首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The stability of hierarchical triple system is studied in the case of an extrasolar planet or a brown dwarf orbiting a pair of main sequence stars. The evolution of triple system is well modelled by random walk (RW) diffusion, particularly in the cases where the third body is small and tracing an orbit with a large eccentricity. A RW model neglects the fact that there are many periodic orbits accompanied by stability islands, and hence inherently overestimates the instability of the system. The present work is motivated by the hope to clarify how far the RW model is applicable. Escape time and the surface section technique are used to analyse the outcome of numerical integrations. The analysis shows that the RW-like model explains escape of the third body if the initial configuration is directly outside of the KAM tori. A small gap exists in (q 2/a 1, e 2)-plane between locations of the stability limit curves based on our numerical study and on RW-model (the former is shifted by –1.4 in q 2/a 1 direction from the latter).  相似文献   

2.
The Hill stability of the low mass binary system in the presence of a massive third body moving on a wider inclined orbit is investigated analytically. It is found that, in the case of the third body being on a nearly circular orbit, the region of Hill stability expands as the binary/third body mass ratio increases and the inclination (i) decreases. This i-dependence decreases very quickly with increasing eccentricity (e 2) of the third body relative to the binary barycentre. In fact, if e 2 is not extremely small, the Hill stable region can be approximately expressed in a closed form by setting i = 90°, and it contracts with increasing e 2 as ${e_2^2}$ for sufficiently low mass binary. Our analytic results are then applied to the observed triple star systems and the Kuiper belt binaries.  相似文献   

3.
4.
In previous papers, we developed a technique for estimating the inner eccentricity in hierarchical triple systems, with the inner orbit being initially circular. We considered systems with well-separated components and different initial setups (e.g., coplanar and non-coplanar orbits). However, the systems we examined had comparable masses. In the present paper, the validity of some of the formulae derived previously is tested by numerically integrating the full equations of motion for systems with smaller mass ratios (from 10−3 to 103, i.e. systems with Jupiter-sized bodies). There is also discussion about HD 217107 and its planetary companions.  相似文献   

5.
Recent data on semi-detached systems are compared with general results of close binary computations to determine the origin of Algol-type systems (classical case A and case B results are considered). Both the conservative and the non-conservative mode of mass exchange are investigated. It is found that the assumption of considerable mass loss from the system gives satisfying agreement with the observations. It is also concluded that the calculation of an extensive homogeneous network of case A computations is needed.This research is supported by the National Foundation of Collective Fundamental Research of Belgium (FKFO) under No. 2.9009.79.  相似文献   

6.
The containment of a diffused and ionized mass orbiting around a magnetized central body is herein studied and the condition equation is established. Some qualitative and quantitative applications to the planetary cosmogony problems are developed.  相似文献   

7.
8.
We present the first post-core-collapse models of initially rotating star clusters, using the numerical solution of an orbit-averaged 2D Fokker–Planck equation. Based on the code developed by Einsel & Spurzem, we have improved the speed and the stability and included the steady three-body binary heating source. We have confirmed that rotating clusters, whether they are in a tidal field or not, evolve significantly faster than non-rotating ones. Consequences for the observed shapes, density distribution and kinematic properties of young and old star clusters are discussed. The results are compared with gaseous and 1D Fokker–Planck models in the non-rotating case.  相似文献   

9.
The dynamical stability of a bound triple system composed of a small binary or minor planetary system moving on a orbit inclined to a central third body is discussed in terms of Hill stability for the full three-body problem. The situation arises in the determination of stability of triple star systems against disruption and component exchange and the determination of stability of extrasolar planetary systems and minor planetary systems against disruption, component exchange or capture. The Hill stability criterion is applied to triple star systems and extrasolar planetary systems, the Sun-Earth-Moon system and Kuiper Belt binary systems to determine the critical distances for stable orbits. It is found that increasing the inclination of the third body decreases the Hill regions of stability. Increasing the eccentricity of the binary also produces similar effects.These type of changes make exchange or disruption of the component masses more likely. Increasing the eccentricity of the binary orbit relative to the third body substantially decreases stability regions as the eccentricity reaches higher values. The Kuiper Belt binaries were found to be stable if they move on circular orbits. Taking into account the eccentricity, it is less clear that all the systems are stable.  相似文献   

10.
The effects of a series of isotropic ejections of small amounts of mass from either component of a binary system are studied. The evolution is completely different than in the case where all the mass is lost at once. When the ejections are randomly distributed in time, the final eccentricity may become larger or smaller than the initial one; the differences, however, are in most cases small. When the frequency of the explosions is higher near periastron, the final eccentricity is in most cases larger than the original value. In almost no case the system is disrupted.  相似文献   

11.
The effects of non-isotropic ejection of mass from either component of a binary system on the orbital elements are studied, for the case of a small initial eccentricity of the relative orbit, when all the ejected mass falls on the other component. The problem is transformed to an equivalent two-body problem with isotropic variation of mass, plus a perturbing force which is a function of the intial conditions of ejection of the particles and their final, positions and velocities when they fall on the surface of the other star. The variation of the orbital elements are derived. It is shown that, to first-order terms in the eccentricity, the secular change of the semimajor axis is equal to the one corresponding to the case of zero initial eccentricity. On the contrary, the secular change of the eccentricity is smaller and it depends on the variations of mass ejection due to the finite eccentricity.  相似文献   

