首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The Daliangzi Pb-Zn deposit is a large deposit hosted in the Sinian Dengying Formation dolostone, located in the Sichuan-Yunnan-Guizhou ore concentration area. Ore minerals are mianly sphalerite, galena, and gangue minerals consist of dolomite, quartz and calcite. The metallogenic stages may be divided into sphalerite-pyrite-carbon stage, sphalerite-galena stage and galena-chalcopyrite-carbonate stage. The ore-forming fluid is basin brine, which is characterized by medium-low temperature of 117.5 ℃ to 320.3 ℃ and medium salinity of 5.11% NaCleqv to 18.96% NaCleqv, moreover, the abundant CH4 and pitch in the fluid inclusions indicate that the participation of organic matter in the mineralization. The δ13CV-PDB and δ18OSMOW values of the Dengying Formation dolostone are similar to that of marine carbonate, revealing that the dolostone belongs to marine carbonate. Both the δ13CV-PDB and δ18OSMOW values of hydrothermal calcites are lower than that of the Dengying Formation dolostone, which may result from dissolution of the Dengying Formation dolostone. The δ34S values of ore minerals are mainly in the range of 9.8‰-20.8‰, indicating the sulfur may come from thermochemical reduction of marine sulfate in the Dengying Formation. The 207Pb/204Pb versus 206Pb/204Pb diagram manifests that Pb is crustal origin, and likely comes mainly from the wall rocks and less from the basement. (87Sr/86Sr)i ratios of sphalerites and hydrothermal calcite are higher than that of the Dengying Formation dolostone, indicating that the ore-forming fluid flew through the basement. In conclusion, the ore-forming fluid was basin brine, which extracted the metallogenic materials, Pb and Zn, from the basement and wall rocks. When the ore-forming fluid reached the "black fractured zones", carbonized tectonic breccia zone, S2- was produced by the thermochemical reduction reaction under the influence of the organic matter, and interaction between the S2- and Pb2+, Zn2+, resulted in the precipitation of ore metals. © 2018, Science Press. All right reserved.  相似文献   

2.
The extensive Changba-Lijiagou Pb-Zn deposit is located in the north of the Xihe–Chengxian ore cluster in West Qinling. The ore bodies are mainly hosted in the marble, dolomitic marble and biotite-calcite-quartz schist of the Middle Devonian Anjiacha Formation, and are structurally controlled by the fault and anticline. The ore-forming process can be divided into three main stages, based on field geological features and mineral assemblages. The mineral assemblages of hydrothermal stage I are pale-yellow coarse grain, low Fe sphalerite, pyrite with pits, barite and biotite. The mineral assemblages of hydrothermal stage II are black-brown cryptocrystalline, high Fe shalerite, pyrite without pits, marcasite or arsenopyrite replace the pyrite with pits, K-feldspar. The features of hydrothermal stage III are calcite-quartz-sulfide vein cutting the laminated, banded ore body. Forty-two sulfur isotope analyses, twenty-five lead isotope analyses and nineteen carbon and oxygen isotope analyses were determined on sphalerite, pyrite, galena and calcite. The δ34 S values of stage I(20.3 to 29.0‰) are consistent with the δ34 S of sulfate(barite) in the stratum. Combined with geological feature, inclusion characteristics and EPMA data, we propose that TSR has played a key role in the formation of the sulfides in stage I. The δ34 S values of stage II sphalerite and pyrite(15.1 to 23.0‰) are between sulfides in the host rock, magmatic sulfur and the sulfate(barite) in the stratum. This result suggests that multiple S reservoirs were the sources for S2-in stage II. The δ34 S values of stage III(13.1 to 22‰) combined with the structure of the geological and mineral features suggest a magmatic hydrothermal origin of the mineralization. The lead isotope compositions of the sulfides have 206 Pb/204 Pb ranging from 17.9480 to 17.9782, 207 Pb/204 Pb ranging from 15.611 to 15.622, and 208 Pb/204 Pb ranging from 38.1368 to 38.1691 in the three ore-forming stages. The narrow and symmetric distributions of the lead isotope values reflect homogenization of granite and mantle sources before the Pb-Zn mineralization. The δ13 CPDB and δ18 OSMOW values of stage I range from-0.1 to 2.4‰ and from 18.8 to 21.7‰. The values and inclusion data indicate that the source of fluids in stage I was the dissolution of marine carbonate. The δ13 CPDB and δ18 OSMOW values of stage II range from-4 to 1‰ and from 12.3 to 20.3‰, suggesting multiple C-O reservoirs in the Changba deposit and the addition of mantle-source fluid to the system. The values in stage III are-3.1‰ and 19.7‰, respectively. We infer that the process of mineralization involved evaporitic salt and sedimentary organic-bearing units interacting through thermochemical sulfate reduction through the isotopic, mineralogy and inclusion evidences. Subsequently, the geology feature, mineral assemblages, EPMA data and isotopic values support the conclusion that the ore-forming hydrothermal fluids were mixed with magmatic hydrothermal fluids and forming the massive dark sphalerite, then yielding the calcite-quartz-sulfide vein ore type at the last stage. The genesis of this ore deposit was epigenetic rather than the previously-proposed sedimentary-exhalative(SEDEX) type.  相似文献   

