首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isotopic composition and parameters for deuterium excess of brines, which were sampled in the Si-chuan Basin, show obvious regularities of distribution. The brine isotopic composition shows distinct two systems of marine and terrestrial deposits, with the Middle Triassic strata as the boundary. Brine hydrogen isotopic composition of marine deposits is lower while oxygen isotopic composition is higher than that of the SMOW, respectively, indicating that the brines were derived from seawater with different evaporating degrees at different times. From the Sinian strata, up to the Cambrian, Permian Maokou Formation and the Triassic Jialingjiang Formation, the δD values of brines tend to become relatively positive with the strata becoming younger. Brines of terrestrial deposits are considered to have been derived from precipitation and their isotopic composition is close to the globe meteoric water line (GMWL). Brines of transitional deposits between marine and terrestrial ones (the Upper Triassic Xujiahe Formation) have δD and δ18O values falling between the two end members of marine deposit brines and precipitation, indicating that the brines are a mixture of precipitation and vaporing seawater. Water samples from the brine-bearing strata of different ages show various deuterium excesses (d) with an evident decreasing trend as the age of strata gets older and older. Brine-bearing strata of the Triassic Leikoupo-Jialingjiang Formation, the Permian Maokou Formation, the Cambrian and Sinian strata are all carbonate rocks which have experienced intensive water/rock reaction and the deuterium excess essentially changes with time. All brine-bearing-strata surrounding the basin or faults, as well as those brine wells exploited for resources, have been obviously influenced by the precipitation supply. Therefore, the deuterium excesses of their brines have increased to different extents, depending on the amount of involvement of meteoric water. The variation and distribution of d values of the brines from different Triassic strata are related to the embedded depth of the strata. The deuterium excesses of brines become lower with increasing burial depth of the strata.  相似文献   

2.
The Upper Permian Castile Formation of the Delaware Basin in northwest Texas and New Mexico consists of up to 600 m of evaporites and is subdivided into units of anhydrite overlain by halite. The Castile Formation has commonly been interpreted as a deep-water, deep-basin deposit in which sediments were laid down in several hundred metres of water or brine. Recent textural observations within anhydrite units, in which the thick-bedded anhydrite horizons have been interpreted as being of shallow-water origin, have challenged this assumption. This geochemical study of the oldest anhydrite unit in the Castile Formation (the Anhydrite 1 Member) attempts to resolve some of the problems regarding brine depth and evolution in the basin. The Anhydrite 1 Member has been subdivided into five major cycles on the basis of the distribution of stratigraphic units of thick-bedded anhydrite.

Stable isotopic analyses of sulphur from anhydrite, and oxygen and carbon from calcite show that the basin waters were chemically homogeneous during precipitation of anhydrite, and do not indicate any significant input of meteoric, continental-derived waters. Throughout the section studied progressive enrichment of 18O upwards within cored intervals indicates continuous evaporation of the water body. Carbon isotopes appear to indicate fluctuations in organic activity within the cycles. Trace elemental analyses of Fe, Mg, Sr, Mn, Al, Ba, Zn, Pb and Cu from the sulphate fraction of the samples show a very high variability. There is a distinct increase in trace elemental abundances at the tops of cycles which may indicate variations in precipitation kinetics. Analyses of texturally defined cycles show that up-core trends for many of the trace elements correlate with changes in δ18O, indicating a progressive increase in the influence of evaporation. In addition, cyclical variations in trace elemental composition indicate changes in basin conditions with around a 350-year cyclicity. These changes are independent of δ18O values. The geochemical data do not provide conclusive proof of water depth during deposition of the Castile Formation. The data are interpreted as reflecting small-scale changes in conditions of deposition, despite the fact that water input remained essentially constant in terms of chemical composition.  相似文献   


3.
This paper briefly reviews the Triassic marine reptile fossils in Guizhou Province, especially the fossils that have been recently found in the Guanling area. Based on three sections at Guanling and Xingyi, Guizhou Province and Luoping, Yunnan Province, four horizons with vertebrate fossils are recognized in the Middle and Upper Triassic of this area; They are from bottom to top: Member I and Member II of the Guanling Formation, and the Zhuganpo Member and the Wayao Member of the Falang Formation.  相似文献   

