首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The motion of a satellite subject to an inverse-square gravitational force of attraction and a perturbation due to the Earth's oblateness as theJ 2 term is analyzed, and a uniform, analytic solution correct to first-order inJ 2, is obtained using a noncanonical approach. The basis for the solution is the transformation and uncoupling of the differential equations for the model. The resulting solution is expressed in terms of elementary functions of the independent variable (the ‘true anomaly’), and is of a compact and simple form. Numerical results are comparable to existing solutions.  相似文献   

2.
Transformations are given which change the perturbed planar problem of two bodies into unperturbed and undamped harmonic oscillators with constant coefficients. The orginally singular, nonlinear and Lyapunov unstable equations become in this way regular, linear, and the stable solution may be written down immediately in terms of the new variables. Transformations of the independent and dependent variables are treated separately as well as jointly. Using arbitrary and special functions for the transformations allows a systematic discussion of previously introduced and new anomalies. For the unperturbed two-body problem the theorem is proved according to which if the transformations are power-functions of the radial variable, then only the eccentric and the true anomalies with the corresponding transformations of the radial variable will result in harmonic oscillators. Important practical applications are to increase autonomous operations in space, since by replacing lengthy numerical integrations by transformations, computer requirements are significantly reduced.  相似文献   

3.
It is shown that, in the neighborhood of a collision singularity, the motion in a perturbed two-body problem \(\ddot r = - \mu r^{ - 3} r + P\) , whereP remains bounded, has the same basic properties as the motion in the neighborhood of a collision in the unperturbed two-body problemP=0.  相似文献   

4.
The two-body problem is a twelfth-order time-invariant dynamic system, and therefore has eleven mutually-independent time-independent integrals, here referred to as motion constants. Some of these motion constants are related to the ten mutually-independent algebraic integrals of the n-body problem, whereas some are particular to the two-body problem. The problem can be decomposed into mass-center and relative-motion subsystems, each being sixth-order and each having five mutually-independent motion constants. This paper presents solutions for the eleventh motion constant, which relates the behavior of the two subsystems. The complete set of mutually-independent motion constants describes the shape of the state-space trajectories. The use of the eleventh motion constant is demonstrated in computing a solution to a two-point boundary-value problem.  相似文献   

5.
A new algorithm to integrate the full two-body problem based on generalized inertia integrals is given. The computation speed is comparable to the fastest algorithm available till now which is based on spherical harmonics.  相似文献   

6.
In this paper we prove the existence of ring-type bounded motion in an isolated system consisting of a massive point particle and a homogeneous cube. We study the case of planar motion where the particle moves in a symmetry plane of the cube and we use a rotating frame of reference with its center at the mass center of the cube and its axes coinciding with the symmetry axes of the cube. We prove that, for negative values of the total energy and properly chosen values of the total angular momentum, the relative distance of the bodies has an upper and a lower bound-i.e., the regions of possible motion lie inside an annulus around the cube (motion inside a ring or an island).  相似文献   

7.
The main theorems of the theory of averaging are formulated for slowly varying standard systems and we show that it is possible to extend the class of perturbation problems where averaging might be used. The application of the averaging method to the perturbed two-body problem is possible but involves many technical difficulties which in the case of the two-body problem with variable mass are avoided by deriving new and more suitable equations for these perturbation problems. Application of the averaging method to these perturbation problems yields asymptotic approximations which are valid on a long time-scale. It is shown by comparison with results obtained earlier that in the case of the two-body problem with slow decrease of mass the averaging method cannot be applied if the initial conditions are nearly parabolic. In studying the two-body problem with quick decrease of mass it is shown that the new formulation of the perturbation problem can be used to obtain matched asymptotic approximations.  相似文献   