3.
The Dahongshan Fe-Cu (-Au) deposit is a superlarge deposit in the Kangdian metallogenic belt, southwestern China, comprising approximately 458 Mt of Fe ores (40% Fe) and 1.35 Mt Cu. Two main types of Fe-Cu (-Au) mineralization are present in the Dahongshan deposit: (1) early submarine volcanic exhalation and sedimentary mineralization characterized by strata-bound fine-grained magnetite and banded Fe-Cu sulfide (pyrite and chalcopyrite) hosted in the Na-rich metavolcanic rocks; (2) late hydrothermal (-vein) type mineralization characterized by Fe-Cu sulfide veins in the hosted strata or massive coarse-grained magnetite orebodies controlled by faults. While previous studies have focused primarily on the early submarine volcanic and sedimentary mineralization of the deposit, data related to late hydrothermal mineralization is lacking. In order to establish the metallogenic age and ore-forming material source of the late hydrothermal (-vein) type mineralization, this paper reports the Re-Os dating of molybdenite from the late hydrothermal vein Fe-Cu orebody and H, O, S, and Pb isotopic compositions of the hydrothermal quartz-sulfide veins. The primary aim of this study was to establish the metallogenic age and ore-forming material source of the hydrothermal type orebody. Results show that the molybdenite separated from quartz-sulfide veins has a Re-Os isochron age of 831 ± 11 Ma, indicating that the Dahongshan Fe-Cu deposit experienced hydrothermal superimposed mineralization in Neoproterozoic. The molybdenite has a Re concentration of 99.7–382.4 ppm, indicating that the Re of the hydrothermal vein ores were primarily derived from the mantle. The δ34S values of sulfides from the hydrothermal ores are 2‰–8‰ showing multi-peak tower distribution, suggesting that S in the ore-forming period was primarily derived from magma and partially from calcareous sedimentary rock. Furthermore, the abundance of radioactive Pb increased significantly from ore-bearing strata to layered and hydrothermal vein ores, which may be related to the later hydrothermal transformation. The composition of H and O isotopes within the hydrothermal quartz indicates that the ore-forming fluid is a mixture of magmatic water and a small quantity of water. These results further indicate that the late hydrothermal orebodies were formed by the Neoproterozoic magmatic hydrothermal event, which might be related to the breakup of the Rodinia supercontinent. Mantle derived magmatic hydrothermal fluid extracted ore-forming materials from the metavolcanic rocks of Dahongshan Group and formed the hydrothermal (-vein) type Fe-Cu orebodies by filling and metasomatism.  相似文献   

4.
Ore deposits (occurrences) of Au, As, Sb, Hg, etc. distributed in Southwest Guizhou constitute the important portion of the low-temperature metallogenic domain covering a large area in Southwest China, with the Carlin-type Au and Sb deposits being the most typical ones. In this paper the Au and Sb ore deposits are taken as the objects of study. Through the petrographic analysis, microthermomitric measurement and Raman spectrophic analysis of fluid inclusions in gangue minerals and research on the S and C isotopic compositions in the gold ore deposits we can reveal the sources of ore-forming materials and ore-forming fluids and the rules of ore fluid evolution. Ore deposits of Au, Sb, etc. are regionally classified as the products of ore fluid evolution, and their ore-forming materials and ore fluids were probably derived mainly from the deep interior of the Earth. Fluid inclusion studies have shown that the temperatures of Au mineralization are within the range of 170-361℃,the salinities are 0.35 wt%-8 wt% NaCl eq.; the temperatures of Sb mineralization are 129.4-214℃ and the salinities are 0.18 wt%- 3.23 wt% NaCl eq.; the ore-forming fluid temperatures and salinities tend to decrease progressively. In the early stage (Au metallogenic stage) the ore-forming fluids contained large amounts of volatile components such as CO2, CH4, N2 and H2S, belonging to the H2O-CO2-NaCl fluid system; in the late stage (Sb metallogenic stage) the ore-forming fluids belong to the Sb-bearing H2O-NaCl system. The primitive ore-forming fluids may have experienced at least two processes of immiscibility: (1) when early ore-bearing hydrothermal solutions passed through rock strata of larger porosity or fault broken zones, CO2, CH4, N2 would escape from them, followed by the release of pressure, resulting in pressure release and boiling of primitive homogenous fluids, thereafter giving rise to their phase separation, thus leading to Au unloading and mineralization; and (2) in the late stage (Sb metallogenic stage ) a large volume of meteoric water was involved in the ore-forming fluids, leading to fluid boiling as a result of their encounter, followed by the drop of fluid temperature. As a result, the dissolubility of Sb decreased so greatly that Sb was enriched and precipitated as ores. Due to differences in physic-chemical conditions between Au and Sb precipitates, Au and Sb were respectively precipitated in different structural positions, thus creating such a phenomenon of Au/Sb paragenesis and differentiation in space.  相似文献   

