共查询到20条相似文献,搜索用时 0 毫秒
1.
在半监督语义分割中,主要采用编码-主从解码器结构使无标签样本参与计算以提高分割精度,但编码器的连续下采样操作易丢失浅层细节特征,从而导致地物边界分割不完整。为此,本文提出结合多尺度共享编码的半监督网络架构对航空影像进行语义分割,该网络的编码器采用ResNet-50获取影像浅层特征,并通过在ResNet-50末端嵌入多尺度共享编码模块来链接浅层特征,以构建密集特征金字塔和扩大感受野,从而获取目标地物多尺度细节信息。将本文网络与UNet、DeepLabv3+、FCN监督网络和CCT、XModalNet、VLCNet半监督网络在LandCover.ai和DroneDeploy数据集上分别进行了对比试验和精度评估。结果表明:本文网络在标签数量与精度方面均具有明显优势,对于LandCover.ai数据集,在6000张标签样本和6500张无标签样本的前提下,整体mIoU提升1.15%,对于DroneDeploy数据集,在30张标签样本和5张无标签样本的前提下,整体mIoU提升0.94%,同时显著提升影像地物的分割精度,得到更清晰、完整的地物边界。 相似文献
2.
介绍了一种将像素级的分类与对象级分类相结合的遥感影像分类方法。该方法将面向对象的概念引入影像分类中。但与纯粹的基于对象的分类有所不同,这种分类方法仍然是以像素级分类为基础。这种分类方法既继承了像素级分类精细、准确的优势,又通过分割对象,增加了分类图斑的同质性,极大地改善了信噪比,使分类结果更清楚。 相似文献
3.
随着高空间分辨率遥感技术的迅速发展,如何充分应用高空间分辨率遥感影像具有重要意义。而海量数据、复杂细节和尺度依赖的特点决定了高分辨率遥感影像处理的技术难点。本文在总结高分辨率影像信息提取技术基础上,重点讨论了多尺度分割技术。 相似文献
4.
5.
6.
高分辨率遥感影像信息提取方法综述 总被引:5,自引:4,他引:5
感知地物信息最直接的载体就是遥感影像,从遥感影像中提取地形地物等专题信息是当前遥感技术面临的一个迫在眉睫的问题。遥感影像的空间分辨率伴随着遥感技术的飞速发展从公里级发展到厘米级,同时遥感影像所包含的信息正越来越丰富化。高空间分辨率遥感影像具有数据量极大、数据复杂以及尺度依赖的特点,使得高空间分辨率的遥感影像的数据处理以及影像信息提取具有一定的难度,面临一些急需解决的问题。文中介绍了高分辨率遥感影像信息提取的国内外研究现状和趋势,分析了几种遥感影像的分类方法,指出了面向对象的遥感影像信息提取的技术及高分辨率遥感影像的多尺度分割,并指出了国内外在遥感影像信息提取技术方面的不足和迫切需要解决的问题。 相似文献
7.
8.
基于多尺度分割的煤矿区典型地物遥感信息提取 总被引:1,自引:0,他引:1
根据煤矿区典型地物类型的特点,研究遥感影像信息提取时面向对象分类方法的最优分割尺度问题。试验结果表明:在适于不同地物提取的最优分割尺度下,充分利用煤矿区影像对象的光谱、形状、纹理以及类间相关等特征,并综合应用隶属函数法和最邻近分类法,能有效地提取出煤矿区地物信息,与最大似然分类法相比,能够较好地消除"椒盐现象",其总体分类精度可提高26.2%。 相似文献
9.
10.
面向对象土地利用信息提取的多尺度分割 总被引:1,自引:0,他引:1
以往面向对象影像分析的分割尺度主要依靠经验并结合目视来进行选择,带有一定的主观性.本文针对利用高分辨率遥感影像进行土地利用信息提取的目的,采用面向对象的方法完成了两个典型实验区域的多尺度分割.主要研究了分割参数的选择;重点提出了一种最优分割尺度计算模型.结果表明,此模型计算最优分割尺度方便快捷,而且计算出的最优分割尺度... 相似文献
11.