12.
Eclipsing variables in visual binary and multiple stars are searched using data from GCVS, WDS, and CCDM catalogs. The list of 421 eclipsing variables is obtained. The masses of components of multiple systems from the list are estimated using the mass-luminosity relation for the main sequence stars. It is shown that, for 85% multiple systems from the list, the mass of visual components is smaller by a factor of 2 than the total mass of close binary systems. The distributions of orbital elements of visual binary systems are constructed and used for calculation of orbit semi-major axes for star from the list. The distributions of orbit semi-major axes and periods obtained from observations are approximated by Gaussian curves. The maxima of the curves correspond to a = 800 a.u. and P = 7600 years, respectively. The distribution of orbit semi-major axes larger than 800 a.u. is better described by Opik’s law; it is expected that this law describes the real a distribution in the region of small values as well. The frequency of eclipsing variables in multiple stars makes 12% of the total number of stars of this type in GCVS.  相似文献   

13.
When the total angular momentum of a binary system   J tot= J orb+ J spin  is at a certain critical (minimum) value, a tidal instability occurs which eventually forces the stars to merge into a single, rapidly rotating object. The instability occurs when   J orb= 3 J spin  , which in the case of contact binaries corresponds to a minimum mass ratio   q min≈  0.071–0.078. The minimum mass ratio is obtained under the assumption that stellar radii are fixed and independent. This is not the case with contact binaries where, according to the Roche model, we have   R 2= R 2( R 1, a , q )  . By finding a new criterion for contact binaries, which arises from  d J tot= 0  , and assuming   k 21≠ k 22  for the component's dimensionless gyration radii, a theoretical lower limit   q min= 0.094–0.109  for overcontact degree   f = 0–1  is obtained.  相似文献   

14.
The problem of mass exchange in a close binary system is studied from the point of view of the evolution of the orbital elements. It is assumed that the original orbit is nearly circular and one of the components has expanded and fills the area inside the equipotential surface passing through the inner Lagrangian pointL 1, losing mass to the other component. The mass is assumed to be ejected along the tangent to the equipotential surface passing throughL 1 in retrograde orbits.It is proved that the eccentricity remains very small. The semimajor axis increases in almost all cases where the mass is being transferred from the less massive to the more massive component, and decreases when the mass is being transferred from the more massive to the less massive component. It is also shown that if the more massive star evolves first and loses mass to its companion, the process of mass exchange continues automatically until the originally more massive component becomes the less massive one and the binary system remains in an almost static condition for long intervals of time, the less massive component occupying the area inside the equipotential surface passing throughL 1 and surrounding the star.  相似文献   

15.
16.
Hill stability of a triple system with an inner binary of large mass ratio   总被引:1,自引:0,他引:1  
We determine the maximum dimensionless pericentre distance a third body can have to the barycentre of an extreme mass ratio binary, beyond which no exchange or ejection of any of the binary components can occur. We calculate this maximum distance, q '/ a , where q ' is the pericentre of the third mass to the binary barycentre and a is the semimajor axis of the binary, as a function of the critical value of   L 2  E   of the system, where L is the magnitude of the angular momentum vector and E is the total energy of the system. The critical value is obtained by calculating   L 2  E   for the central configuration of the system at the collinear Lagrangian points. In our case we can make approximations for the system when one of the masses is small. We compare the calculated values of the pericentre distance with numerical scattering experiments as a function of the eccentricity of the inner orbit, e , the mutual inclination i and the eccentricity of the outer orbit, e '. These show that the maximum observed value of   q '/ a   is indeed the critical q '/ a , as expected. However, when   e '→1  , the maximum observed value of q '/ a is equal to the critical value calculated when   e '=0  , which is contrary to the theory, which predicts exchange distances several orders of magnitude larger for nearly parabolic orbits. This does not occur because changes in the binding energy of the binary are exponentially small for distant, nearly parabolic encounters.  相似文献   

17.
Near a symmetric periodic orbit of the plane circular or elliptic restricted probelm, the conditions for a symmetric periodic orbit of the plane general three body problem are reduced, under a natural nondegeneracy condition, to the vanishing of a single real valued function. The implicit function theorem and Hörmander's generalized Morse's lemma are then used to analyze the set of zeros of this function.  相似文献   

18.
Calculations show that the observed semi-detached binary systems of massM 1+M 22.5M can be explained in terms of a mass exchange which starts after the central hydrogen in the original primary has been exhausted.Presented at the Trieste Colloquium on Mass Loss from Stars, September 12–16, 1968.  相似文献   

19.
In this paper we review some recent detections of wide binary brown dwarf systems and discuss them in the context of the multiplicity properties of very low‐mass stars and brown dwarfs. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
From a search through the literature 174 close binaries with known absolute dimensions have been sampled. Distinction is made between systems before and after mass exchange. Mass, period and mass ratio distributions and relations of the group of unevolved binaries (i.e., prior to mass exchange) are transformed into corresponding distributions and relations of evolved binaries. The transformations are based upon theM 1f=g(M 1f) relation derived from an extended set of published theoretical computations of the evolution of close binaries. From this relation the following characteristics of the system after mass exchange are computed:M 1f,M 2f (andq f),P f. Five different modes of mass transfer were applied for the computation of the values ofP f andM 2f. The variation of the period was calculated using the formalism given by Vanbeverenet al. (1979). The results are compared to the observations of binary systems after mass exchange, and are discussed together with an analysis of the effect of several selection effects present in the distributions. The main conclusion is that, during mass exchange in close binaries, more than 50% of the mass is lost to the system in the process of transfer, removing a large amount of angular momentum.This research is supported by the National Foundation of Collective Fundamental Research of Belgium (F.K.F.O.) under No. 2.9009.79.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号