5.
Located in Alxa Zuoqi (Left Banner) of Inner Mongolia, China, the Zhulazhaga gold deposit is the first largescale gold deposit that was found in the middle-upper Proterozoic strata along the north margin of the North China craton in recent years. It was discovered by the No. l Geophysical and Geochemical Exploration Party of Inner Mongolia as a result of prospecting a geochemical anomaly. By now, over 50 tonnes of gold has been defined, with an average Au grade of 4 g/t. The ore bodies occur in the first lithological unit of the Mesoproterozoic Zhulazhagamaodao Formation (MZF), which is composed mainly of epimetamorphic sandstone and siltstone and partly of volcanic rocks. With high concentration of gold,the first lithological unit of the MZF became the source bed for the late-stage ore formation. Controlled by the interstratal fracture zones, the ore bodies mostly appear along the bedding with occurrence similar to that of the strata. The primitiveore types are predominantly the altered rock type with minor ore belonging to the quartz veins type. There are also some oxidized ore near the surface. The metallic minerals are composed mainly of pyrite, pyrrhotite and arsenopyrite with minor chalcopyrite, galena and limonite. Most gold minerals appear as native gold and electrum. Hydrothermal alterations associated with the ore formation are actinolitization, silicatization, sulfidation and carbonation. A total of 100 two-phase H2O-rich and 7 three-phase daughter crystal-beating inclusions were measured in seven goldbearing quartz samples from the Zhulazhaga gold deposit. The homogenization temperatures of the two-phase H2O-rich inclusions range from 155 to 401℃, with an average temperature of 284℃ and bimodal distributions from 240 to 260℃ and 300 to 320℃ respectively. The salinities of the two-phase H2O-rich inclusions vary from 9.22wt% to 24.30wt% NaCl eqniv, with a mode between 23 wt% and 24wt% NaC1 equiv. Comparatively, the homogenization temperatures of the threephase daughter crystal-beating inclusions vary from 210 to 435℃ and the salinities from 29.13wt% to 32.62wt% NaCl equiv. It indicates that the ore-forming fluid is meso-hypothermal and characterized by high salinity, which is apparently different from the metamorphic origin with low salinity. It suggests a magmatic origin of the gold-bearing fluid. The δ^18O values of quartz from auriferous veins range from 11.9 to 16.3 per mil, and the calculated δ^18OH2O values in equilibrium with quartz vary from 1.06 to 9.60 per mil, which fall between the values of meteoric water and magmatic water. It reflects that the ore-forming fluid may be the product of mixing of meteoric water and magmatic water.Based on geological and geochemical studies of the Zhulazhaga gold deposit, it is supposed that the volcanism in the Mesoproterozoic might make gold pre-concentrate in the strata. The extensive and intensive Hercynian tectono-magmatic activity not only brought along a large number of ore-forming materials, but also made the gold from the strata rework. It can be concluded that the ore bodies were mainly formed in late hydrothermal reworking stage. Compared with typical gold deposits associated with epimetamorphic clastic rocks, the Zhulazhaga deposit has similar features in occurrence of ore bodies, ore-controlling structure, wall-rock alterations and mineral assemblages. Therefore, the Zhulazhaga gold deposit belongs to the epimetamorphic clastic rock type.  相似文献   

