首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A merged, high-quality waveform dataset from different seismic networks has been used to improve our understanding of lateral seismic attenuation for Northern Italy. In a previous study on the same region, Morasca et al. (Bull Seismol Soc Am 98:1936–1946, 2008) were able to resolve only a small area due to limited data coverage. For this reason, the interpretation of the attenuation anomalies was difficult given the complexity of the region and the poor resolution of the available data. In order to better understand the lateral changes in the crustal structure and thickness of this region, we selected 770 earthquakes recorded by 54 stations for a total of almost 16,000 waveforms derived from seismic networks operating totally or partially in Northern Italy. Direct S-wave and coda attenuation images were obtained using an amplitude ratio technique that eliminates source terms from the formulation. Both direct and early-coda amplitudes are used as input for the inversions, and the results are compared. Results were obtained for various frequency bands ranging between 0.3 and 25.0 Hz and in all cases show significant improvement with respect to the previous study since the resolved area has been extended and more crossing paths have been used to image smaller scale anomalies. Quality-factor estimates are consistent with the regional tectonic structure exhibiting a general trend of low attenuation under the Po Plain basin and higher values for the Western Alps and Northern Apennines. The interpretation of the results for the Eastern Alps is not simple, possibly because our resolution for this area is still not adequate to resolve small-scale structures.  相似文献   

2.
采用考虑地震加速度的近场距离饱和与震级饱和特征模型的衰减关系,通过收集关中平原区及邻区大量的地震资料,建立起本区的地震烈度衰减关系.将美国西部地区作为参考区,采用不同映射的转换方法,得到了关中平原区的基岩水平加速度衰减关系,并对不同的映射方法得到的结果进行了对比分析.  相似文献   

3.
Ground motion models for the Molise region (Southern Italy)   总被引:1,自引:0,他引:1  
The aim of this paper is to evaluate empirical attenuation relationships in order to validate peak values and pseudo-velocity spectra to calibrate shaking scenarios for the Molise area, which was struck by two earthquakes of Mw=5.7 (INGV-Harvard European-Mediterranean Regional Centroid-Moment tensor project) on October 31st and November 1st, 2002. Before the earthquake occurrence this region was classified as not hazardous, according to the former Italian seismic code. After the main-shocks, felt in many towns of the Molise and Puglia regions, a strong motion and a seismic temporary network were installed in the epicentral area and surrounding regions. This allowed the collection of a large data set, useful to characterize this area. The joint velocity-acceleration data set has been used to derive ground motion models for peak ground acceleration, peak ground velocity, and pseudo-velocity response spectra for both maximum horizontal and vertical components of the motion.The results obtained for the Molise area have been compared with the attenuation pattern of the Umbria-Marche region (central Italy) and the Italian territory. Remarkable differences have been observed leading to a discussion of the possible regional dependence of ground motion.  相似文献   

4.
川滇地区Lg波Q值层析成像   总被引:7,自引:2,他引:5       下载免费PDF全文
利用云南和四川数字地震观测台网记录的数字化地震资料,开展了川滇地区不同频率的QLg层析成像研究,反演结果的空间分辨率小于100 km.反演结果表明,川滇地区介质的横向不均匀性强烈,QLg高低值差异显著.川滇地区显著的高衰减区有川滇菱形块体的东南边界(即沿鲜水河至安宁河以及思茅—澜沧—普洱区),滇西北地区、龙门山断裂以西松潘—茂文地区、巴塘及理塘强震区等,Lg波高衰减区的分布与构造活动强烈、强震活动或大震破裂造成介质破碎区、低速区等相关,表明构造活动强烈或大震破裂造成的介质破碎、热物质沿活动断裂上涌等可能是川滇地区低QLg的主要成因.显著的低衰减区有川东盆地、滇东南地区以及金沙江、怒江断裂的中段区域,滇中块体内部也呈现出相对的低衰减特征.Lg波低衰减区与地震活动性弱、速度正异常等相关,表明川滇地区Lg波的低衰减区与地壳变形、地震活动性及水热活动弱、块体稳定等有关.  相似文献   

5.
川滇分区地震烈度衰减特征研究   总被引:2,自引:1,他引:1  
董曼  程佳  魏文薪  陈通 《震灾防御技术》2015,10(S1):760-769
考虑到不同区域地震烈度衰减规律的差异性,本文通过分析川滇地区地震空间分布、震害及烈度分布特征,搜集并整理了1900年以来川滇地区的140个5级以上地震案例,利用联合椭圆衰减模型,结合川滇地区的地质构造特征,建立了川滇分区地震烈度衰减关系。对比结果表明:不同区域的地震烈度衰减存在显著差异,尤其是在M=5和M=7级时区域差别明显;同时,与已有成果的对比结果也可看出,滇西地区在M=7级时近场烈度明显偏低,而川西北及滇中地区在M=5级时虽与中国西部地区基本一致,但也均低于其它分区。上述结果对川滇地区地震灾害快速评估和地震应急具有重要参考价值。  相似文献   