4.
近年来,四川盆地上三叠统是陆相还是海相的争议越来越多。正确认识该问题不仅是正确解读印支运动和四川盆地形成的关键,更是预测须家河组天然气勘探潜力的关键。晚三叠世四川盆地物源、沉积构造、黏土矿物、硼钾比和有机地球化学5个方面的证据证实,须家河组须一段—须三段为海相沉积,须四段—须六段沉积时期,由于龙门山南段的隆升,四川盆地与外海逐渐失去联系,但仍受到海侵作用的影响。①1000多口单井岩石薄片资料分析表明,须四段—须六段沉积时期,龙门山南段尚未抬升或仍为水下隆起,四川盆地与外海依旧相连;②不仅须一段—须三段岩心和露头中发育大量潮汐成因沉积构造,须四段—须六段也非常发育,表明该时期仍然受到潮汐作用的影响;③须四段—须六段高岭石开始出现,但仍有大量伊利石和绿泥石存在,表明该时期酸性古水介质虽开始出现,但仍受到盐碱性古水介质的影响;④硼钾比分析表明,须三段沉积时期古水体盐度开始降低,但仍远远大于正常淡水湖泊水体盐度(平均值为0.5‰),表明该时期仍有大量咸水的注入;⑤有机地化分析表明,须四段—须六段姥植比(Pr/Ph)明显较低,烃源岩的饱和烃十分特殊,甲基甾烷丰富,烃源岩芳烃组成具有明显的特殊性,反映该时期明显受到海侵作用的影响。  相似文献   

5.
Primary gypsum is the main evaporite mineral in the middle Miocene (Badenian) of the West Ukraine. The lower part of the gypsum sequence is built of autochthonous gypsum while the upper part is composed of allochthonous gypsum that formed following a major, tectonically induced, change in basin morphology. This change resulted in the destruction of the gypsum deposited on the margins of the basin and formation of redeposition features. Autochthonous gypsum facies were deposited in two main environments: (1) giant gypsum intergrowths precipitated from highly concentrated brines; (2) very shallow subaqueous gypsum deposited in a vast brine pan. The brine pan was characterized by a facies mosaic that reflects an interplay of concentrated brines from the central part of the evaporite basin and diluted brines due to the influx of continental meteoric waters. The facies continuum, microbial gypsum - bedded selenite - massive selenite - sabre gypsum, indicates increasing salinity of the brine with time. This type of facies pattern has been established in recent salinas that are analogous to Badenian gypsum in their lateral facies changes. However, the pattern of facies distribution with respect to the open sea in the Badenian basin is opposite to that found in recent salinas. The pattern of the Badenian gypsum facies in the Ukraine indicates that facies repetition may have been related to climatically controlled salinity changes and not to depth changes, as is commonly used to explain the repetition of sulphate facies in a vertical succession.  相似文献   

6.
The Permian Hutchinson Salt Member of the Wellington Formation of the Sumner Group of Kansas (USA) has multiple scientific and industrial uses. Although this member is highly utilized, there has not been a sedimentological study on these rocks in over 50 years, and no study has investigated the full thickness of this member. Past publications have inferred a marine origin as the depositional environment. Here, this marine interpretation is challenged. The goals of this study are to fully document sedimentological and stratigraphic characteristics of the Permian Hutchinson Salt Member in the Atomic Energy Commission Test Hole 2 core from Rice County, Kansas. This study documents colour, mineralogy, sedimentary textures, sedimentary structures, diagenetic features and stratigraphic contacts in core slab and thin sections. The Hutchinson Salt Member is composed of five lithologies: bedded halite, siliciclastic mudstone, displacive halite, bedded gypsum/anhydrite and displacive gypsum/anhydrite. These lithologies formed in shallow surface brines and mudflats that underwent periods of flooding, evapoconcentration and desiccation. Of note are the paucity of carbonates, lack of marine-diagnostic fossils, absence of characteristic marine minerals and lithofacies, and the stratigraphic context of the Hutchinson with associated continental deposits. The Hutchinson Salt Member was most likely deposited in an arid continental setting. This new interpretation offers a refined view of Pangaea during the middle Permian time.  相似文献   