6.
The Sanshandao Au deposit is located in the famous Sanshandao metallogenic belt, Jiaodong area. To date, accumulative Au resources of 1000 t have been identified from the belt. Sanshandao is a world-class gold deposit with Au mineralization hosted in Early Cretaceous Guojialing-type granites. Thus, studies on the genesis and ore-forming element sources of the Sanshandao Au deposit are crucial. He and Ar isotopic analyses of fluid inclusions from pyrite(the carrier of Au) indicate that the fluid inclusions have 3 He/4 He=0.043–0.21 Ra with an average of 0.096 Ra and 40 Ar/36 Ar=488–664 with an average of 570.8. These values represent the initial He and Ar isotopic compositions of ore-forming fluids for trapped fluid inclusions. The comparison of H–O isotopic characteristics combined with deposit geology and wall rock alteration reveals that the ore-forming fluids of the Sanshandao Au deposit show mixed crust–mantle origin characteristics, and they mainly comprise crust-derived fluid mixed with minor mantle-derived fluid and meteoric water during the uprising process. The ore-forming elements were generally sourced from pre-Cambrian meta-basement rocks formed by Mesozoic reactivation and mixed with minor shallow crustal and mantle components.  相似文献   

7.
The Zhaceqiao gold-polymetal deposit was discovered recently in the Jiangnan Transitional Zone. In order to obtain the ore-forming age, sericite was separated from the altered granite porphyry which hosts the gold deposit. 40Ar-39Ar analyses of sericite in gold ore yield spectrum age of 156.9±1.6 Ma with the isochron age of 152±28 Ma. The spectrum age of sericite in altered granodiorite porphyry is 142.1±1.3 Ma with the isochron age of 137±13 Ma. The homogenization temperature of fluid inclusions in quartz from the Niutougaojia and Chengtan ore sections is c.a. 160℃. The H-O isotopic compositions indicate that the ore-forming fluids mainly come from magmatic hydrothermal sources. Integrating with regional studies, the Zhaceqiao gold deposit is predominantly characterized by shallow, low temperature and epithermal, similar to Carlin-like type gold deposit. The Zhaceqiao gold deposit was formed in Yanshanian through multi-stage superimposition. The gold mineralization was related to the ductile-brittle compressional tectonic deformation and alteration in middle Jurassic to gold, while the polymetallic mineralization was related to the Late Jurassic-Early Cretaceous igneous activity, and the epithermal mineralization in the middle and late stage of the Early Cretaceous. © 2017, Science Press. All right reserved.  相似文献   

8.
There occur abundant cherts in the Mesozoic and Cenozoic strata in southern Tibet. Some of them possess characteristic hydrothermal structures such as layered, laminated, massive and breccia structures. Ratios of Al/(Al+Fe+Mn), Co/Ni, Fe/Ti and TiO2-A1203 demonstrate that their origin is related to hydrothermal sedimentation. The chert formations have close relationship with Sb, Au and poly-metallic mineralization, and the ore-forming fluid show strong correlation with fossil hydrothermal water. There occur abundant cherts in the Mesozoic and Cenozoic strata in southern Tibet. Some of them possess characteristic hydrothermal structures such as layered, laminated, massive and breccia structures. Ratios of A1/(AI+Fe+Mn), Co/Ni, Fe/Ti and TiO2-A1203 demonstrate that their origin is related to hydrothermal sedimentation. The chert formations have close relationship with Sb, Au and poly-metallic mineralization, and the ore-forming fluid show strong correlation with fossil hvdrothermal water.  相似文献   

9.
The Anqing Cu-Fe deposit is one of the representative large Cu-Fe deposits along the Yangtze River in Anhui province, with controversial metallogenic mechanism. Based on the ore-forming geological characteristics, this paper focus on the sulfur, carbon and oxygen isotopic compositions of the ores and surrounding rocks, and discuss the sources and evolution processes of the ore-forming materials. The Cu-Fe deposit occurs in the contact zone between the early Yanshanian Yueshan diorite and Triassic marble, with clear horizontal zonings in the skarns and ore bodies. The garnet skarn and thick massive magnetite ore body commonly occur within the external contact zone, which have clear boundaries with the surrounding rocks; whereas the diopside skarns with disseminated copper sulfide commonly occur within the internal contact zone and show gradual and transitional relations with the diorite. The δ34S values of the ores range from -6.5‰ to 10.6‰, and show a V-shaped trend from the diorite to the outer marble. This compositional variation indicates that most of the sulfur may come from magma, with involvement of some pre-Triassic clastic strata sulfur and Triassic marine sulfates in the later stage. The δ13C values of the gangue minerals range from -5.5‰ to 2.0‰, which decrease from the external contact zone to internal contact zone, indicating that the carbons of the ore-forming fluids may be mainly derived from magma, with some Triassic carbonate stratigraphic carbon involved. The marbles nearby the orebody show δ18O values lower than those of the Triassic strata, indicating that they have been remolded by the low δ18O magmatic hydrothermal fluids. The magnetite have some magma filling geological features and extremely low δ18O value, may be the result from the filling of the high temperature iron-rich fluids along the contact zone and fault. This study shows that the ore-magma filling type and hydrothermal-metasomatic type ore bodies coexist in the Anqing Fe-Cu deposit. The immiscibility between iron oxide and silicate melt occurred in magma chamber, which resulted in the formation of iron-rich fluid. The fluid migrated upward and eventually precipitated in a favorable tectonic area or contact zone, and the magnetite ore bodies were formed in the outer contact zone. By the later fluid mixing, filling metasomasis, and water-rock reaction between the differentiated hydrothermal solutions and diorite, the copper ore bodies and the copper-bearing altered diorite were formed in the internal contact zone. © 2018, Science Press. All right reserved.  相似文献   