6.
Singapore and Kuala Lumpur, the capital of Malaysia, may well represent the classic examples of area with low seismic hazard but with high consequence. Both cities are located in a low-seismicity region of Southeast Asia, where active seismic sources are located more than 300 km away. Seismic designs have not been implemented in this seemingly low-hazard region though distant earthquakes in Sumatra had frequently shaken high-rise structures in the two cities. Several studies have been conducted to systematically assess the seismic hazards of Singapore and the Malay Peninsula. The present research particularly addresses issues in deriving a new set of attenuation relationships of peak ground acceleration (PGA), peak ground velocity (PGV) and response spectral acceleration (RSA) for the Sumatran-subduction earthquakes. To be relevant for the seismic hazard assessment of the remote metropolises, the derived attenuation relationships cover a long distance range from 150 to 1500 km. The attenuation relationships are derived using synthetic seismograms that account for source and path effects. The uncertainties in rupture parameters, such as stress drop, strike, dip and rake angles, have been defined according to the regional geological and tectonic settings as well as the ruptures of previous earthquakes. The seismic potential of the Sumatran subduction zone are high in the region from 2°N to 5°S as there has been no recurrence of great thrust events since 1861. A large event with Mw greater than 7.8 in this particular subduction zone may be capable of generating destructive ground motions in Singapore and Kuala Lumpur, even at a distance of 700 km.  相似文献   

7.
本文采用了空间光滑地震活动性模型,该模型无需潜在震源区划分,同时发展了概率地震危险性分析新方法。根据三种地震目录资料建立了三种地震活动性模型,利用高斯光滑函数获得了湖南区域内的比值分布特征,使用了两种典型的衰减模型,计算了50年内超越概率10%的地震动峰值加速度(PGA)分布。其分析结果显示PGA分布特征与中国地震动参数区划图大体一致,部分区域PGA提高,PGA达0.05g的区域显著扩大,其中包括邵阳、湘潭、吉首、怀化等重要城市,而这种PGA分布特征与该地区地震活动性特征是一致的。概率危险性曲线的结果表明常德等地区的潜在地震危险性比湖南区域内其他城市高。表明此模型用于地震危险性计算中是简便易行的,且具有较高的精度。尤其对于地质和地震构造信息缺乏的弱震区和中强震区,该方法作为替代方法并有着广泛的应用价值。  相似文献   

8.
The characteristics of seismic ground motions in southern China are difficult to determine statistically due to a lack of strong ground motion data. In this study, a stochastic finite-fault ground motion model was adopted to simulate the seismic ground motions at bedrock for southern China, based on parameters derived from small and medium earthquakes that have occurred in the region. From these, the response spectra was estimated. A set of ground motion attenuation relationships was then developed based on simulated peak ground motions and response spectral parameters through regression, which would be applicable for use in engineering practice. Through comparisons, it was demonstrated that the proposed ground motion relationships are generally consistent with those obtained from other reported ground motion attenuation models for southern China.  相似文献   

9.
上海及邻近地区地震动衰减关系研究   总被引:6,自引:1,他引:6  
石树中  沈建文 《中国地震》2003,19(4):315-323
选择有丰富强震记录和地震烈度资料的美国西部地区作为参考地区,根据上海及邻近地区的地震烈度资料,确定上海及邻近地区地震烈度衰减关系;采用缺乏强震资料地区地震动参数衰减关系的确定方法,转换得到本地区的地震动参数衰减关系。  相似文献   

10.
中强地震活动区地震动衰减关系的确定   总被引:3,自引:0,他引:3  
地震动衰减关系是影响地震安全性评价特别是地震区划结果的重要因素.我国现行的地震动衰减关系主要是依据6级以上地震的地面运动资料得到的,并没有考虑中强地震的衰减特性.为此,文中利用现有的烈度资料和其他可供参考的研究成果来建立我国中强地震活动区的地震动衰减关系.收集了我国华中、华南、东北等地区的51次地震的烈度等震线资料,运用单随机变量加权最小二乘回归法得到中强地震活动区烈度衰减关系.然后以美国西部地区为参考地区,运用缺乏地震动参数的地震动估计方法-地震对映射法得到中强地震活动区峰值加速度和有效峰值加速度衰减关系.最后,通过与我国强地震区和中强地震区已有的烈度衰减关系和地震动衰减关系的对比,验证了得出的我国中强地震活动区烈度衰减关系和地震动衰减关系的合理性.  相似文献   