在更精细的空间尺度下,高分遥感影像呈现更丰富的地物细节信息,信息内容的复杂性、空间性和海量性等特征,给传统遥感影像分割方法带来挑战。针对这些挑战,寻求一种更有效的分割模型和并行化的处理方法是有效提高大尺度高分遥感影像分割精度和处理效率的关键。为此,论文提出基于最小生成树的高分遥感影像层次化分割方法及其并行化重构。前者利用层次化最小生成树模型实现影像复杂场景信息的有效刻画,在此基础上利用区域化模糊聚类模型构建层次化分割模型。后者基于子块切分的并行划分和并行模糊聚类分割方法,实现大尺度高分遥感影像的快速、有效分割。论文的主要工作如下。 相似文献
12.
针对当前高分辨率遥感影像多层次分割尺度参数设置缺少理论框架支持、人为因素影响较多等缺点,提出一种引入松弛因子的高分辨率遥感影像自动多层次分割方法。该方法利用1个松弛因子调节引导区域对象合并的异质性值大小,通过控制每次递归合并区域的对象个数,提高了整体分割的速度;以区域对象间异质性平均值作为基数,引入另一个松弛因子控制分割过程中层次输出的尺度参数,使整个分割过程自动得到不同尺度的多层次分割结果。实验结果表明,该方法具有较高的分割质量,能够满足遥感影像分析及地物提取的精度要求,并且减少了人为因素影响,提高了自动化程度。但是,对于复杂图像内容的地物目标边界处理和减少狭长区域对象的出现还需要进一步深入研究和实践。 相似文献
13.
14.
针对现有方法普遍存在不能充分顾及遥感影像多波段光谱信息,以及忽视遥感影像中地理要素的多尺度特性等问题,提出一种自动确定高空间分辨率遥感影像最优分割结果的非监督评价方法。该方法基于信息熵生成光谱信息离散度,利用光谱信息离散度构建能表达分割对象内部光谱均质性指标和分割对象与其相邻分割对象间光谱异质性指标。基于构建的光谱均质性和光谱异质性指标,采用“粗估计+精确定”的策略,逐步得到一个多级优化后的影像最优分割结果。本文在3个不同下垫面影像区域进行试验。结果表明,该方法能有效地实现自动确定高空间分辨率遥感影像最优分割结果,与现有方法相比,本文方法确定出的影像最优分割结果质量更高,与参考分割结果更加贴近。 相似文献
15.
高分辨率遥感影像多尺度分割中最优尺度选取方法综述 总被引:1,自引:0,他引:1
目前,对高分辨遥感影像进行地物获取一般采用面向对象的理念,而影像分割是面向对象理念中至关重要的初始环节,分割结果的好坏将直接影响后续的分类工作,分割尺度的选取已经成为了当前研究的一个热点。本文详细总结了前人对高分辨遥感影像多尺度分割中最优尺度的获取方法,指出了各方法的不足之处,并提出了尺度评定的研究前景。 相似文献
16.
17.
针对高分辨率遥感影像的特点,提出了一种基于分层聚合的多尺度分割算法。该算法首先对遥感影像进行分水岭变换,然后对初始分割区域构建底层加权无向图,利用代数多重网格解法(AMG)在尺度空间求解最优的图割测度,整个分割过程自动得到了多尺度的分割结果。实验表明,该方法能够得到满意的分割结果,并具有较高的自动化程度。 相似文献
18.
19.
针对现有遥感影像分割未充分利用丰富的地物属性信息,且分割模型采用全局固定参数未考虑特征维度空间的局部统计特性的局限,提出了一种多特征融入的自适应遥感影像多尺度分割方法.实验表明,本方法能有效利用基元的多维特征和特征维度空间局部统计信息,得到更合理的影像分割结果. 相似文献
20.
多尺度多准则的遥感影像线状地物信息提取 总被引:1,自引:0,他引:1
针对传统低层次单个像元纯光谱的信息提取方法存在的不足,以ZY-3高分辨率遥感影像为数据源,依据"种内一致性最大、类间异质性最大"原则,提出了基于多尺度多准则的ZY-3影像线状地物信息提取方法。利用基于最优分割尺度的影像分割、面向对象线状地物目标信息的提取方法,实现了河流、水渠、道路等线状地物信息的提取,并通过实验分析验证了可行性、有效性。结果表明:构建的RMAS指数指标,可以作为多尺度分割中选择最优分割尺度的一种很好的指示器,所提方法不仅有效避免了分割斑块面积对分割结果评价的影响,还能够有效识别ZY-3影像中的线状地物信息,研究结果对高分辨率遥感影像处理尺度依赖的技术难点及线状地物信息提取等研究具有重要的参考价值。 相似文献