10.
The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-type ore include magnetite ore and hematite ore. The ore textures and structures indicate that the Zhaokalong deposit is of the sedimentary-exhalative mineralization type. Geochemical analyses show that the two ore types have a high As, Sb, Mn, Co and Ni content. The REE patterns reveal an enrichment of the LREE compared to the HREE. Isotopic analysis of siderite ore reveal that the δ13CPDB ranges from 2.01 to 3.34 (‰) whereas the δ18O SMOW ranges from 6.96 to 18.95 (‰). The fluid inclusion microthermometry results indicate that homogenization temperatures of fluid inclusions in quartz range from 131 to 181℃, with salinity values of 1.06 to 8.04 wt% NaCl eq. The mineralizing fluid therefore belongs to the low temperature - low salinity system, with a mineralizing solution of a CO2-Ca2+(Na+, K+)-SO42-(F-, Cl-)-H2O system. The geochemical results and fluid inclusion data provide additional evidence that the Zhaokalong deposit is a sedex-type deposit that experienced two stages of mineralization. The sulfide mineralization probably occurred first, during the sedimentary exhalative process, as exhibited by the abundance of marine materials associated with the sulfide ores, indicating a higher temperature and relatively deoxidized oceanic depositional environment. After the main exhalative stage, hydrothermal activity was superimposed to the sulfide mineralization. The later stage oxide mineralization occurred in a low temperature and relatively oxidized environment, in which magmatic fluid circulation was dominant.  相似文献   

11.
The Gaoshan gold-silver deposit, located between the Yuyao-Lishui Fault and JiangshanShaoxing fault in Longquan Area, occurs in the Suichang-Longquan gold-silver polymetallic metallogenic belt. This study conducted an investigation for ore-forming fluids using microthermometry, D-O isotope and trace element. The results show that two types of fluid inclusions involved into the formation of the deposit are pure liquid phase and gas-liquid phase aqueous inclusions. The homogenization temperature and salinity of major mineralization phase ranges from 156°C to 236°C(average 200°C) and 0.35% to 8.68%(NaCleqv)(average 3.68%), respectively, indicating that the ore-forming fluid is characteristic of low temperature and low salinity. The oreforming pressure ranges between in 118.02 to 232.13'105 pa, and it is estabmiated that the oreforming depth ranges from 0.39 to 0.77 km, indicating it is a hypabyssal deposit in genesis. The low rare earth elements content in pyrites, widely developed fluorite in late ore-forming stage and lack of chlorargyrite(Ag Cl), indicates that the ore-forming fluid is rich in F rather than Cl. The ratios of Y/Ho, Zr/Hf and Nb/Ta of between different samples have little difference, indicating that the later hydrothermal activities had no effects on the former hydrothermal fluid. The chondrite-normalized REE patterns of pyrites from country rocks and ore veins are basically identical, with the characteristics of light REE enrichment and negative Eu anomalies, implying that the ore-forming fluid was oxidative and derived partly from the country rocks. The δD and δ18O of fluid inclusions in quartz formed during the main metallogenic stage range from -105‰ to -69 ‰ and -6.01‰ to -3.81‰, respectively. The D-O isotopic diagram shows that the metallogenic fluid is characterized by the mixing of formation water and meteoric water, without involvement of magmatic water. The geological and geochemical characteristics of the Gaoshan gold-silver deposit are similar to those of continental volcanic hydrothermal deposit, and could be assigned to the continental volcanic hydrothermal gold-silver deposit type.  相似文献   

