之间的相关关系中多项式模型拟合精度最高,可用于天津市区主要土体剪切波速计算工作。  相似文献   

17.
苏州城区深软场地土剪切波速与土层深度的经验关系   总被引:9,自引:0,他引:9  
苏州地处长江下游冲湖积平原,第4系沉积土层发育,土层深厚、松软,远震、大震的长周期地震动对苏州城区的重大工程有可能造成严重震害.结合海侵地质成因,分析了苏州城区深软场地52个钻孔剖面的剪切波速资料,发现剪切波速与土层深度的关系:40m以上浅土层基本符合线性函数分布,40m以下深土层基本符合幂函数分布;依据考虑和不考虑土体分类2种情况,给出了采用线性函数、幂函数分段形式拟合的苏州城区深软场地剪切波速随土层深度变化的经验关系,为苏州城区深软场地重大工程建设的场地地震效应评价提供了有益的基础性资料.  相似文献   

18.
太原地区剪切波速的深度分布   总被引:6,自引:1,他引:6  
利用太原地区26个钻孔约540个剪切波速沿深度变化的实测燃料,统计给出了太原地区剪切波速沿深度变化的经验关系,据钻孔分布在不同的地貌单元,具有不同的地层特征的情况,对剪切速波沿深度变化的规律进行了分区统计,给出了分区统计结果,这些统计结果可在地场类别确定中用于估计覆盖土层的厚度,即地面至剪切波速大于500m/s土层的距离。  相似文献   

19.
区域性场地V_s30及峰值加速度放大系数估算方法   总被引:1,自引:0,他引:1  
地震动速报评估方法中常常考虑场地的影响,为了提高地形坡度模型的区域性地表30m的平均剪切波速Vs30估算精度,本文提出了基于工程钻孔资料的Vs30的修正方法。通过计算实际钻孔的Vs30值与坡度模型估算的Vs30值之间的残差,分析了残差的空间变化趋势,利用克里金插值对所研究区域的Vs30残差趋势面进行插值,并与估算的Vs30进行空间叠加,实现了Vs30的修正。选取K-net和Kik-net台网中台站的剪切波速资料和强震记录回归了峰值加速度放大系数与场地Vs30的经验关系,将其应用于基于ShakeMap框架的地震动快速评估系统绘制了汶川地震影响区域的基岩和地表加速度峰值,分析场地条件对于地震动的实际影响,结果表明区域性场地Vs30及峰值加速度放大系数估算方法具有一定的适用性。  相似文献   

20.
地表以下30 m深度内的平均剪切波速V_(S30)是广泛用于地震动衰减关系和场地分类的场地条件参数,但是由于一些强震台站的场地钻孔资料不完备,无法获得V_(S30)参数,从而影响和限制了台站获得的强震记录被深入挖掘和广泛应用。以中国四川、甘肃地区强震台站的场地资料和数据为基础,通过分析场地卓越周期T_0与场地V_(S30)的关系,建立两者的经验模型。将本研究方法与其他方法估计结果相比表明:本文估计的V_(S30)在表征场地放大方面具有优势,其与场地放大系数之间表现出更强的相关性,且其对场地放大系数的影响规律更符合场地条件对场地放大影响的物理本质;本文方法估计的V_(S30)可以显著减小中国川甘地区场地放大系数的标准差,特别是在周期0.3 s时,减小幅度可达19%。此外,依据不同地区的场地资料,建立了根据场地周期T_0估计V_(S30)的经验模型,不同地区比较表明,经验模型之间存在明显的区域性差别。结论表明,本研究方法可为缺乏详细场地钻孔资料地区估计V_(S30)参数提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号