7.
For several decades the “Saqiye beds” (later renamed Yafo Formation) underlying the Coastal Plain aquifer (Kurkar Group) aquifer of Israel, were regarded as an extremely thick, tectonically undisturbed, and absolutely impervious aquiclude. Following intensive groundwater exploitation from the overlying Kurkar Group aquifer, brackish and saline waters were locally encountered in the lower parts of this aquifer and always at the contact with the underlying Yafo Formation aquiclude. The present study revealed that this aquiclude is not a uniform and impervious rock unit, but rather an alternation of pervious and impervious strata within the Yafo Formation containing highly pressured fluids of different — mostly high — salinities. The permeable beds are at an angular unconformity and in direct contact with the overlying Kurkar Group aquifer. The Yafo Formation and the underlying and overlying rock units are dislocated by numerous fault systems, which facilitate accessibility of brines into the Kurkar Group aquifer. The mobilization of the saline fluids and their injection into the Kurkar Group aquifer could be due either to diffusion of saline fluids occurring in the permeable horizons of the Petah Tiqva Member through the clays of the Yafo Formation or to their upconing following intensive pumping in the Coastal Plain aquifer. It could have also been caused by up-dip movement of saline water as the result of overpressure generated by major accumulation of gas in the permeable horizons. Another possible mechanism could be hydraulic contact with pressurized brines up-flowing along fault zones from deep-seated Jurassic or Cretaceous reservoirs. The squeezing of saline interstitial water from the clays of the Yafo Formation into the overlying Kurkar Group aquifer, is of secondary importance for groundwater salinization (its input is comparable with salt input from rain).  相似文献   

8.
Excellent hydrocarbon source rocks (oil shales), containing Type I organic matter (OM), were deposited in the continental Songliao rift basin during the Late Cretaceous. A major contribution of aquatic organisms (dinoflagellates, green algae, botryococcus) and minor input from macrophytes and land plants to OM accumulation is indicated by n-alkane distribution, steroid composition and δ13C values of individual biomarkers. Microbial communities included heterotrophic bacteria, cyanobacteria and chemoautotrophic bacteria, as well as purple and green sulfur bacteria. The presence of methanotrophic bacteria is indicated by 13C-depleted methyl hopane. The sediments were deposited in a eutrophic, alkaline palaeolake. Highly reducing (saline) bottom water conditions and a stratified water column existed during OM accumulation of the Qingshankou Formation and Member 1 of the Nenjiang Formation. This is indicated by low pristane/phytane, gammacerane index and MTTC ratios, and the presence of β-carotane and aryl isoprenoids. However, an abrupt change in environmental conditions during deposition of Member 2 of the Nenjiang Formation is indicated by significant changes in salinity and redox-sensitive biomarker ratios. A freshwater environment and suboxic conditions in the deep water prevailed during this period. Higher input of terrigenous OM occurred during deposition of the upper Nenjiang Formation.Good oil-to-source rock correlation was obtained using biomarker fingerprints of oil-stained sandstone from the Quantou Formation and oil shales from the Qingshankou Formation. Based on the extent of isomerisation of C31 hopanes, the oil was most probably derived from oil shales of the Qingshankou Formation in deeper parts of the basin.  相似文献   

9.
羌塘中生代(T3-K1)盆地演化新模式   总被引:4,自引:0,他引:4  
在羌塘盆地上三叠统那底岗日组陆相火山岩—沉火山碎屑岩及冲洪积相砂砾岩之下,作者发现了一个十分重要的古风化壳。该风化壳穿时超覆于肖茶卡组(T3上三叠统?)及其以下的二叠系及石炭系地层之上,沉积超覆于古风化壳之上的那底岗日组陆相火山岩—沉火山碎屑岩及冲洪积相砂砾岩代表了羌塘中生代(T3—K1,晚三叠世卡尼期至早白垩世时期)新一轮沉积作用的开启。采用SHRIMP锆石U-Pb同位素定年方法,作者在羌塘盆地胜利河地区和望湖岭地区分别获得了一组那底岗日组玻屑凝灰岩和晶屑凝灰岩的年龄,其值为216.8±2.1 Ma和217.3±2.5 Ma;这些同沉积年龄证据证实了羌塘中生代盆地的开启时间应该为晚三叠世卡尼—若利期。羌塘中生代盆地早期沉积作用经历了一个由陆相至海相的沉积超覆过程。伴随着岩浆侵入、火山爆发及火山碎屑沉积作用,沉积超覆作用是从冲洪积相开始。总体上,表现为一个向上由浅变深的海侵序列,显示为被动陆缘裂陷盆地特征。  相似文献   