12.
The Changkeng gold-silver deposits consist of a sediment-hosted, disseminated gold deposit and a replacement-type silver deposit. The mineralizations of gold and silver are zoned and closely related to the silicification of carbonate and clastic rocks, so that siliceous ores dominate in the deposit. The mineralizing temperature ranges mainly from 300 to 170℃, and K+, Na+, Ca2+, Mg2+, and Cl- are the major ions in the ore-forming fluid. Calculations of distribution of metal complexes show that gold is mainly transported by hydrosulphide complexes, but chloride complexes of silver, iron, lead, and zinc, which are transformed into hydroxyl and hydrosulphide complexes under neutral to weak-alkaline circumstances in the late stage, predominate in the ore-forming solutions. Water-rock interaction is confirmed to be the effective mechanism for the formation of silver ores by computer modelling of reaction of hydrothermal solution with carbonate rocks. The solubility analyses demonstrate that the precipitation  相似文献   

13.
The superlarge Jinchang gold deposit is located in the joint area between the Taipingling uplift and the Laoheishan depression of the Xingkai Block in both eastern Jilin and eastern Heilongjiang Province. Wall rocks of the gold deposits are the Neoproterozoic Huangsong Group of metamorphic rocks. Yanshanian magmatism in this region can be divided into 5 phases, the diorite, the graphic granite, the granite, the granite porphyry and the diorite porphyrite, which resulted in the magmatic domes and cryptoexplosive breecia chimney followed by large-scale hydrothermal alteration. Gold mineralization is closely related to the fourth and fifth phase of magmatism. According to the occurrences, gold ores can be subdivided into auriferous pyritized quartz vein, auriferous quartz-pyrite vein, auriferous polymetailic sulfide quartz vein and auriferous pyritized calcite vein. The ages of the gold deposit are ranging from 122.53 to 119.40 Ma. The ore bodies were controlled by a uniform tectono-magmatic hydrothermal alteration system that the ore-forming materials were deep derived from and the ore-forming fluids were dominated by magmatic waters with addition of some atmospheric water in the later phase of mineralization. Gold mineralization took place in an environment of medium to high temperatures and medium pressures. Ore-forming fluids were the K^+-Na^+-Ca^2+-Cl^--SO4^2- type and characterized by medium salinity or a slightly higher, weak alkaline and weak reductive. Au in the ore-forming fluids was transported as complexes of [Au (HS)2]^-, [AuCl2]^-, [Au(CO2)]^- and [Au(HCO3)2]^-. Along with the decline of temperatures and pressures, the ore-forming fluids varied from acidic to weak acidic and then to weak alkaline, which resulted in the dissociation of the complex and finally the precipitation of the gold.  相似文献   

14.
The Jinshan gold deposit is located in the Northeast Jiangxi province,South China,which related to the ductile shear zone.It contains two ore types,i.e.the alteration-type ore and the goldbearing quartz vein ore.Rb-Sr age dating is applied to both gold-bearing pyrite in the alteration-type ore and fluid inclusion in the gold-bearing quartz vein to make clear the time of the gold mineralization of the Jinshan deposit.Analytical results of this study yielded that the age of the alteration-type ore bodies is about 838±110Ma,with an initial 87Sr/86Sr value of 0.7045±0.0020.However,the age of the gold-bearing quartz vein-type ore is about 379±49Ma,and the initial 87Sr/86Sr is 0.7138±0.0011.Based on the age data from this work and many previous studies,the authors consider that the Jinshan gold deposit is a product of multi-staged mineralization,which may include the Jinninian,Caledonian,Hercynian,and Yanshanian Periods.Among them,the Jinninian Period and the Hercynian Period might be the two most important ore-forming periods for Jinshan deposit.The Jinninian Period is the main stage for the formation of alteration-type ore bodies,while the Hercynian Period is the major time for ore bodies of gold-bearing quartz vein type.The initial values of the 87Sr/86Sr from this study,as well as the previous isotope and trace element studies,indicate that the ore-forming materials mainly derived from the metamorphic wall rocks,and the ore-forming fluids mainly originated from the deep metamorphic water.  相似文献   

15.
Two types of gold ores,siliceous mylonite and quartz vein,formed at the first and second stages of mineralization respectively, can be clearly recognized in the shear zone-hosted gold deposit at Jinshan, Jiangxi.Similarity in REE and trace elements between the siliceous mylonite and the country rocks indicates that the ore metals were supplied by the surrounding strata during the first stage of mineralization.On the other hand, as indicated by fluid inclusion data,the ore-forming fluid at the second stage was of meteoric origin and the precipitation of gold was caused by phase separation.  相似文献   