8.
In this paper, starting with the Szebehely and Bond (1983) equation, we rediscuss the regularization and linearization of the perturbed planar two-body problem.We study the generalization of the Sundman's (1912) transformation proposed by Szebehely and Bond and obtain the radial and transverse perturbations (represented by powers of the radial distance r), which can be linearized with these transformations. In this way we generalize some previous results of Belen'kii (1981a, b) and Szebehely and Bond (1983).We also consider another generalization of Sundman's transformation, introduced by Cidet al. (1983), in the case when the radial and transverse perturbations are presented by polynomials in the reciprocal of the distance. As a consequence we give a partial answer to a problem suggested by Szebehely and Bond (1983).  相似文献   

9.
The nature of the collision operator for a classical mechanical system whose dynamics is represented by a probability density satisfying the Liouville equation is illustrated with a soluble example. This example is that of a two-body problem with a particular perturbation. The collision operator is found and the time reversibility of the system is examined utilizing the analysis of Stey. For negative energies, the collision operator is zero in the limitzi0+, while for zero energy, the collision operator is different from zero in that limit. This indicates that the system is reversible for negative energy and irreversible for zero energy.  相似文献   

10.
The Newtonian differential equations of motion for the two-body problem can be transformed into four, linear, harmonic oscillator equations by simultaneously applying the regularizing time transformation dt/ds=r and the Kustaanheimo-Stiefel (KS) coordinate transformation. The time transformation changes the independent variable from time to a new variables, and the KS transformation transforms the position and velocity vectors from Cartesian space into a four-dimensional space. This paper presents the derivation of uniform, regular equations for the perturbed twobody problem in the four-dimensional space. The variation of parameters technique is used to develop expressions for the derivatives of ten elements (which are constants in the unperturbed motion) for the general case that includes both perturbations which can arise from a potential and perturbations which cannot be derived from a potential. These element differential equations are slightly modified by introducing two additional elements for the time to further improve long term stability of numerical integration.Originally presented at the AAS/AIAA Astrodynamics Specialists Conference, Vail, Colorado, July 1973  相似文献   

11.
We investigate a method to compute a finite set of preliminary orbits for solar system bodies using the first integrals of the Kepler problem. This method is thought for the applications to the modern sets of astrometric observations, where often the information contained in the observations allows only to compute, by interpolation, two angular positions of the observed body and their time derivatives at a given epoch; we call this set of data attributable. Given two attributables of the same body at two different epochs we can use the energy and angular momentum integrals of the two-body problem to write a system of polynomial equations for the topocentric distance and the radial velocity at the two epochs. We define two different algorithms for the computation of the solutions, based on different ways to perform elimination of variables and obtain a univariate polynomial. Moreover we use the redundancy of the data to test the hypothesis that two attributables belong to the same body (linkage problem). It is also possible to compute a covariance matrix, describing the uncertainty of the preliminary orbits which results from the observation error statistics. The performance of this method has been investigated by using a large set of simulated observations of the Pan-STARRS project.  相似文献   

12.
A transformation of the differential equations of motion of the two-body problem in the spherical coordinates to oscillator form is derived. It is shown that the independent variable transformation dt/ds=r2 is a transformation which makes the oscillator form possible.  相似文献   

13.
A complex exponential solution has been derived which unifies the elliptic and hyperbolic trajectories into a single set of equations and provides an exact, analytical solution to the unperturbed, Keplerian two-body problem. The formulation eliminates singularities associated with the elliptic and hyperbolic trajectories that arise from these orbits. Using this complex exponential solution formulation, a variation of parameters formulation for the perturbed two-body problem has been derived. In this paper, we present the analytical formulation of the complex exponential solution, numerical simulations, a comparison with classical solution methods, and highlight the benefits of this approach compared with the classical developments. Previously presented as AAS 07-136 at the 17th AAS/AIAA Spaceflight Mechanics Meeting Sedona, Arizona, AAS 08-206 and AAS 08-230 at the 18th AAS/AIAA Spaceflight Mechanics Meeting Galveston, Texas.  相似文献   