11.
In the framework of the 2004 reference seismic hazard map of Italy the amplitude of the strong-motion (expressed in terms of Peak Horizontal Acceleration with 10% probability of non-exceedence in 50 years, referred to average hard ground conditions) was computed using different predictive relationships. Equations derived in Italy and in Europe from strong-motion data, as well as a set of weak and strong-motion based empirical predictive relationships were employed in a logic tree procedure, in order to capture the epistemic uncertainty affecting ground-motion attenuation. This article describes the adjustments and conversions required to eliminate the incompatibilities amongst the relations. Particularly significant are distance conversions and style-of-faulting adjustments, as well as the problems related to the use of regional relations, such as the selection of a reference depth, the quantification of random variability and the strong-motion prediction. Moreover, a regional attenuation relationship specific for volcanic areas was also employed, allowing a more realistic evaluation of seismic hazard, as confirmed by the attenuation of macroseismic intensities.  相似文献   

12.
The Peloritani region is one of the most seismically active regions in Italy and, consequently, the quantification of attenuation of the medium plays an important role for seismic risk evaluation. Moreover, it is necessary for the prediction of earth ground motion and future seismic source studies. An in depth analysis has been made here to understand the frequency and lapse time dependence of attenuation characteristics of the region by using the coda of local earthquakes. A regionalization is likewise performed in order to investigate the spatial variation of coda Q across the whole region. Finally, our results are jointly interpreted with those obtained from recently published 3D velocity tomographies for further insights.  相似文献   

13.
A representative attenuation relationship is one of the key components required in seismic hazard assessment of a region of interest. Attenuation relationships for peak ground acceleration, peak ground velocity and response spectral accelerations for Sumatran megathrust earthquakes, covering Mw up to 9.0, are derived based on synthetic seismograms obtained from a finite‐fault kinematic model. The relationships derived are for very hard rock site condition and for a long‐distance range between 200 and 1500 km. They are then validated with recorded data from giant earthquakes on the Sumatran megathrust occurring since year 2000. A close examination of the recorded data also shows that spectral shapes predicted by most of the existing attenuation relationships and that specified in the IBC code are not particularly suitable for sites where potential seismic hazard is dominated by large‐magnitude, distant, earthquakes. Ground motions at a remote site are typically signified by the dominance of long‐period components with periods longer than 1 s, whereas the predominant periods from most of the existing attenuation relationships and the IBC code are shorter than 0.6 s. The shifting of response spectrum towards longer period range for distant earthquakes should be carefully taken into account in the formulation of future seismic codes for Southeast Asia, where many metropolises are located far from active seismic sources. The attenuation relationship derived in the present study can properly reproduce the spectral shape from distant subduction earthquakes, and could hopefully give insights into the formulation of future seismic codes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Heating heavy oil reservoirs is a common method for reducing the high viscosity of heavy oil and thus increasing the recovery factor. Monitoring of these viscosity changes in the reservoir is essential for delineating the heated region and controlling production. In this study, we present an approach for estimating viscosity changes in a heavy oil reservoir. The approach consists of three steps: measuring seismic wave attenuation between reflections from above and below the reservoir, constructing time‐lapse Q and Q?1 factor maps, and interpreting these maps using Kelvin–Voigt and Maxwell viscoelastic models. We use a 4D relative spectrum method to measure changes in attenuation. The method is tested with synthetic seismic data that are noise free and data with additive Gaussian noise to show the robustness and the accuracy of the estimates of the Q‐factor. The results of the application of the method to a field data set exhibit alignment of high attenuation zones along the steam‐injection wells, and indicate that temperature dependent viscosity changes in the heavy oil reservoir can be explained by the Kelvin–Voigt model.  相似文献   

15.
The characteristics of seismic ground motions in southern China are difficult to determine statistically due to a lack of strong ground motion data. In this study, a stochastic finite-fault ground motion model was adopted to simulate the seismic ground motions at bedrock for southern China, based on parameters derived from small and medium earthquakes that have occurred in the region. From these, the response spectra was estimated. A set of ground motion attenuation relations hipswas then developed based on simulated peak ground motions and response spectral parameters through regression, which would be applicable for use in engineering practice. Through comparisons, it was demonstrated that the proposed ground motion relationships are generally consistent with those obtained from other reported ground motion attenuation models for southern China.  相似文献   