16.
The Southern Great Xing'an Range(S(GXR)which forms part of the eastern segment of the Central Asian Orogenic Belt(CAOB)is known as one of the most important Cu-Mo-Pb-Zn-Ag-Au metallogenic belts in China,hosting a number of porphyry Mo(Cu),skarn Fe(Sn),epithermal Au-Ag,and hydrothermal veintype Ag-Pb-Zn ore deposits.Here we investigate the Bianjiadayuan hydrothermal vein-type Ag-Pb-Zn ore deposit in the southern part of the SGXR.Porphyry Sn± Cu± Mo mineralization is also developed to the west of the Ag-Pb-Zn veins in the ore field.We identify a five-stage mineralization process based on field and petrologic studies including(i)the early porphyry mineralization stage,(ii)main porphyry mineralization stage,(iii)transition mineralization stage,(iv)vein-type mineralization stage and(v)late mineralization stage.Pyrite is the predominant sulfide mineral in all stages except in the late mineralization stage,and we identify corresponding four types of pyrites:Pyl is medium-grained subhedral to euhedral occurring in the early barren quartz vein;Py2 is medium-to fine-grained euhedral pyrite mainly coexisting with molybdenite,chalcopyrite,minor sphalerite and galena;Py3 is fine-grained,subhedral to irregular pyrite and displays cataclastic textures with micro-fractures;Py4 occurs as euhedral microcrystals and forms irregularly shaped aggregate with sphalerite and galena.LA-ICP-MS trace element analyses of pyrite show that Cu,Pb,Zn,Ag,Sn,Cd and Sb are partitioned into pyrite as structurally bound metals or mineral micro/nano-inclusions,whereas Co,Ni,As and Se enter the lattice via isomorphism in all types of pyrite.The Cu,Zn,Ag,Cd concentrations gradually increase from Pyl to Py4,which we correlate with cooling and mixing of ore-forming fluid with meteoric water.Py2 contains the highest contents of Co,Ni,Se,Te and Bi,suggesting high temperature conditions for the porphyry mineralization stage.Ratios of Co/Ni(0.03-10.79,average 2.13)and sulphur isotope composition of sulfide indicate typical hydrothermal origin for pyrites.The δ~(34)S_(cDT) values of Pyl(0.42‰-1.61‰,average1.16‰),Py2(-1.23‰to 0.82‰,average 0.35‰),Py3(—0.36‰to 2.47‰average 0.97‰).Py4(2.51‰--3.72‰,average 3.06‰),and other sulfides are consistent with those of typical porphyry deposit(-5‰to 5‰),indicating that the Pb-Zn polymetallic mineralization in the Bianjiadayuan deposit is genetically linked to the Yanshanian(Jurassic-Cretaceous)magmatic-hydrothermal events.Variations of δ~(34) S values are ascribed to the changes in physical and chemical conditions during the evolution and migration of the ore-forming fluid.We propose that the high Sn content of pyrite in the Bianjiadayuan hydrothermal vein-type Pb-Zn polymetallic deposit can be used as a possible pathfinder to prospect for Sn mineralization in the surrounding area or deeper level of the ore field in this region.  相似文献   

17.
In this paper the authors present the REE concentrations and Sr and Nd isotopic compositions of fluorites from the Bailashui tin deposit of the Furong ore field, southern Hunan Province. The results showed that the total amount of REE in fluorites is usually low, ranging from 0.705 to 8.785 μg/g with the chondrite-normalized REE distribution patterns similar to those of the Qitianling granites in the study area, characterized by LREE-enrichment patterns with pronounced negative Eu anomalies. The fluorites vary in Sr isotopic composition within the range of 0.7083-0.7091, the values are lower than those of the granites and higher than those of the host carbonate rocks in this area. The εNd(t) values of fluorites vary between -9.4 and +10.3, revealing that both the crust- and mantle-source materials were involved in the ore-forming hydrothermal fluids. Combined with previous studies on this ore deposit, the Bailashui tin deposit is temporally and spatially closely related with granitic magmatism in this area. The hydrothermal fluorites are the product of fluid/rock interactions between granitic magmatic hydrothermal fluid and marine carbonate rocks. The REE and F in the ore-forming fluid were derived from the granites, whereas Sr in the ore-forming fluid came mainly from the granitic magmatic hydrothermal fluid and marine carbonate rocks, although variations in Sr isotopic composition cannot be explained by a simple mixture of these two end-members. Evidence demonstrated that the ore-forming fluids are of crustal-mantle mixing origin, but that the fluids were probably incompletely homogenized and this may be caused by inhomogeneous mixing of the fluids of different sources.  相似文献   