14.
On the planar motion in the full two-body problem with inertial symmetry   总被引:1,自引:0,他引:1  
Relative motion of binary asteroids, modeled as the full two-body planar problem, is studied, taking into account the shape and mass distribution of the bodies. Using the Lagrangian approach, the equations governing the motion are derived. The resulting system of four equations is nonlinear and coupled. These equations are solved numerically. In the particular case where the bodies have inertial symmetry, these equations can be reduced to a single equation, with small nonlinearity. The method of multiple scales is used to obtain a first-order solution for the reduced nonlinear equation. The solution is shown to be sufficient when compared with the numerical solution. Numerical results are provided for different example cases, including truncated-cone-shaped and peanut-shaped bodies.  相似文献   

15.
16.
The first integrals of the Kepler problem are used to compute preliminary orbits starting from two short observed arcs of a celestial body, which may be obtained either by optical or by radar observations. We write polynomial equations for this problem, which can be solved using the powerful tools of computational Algebra. An algorithm to decide if the linkage of two short arcs is successful, i.e. if they belong to the same observed body, is proposed and tested numerically. This paper continues the research started in Gronchi et al. (Celest. Mech. Dyn. Astron. 107(3):299–318, 2010), where the angular momentum and the energy integrals were used. The use of a suitable component of the Laplace–Lenz vector in place of the energy turns out to be convenient, in fact the degree of the resulting system is reduced to less than half.  相似文献   

17.
A semi-analytical method is presented to study the system of differential equations governing the rotational motion of an artificial satellite. Gravity gradient and non gravitational torques are considered. Operations with trigonometric series were performed using an algebraic manipulator. Andoyer's variables are used to describe the rotational motion. The osculating elements are transformed analytically into a mean set of elements. As the differential equations in the mean elements are free of fast frequency terms, their numerical integration can be performed using a large step size.  相似文献   

18.
19.
The existence of ten first integrals for the classical problem of the motion of a system of material points, mutually attracting according to Newtonian law, is well known.The existence of the analogous ten first integrals for the more complicated problem of the motion of a system of absolutely rigid bodies, whose elementary particles mutually attract according to the Newtonian law, was established by the author (Duboshin, 1958, 1963, 1968).In his later papers (Duboshin, 1969, 1970), the problem of the motion of a system of material points, attracting each other according to a more general law, was considered and, in particular, it was shown under what conditions the ten first integrals, analogous to the classical integrals, may exist for this problem.In the present paper, the generalized problem of translatory-rotatory motion of rigid bodies, whose elementary particles acting upon each other according to arbitrary laws of forces along the straight line joining them, is discussed.The author has shown that the first integrals for this general problem, analogous to the integrals of the problem of the translatory-rotatory motion of rigid bodies, whose elementary particles acting according to the Newtonian law, exist under certain well known conditions.That is, it has been established that if the third axiom of dynamics (action = reaction) is satisfied, then the integrals of the motion of centre of inertia and the integrals of the moment of momentum exist for this generalized problem.If the third axiom is not satisfied, then the above mentioned integrals do not exist.The third axiom is a necessary but not a sufficient condition for the existence of the tenth integral-the energy integral. The tenth integral always exists if the elementary particles of the bodies acting with a force, depend only on the mutual distances between them. In this case the force function exists for the problem and the energy integral can be expressed in a well known form.The tenth integral may exist for some more general case, without expressing the principle of conservation of energy, but permitting calculation of the kinetic energy, if the configuration of a system is given.The problem, in which the elementary particles acting according to the generalized Veber's law (Tisserand, 1896) has been cited as an example of this more general case.  相似文献   

20.
A possibility of developing the analytical theory of perturbed motion for a balloon-satellite influenced by solar radiation pressure force is analysed here on the basis of the limit case modification of the two fixed centers problem whose force-field is a superposition of the Newtonian central field and a homogeneous one. Such an approach enables us in the intermediate orbit already to take into account the effect of a constant force, all coordinates of a satellite being expressed as functions of some monotonically increasing variable by means of inversion of elliptic quadratures. The relations between canonical constants of the intermediate orbit and a quasikeplerian elements coinciding in the absence of solar radiation pressure with keplerian ones are derived. The numerical results and illustrating the perturbations in the radius-vector of the intermediate orbit of a balloon-satellite of the Echo-I type are given.
-, , , . , , . , . , - - -I.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号