16.
由于流体本身的粘滞性和摩擦性,使得地震波在含油气地层中传播时衰减形成低频阴影.通过对叠后地震资料做时频分解,分析地层衰减特征,是当前除了AVO技术之外,比较流行的直接识别流体和气藏的技术.本文基于波动方程正演,模拟了地震波对含油气地层的响应.然后采用连续小波变换分析不同尺度剖面的瞬时能量特征,提取分频剖面上每一个点的峰值能量对应的频率,得到瞬时峰值能量频率剖面.通过分析瞬时峰值能量频率剖面,分析了地震波在地下介质中传播时的衰减特征.最后应用此方法对实际地震剖面进行了分析,验证了其有效性.  相似文献   

17.
In this study, the influence of paleoseismic and geologic data in the seismic hazard estimation for the Catalan coastal ranges is analysed. We computed the probabilistic seismic hazard using area seismic sources with a Poissonian assumption for the earthquake occurrence. For the computations, a previously published attenuation relationship based on European strong motion data was applied. The resulting hazard estimates show similarities to the previous assessments in the region. These results were then used as a reference for comparison with other new models. In order to analyse the influence of the paleoseismic data three different models were tested. Since the number of faults that are investigated in detail are few, the same area sources that were used in the Poissonian assumption were kept in all three new models. In addition, the new paleoseismic data with faults expressed as line sources were used. In this case, a cyclic earthquake occurrence was assumed. The three models were based on the paleoseismic data with different assumptions on the time elapsed since last event. The time elapsed was set to 0, 10 and 85% of the recurrence interval in each model. The results are presented as maps showing the difference between the three models and the reference model with the Poissonian assumption. The results are given in horizontal peak ground acceleration contour maps for different return periods, also taking into account large return periods as high as 25,000 years. This is done to demonstrate the effect of large recurrence intervals found for some of the active faults. In general, we observe that for short return periods (<1000 years), the Poissonian assumption of earthquake occurrence is probably sufficient and provides a robust estimate of the hazard. However, for longer return periods (>5000 years) the effects of the paleoseismic data become increasingly significant. In order to estimate the true seismic hazard potential of this apparently low seismicity area, long-term behaviour of the possible active faults in the region needs to be investigated systematically.  相似文献   

18.
The influence of the attenuation model used in seismic hazard assessment in terms of intensity and acceleration is studied. For two sites in central Italy, the catalogue of the actual observed intensities during the last three centuries has been recovered. In the study region, the data collected during a recent seismic sequence give the basis for relating intensity and acceleration. The results show the importance of establishing statistical relationships among the used quantities, based on a representative set of data.  相似文献   

19.
近地表低降速带地震波传播规律初探   总被引:4,自引:4,他引:0       下载免费PDF全文
通过对沙漠区近地表地层大量微测井资料的对比分析发现,速度梯度带的存在可能是导致低降速带地震波衰减的一个重要原因.本文在沙漠地区低降速带速度结构分析的基础上,研究地震波在线性过渡体地层的传播规律,并同实际观测记录进行对比,从理论和实际上验证上述推论的正确性.  相似文献   

20.
The presence of fractures in fluid‐saturated porous rocks is usually associated with strong seismic P‐wave attenuation and velocity dispersion. This energy dissipation can be caused by oscillatory wave‐induced fluid pressure diffusion between the fractures and the host rock, an intrinsic attenuation mechanism generally referred to as wave‐induced fluid flow. Geological observations suggest that fracture surfaces are highly irregular at the millimetre and sub‐millimetre scale, which finds its expression in geometrical and mechanical complexities of the contact area between the fracture faces. It is well known that contact areas strongly affect the overall mechanical fracture properties. However, existing models for seismic attenuation and velocity dispersion in fractured rocks neglect this complexity. In this work, we explore the effects of fracture contact areas on seismic P‐wave attenuation and velocity dispersion using oscillatory relaxation simulations based on quasi‐static poroelastic equations. We verify that the geometrical and mechanical details of fracture contact areas have a strong impact on seismic signatures. In addition, our numerical approach allows us to quantify the vertical solid displacement jump across fractures, the key quantity in the linear slip theory. We find that the displacement jump is strongly affected by the geometrical details of the fracture contact area and, due to the oscillatory fluid pressure diffusion process, is complex‐valued and frequency‐dependent. By using laboratory measurements of stress‐induced changes in the fracture contact area, we relate seismic attenuation and dispersion to the effective stress. The corresponding results do indeed indicate that seismic attenuation and phase velocity may constitute useful attributes to constrain the effective stress. Alternatively, knowledge of the effective stress may help to identify the regions in which wave induced fluid flow is expected to be the dominant attenuation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号