18.
薛玉山 《地质与勘探》2022,58(5):940-953
The Xianggou-Sigou tungsten deposit is located in Shanyang County, Shaanxi Province, which is one of the newly discovered gold-tungsten deposits in south Qinling. Previous studies have summarized the geological characteristics of the deposit and studied scheelite chronology in detail, but there is no related research on the fluid metallogenic characteristics of tungsten ores in the deposit. In this work, scheelite and symbiotic calcite in the main mineralization stage were selected, and fluid inclusion thermometry, C-H-0 isotope and laser Raman composition tests were carried out. Studies on fluid inclusions show that the homogenization temperature of fluid inclusions is concentrated in 115. 5 X.-273. 6 X. and the salinity is (0. 33-22. 01)% NaCleqv in the main ore-forming period of the deposit. The mineralization temperature is about 150 °C determined by isotope mineral pairs. The main component of fluid inclusions is H20. The values of «5CV-PDB of calcite, 5 Ov-smow an<^ ^DV-SMOW are-0. 80%c ~ 1. 4%c, 2. 09%o ~ 9. 56%c, and-88. 40%e ~ 107. 90%c, respectively. Comprehensive analysis shows that the ore-forming fluid of the deposit is low-temperature magmatic hydrothermal fluid system with obvious mixing of atmospheric water, and the estimated metallogenic depth is about 2 km. The cooling and mixing of the fluid with atmospheric water may be the main mechanism leading to the mineral precipitation. The tungsten ore body in the mining area is mainly produced in the calcite quartz vein type, which is a common feature of the top of the magmatic hydrothermal tungsten ores. The deep part of the mining area is inferred to possess great prospecting potential. © 2022 Editorial Board of Geology and Exploration. All rights reserved.  相似文献   

19.
This paper presents a method of establishing a hydrothermal ore-forming reaction system.On the basis of the study of four typical hydrothermal deposits,the following conclusions concerning geochemical dynamic controlling during hydrothermal mineralization have been sions concerning geochemical dynaamic controlling during hydrothermal mineralization have been drawn:(1)The regional tectonic activities control the concentration and dispersion of elements in the ore-forming process in terms of their effects on the thermodynamic nature and conditions of the ore-forming reaction system.(2)During hydrothermal mineralization the activites of ore-bearing faults can be divideb into two stages:the brittle splitting stage and the brittle-tough tensing stage,which would create characteristically different geodynamic conditions for the geochemical thermodynamic ore-forming system.(3)The hydrothermal ore-forming reaaction system is an open dynamic system.At the brittle splitting stage the system was so strongly supersaturated and unequilibrated as to speed up and enhance the crystallization and differentiation of ore-forming fluids.And at the brittle-tough tensing stage,the ore-forming system was in a weak supersaturated state;with decreasing temperature and pressure the crystallization of oreforming material would show down,and it can be regarded as an equilibrated state.(4)In the lates stages of hydrothermal evolution,gold would be concentrated in the residual ore-forming solution.The pulsating fracture activite in this stage led to the crush of pyrite ore and it was then filled with gold-enriched solution,forming high-grage“fissure”gold ore.This ore-forming process could be called the coupling mechanism of ore formation.  相似文献   

20.
The recently discovered Damoqujia (大磨曲家) gold deposit is a large shear zone-hosted gold deposit of disseminated sulphides located in the north of the Zhaoping (招平) fault zone, Jiaodong (胶东) gold province, China. In order to distinguish the temperature range of cluster inclusions from different mineralization stages and measure their compositions, 16 fluid inclusions and 5 isotopic geochemistry samples were collected for this study. Corresponding to different mineralization stages, the multirange peaks of quartz decrepitation temperature (250-270, 310-360 and 380-430℃(2) indicate that the activity of ore-forming fluids is characterized by multistage. The ore-forming fluids were predominantly of high-temperature fluid system (HTFS) by CO2-rich, and SO2-4-K type magmatic fluid during the early stage of mineralization and were subsequently affected by low-temperature fluid system (LTFS) of CH4-rich, and Cl--Na /Ca2 type meteoric fluid during the late stage of mineralization. Gold is transferred by Au-HS- complex in the HTFS, and Au-Cl- complex can be more important in the LTFS. The transition of fluids from deeper to shallow environments results in mixing between the HTFS and LTFS, which might be one of the most key reasons for gold precipitation and large-scale mineralization. The ore-forming fluids are characterized by high-temperature, strong-activity, and superimposed mineralization, so that there is a great probability of forming large and rich ore deposit in the Damoqujia gold deposit. The main bodies are preserved and extend toward deeper parts, thereby suggesting a great potential in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号