10.
东昆仑地区发育一套显生宙碎屑岩地层,包括下寒武统沙松乌拉组、中—上奥陶统纳赤台群、上石炭统—下二叠统浩特洛哇组、下三叠统洪水川组、中三叠统希里科特组以及上三叠统八宝山组。研究区砂岩的CIA值反映沙松乌拉组砂岩源区化学风化程度较高,其余各组砂岩源区化学风化程度较低。主量和微量元素研究结果表明各组砂岩源区以长英质岩石为主,包含少量中性成分。La、Ce、Th、U、∑REE含量和La/Sc、Th/Sc、Sc/Cr、La/Y比值指示沙松乌拉组和纳赤台群砂岩沉积环境为大陆岛弧或活动大陆边缘,浩特洛哇组砂岩形成于被动大陆边缘环境,洪水川组砂岩沉积环境为活动大陆边缘,希里科特组砂岩的微量元素含量及其比值接近于活动大陆边缘和被动大陆边缘,八宝山组砂岩沉积环境为活动大陆边缘。综合分析认为沙松乌拉组和纳赤台群砂岩形成于原特提斯洋俯冲阶段,浩特洛哇组砂岩形成于古特提斯洋持续扩张阶段,洪水川组砂岩形成于古特提斯洋俯冲阶段,希里科特组砂岩形成于陆(弧)陆初始碰撞阶段,八宝山组砂岩形成于陆陆全面碰撞—碰撞后阶段。  相似文献   

11.
During the Cenozoic numerous shallow epicontinental evaporite basins formed due to tectonic movements in the Northern Province of the Central Iran Tectonic Zone (the Great Kavir Basin). During the Miocene, due to sea‐level fluctuations, thick sequences of evaporites and carbonates accumulated in these basins that subsequently were overlain by continental red beds. Development of halite evaporites with substantial thickness in this area implies inflow of seawater along the narrow continental rift axis. The early ocean basin development was initiated in Early Eocene time and continued up to the Middle Miocene in the isolated failed rift arms. Competition between marine and non‐marine environments, at the edge of the encroaching sea, produced several sequences of both abrupt and gradual transition from continental wadi sediments to marginal marine evaporites in the studied area. These evaporites show well‐preserved textures indicative of relatively shallow‐brine pools. The high Br content of these evaporites indicates marine‐derived parent brines that were under the sporadic influence of freshening by meteoric water or replenishing seawater. However, the association of hopper and cornet textures denotes stratified brine that filled a relatively large pool and prevented rapid variations in the Br profile. Unstable basin conditions that triggered modification of parent brine chemistry prevailed in this basin and caused variable distribution patterns for different elements in the chloride units. The presence of sylvite and the absence of Mg‐sulphate/chlorides in the paragenetic sequence indicate SO4−depleted parent brine in the studied sequence. Petrographic examinations along with geochemical analyses on these potash‐bearing halites reveal parental brines which were a mixture of seawater and CaCl2‐rich brines. The source of CaCl2‐rich brines is ascribed to the presence of local rift systems in the Great Kavir Basin up to the end of the Early Miocene. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Middle Cambrian rocks of the Georgina Basin contain both phosphatic and organic-rich sediments, the former often occurring as commercially viable phosphate deposits, and the latter as minor oil shale occurrences. Both kinds of rocks occur in the Hay River Formation penetrated by Bureau of Mineral Resources (BMR) stratigraphic corehole Tobermory 14. Detailed sampling and analysis of this core has been undertaken to assess the chemostratigraphy of the Hay River Formation; to examine the possible use, as a palaeoceanographic tool, of changes in δ13C values of carbonates and kerogens; and to gain an understanding of phosphate deposition in this part of the basin. The Upper Hay River Formation was deposited in a normal marine environment characterized by oxic bottom conditions. It contains several episodes of significant trace metal enrichment which appear to indicate periodic replacement of the water body. The Lower Hay River Formation, however, was deposited in an abnormal marine environment low in sulphate and Mo and enriched in P. Its carbonate phase has positive δ13C values 1–1.5%0 enriched over the accepted Cambrian marine carbonate value of -0.57 ± 0.17%0. The very low sulphate concentration, Mo-depletion and spiking of carbonate δ18O values suggests there was an influx of deeper ocean water of sufficient volume to maintain prolonged stable anoxic bottom waters. These data support a previous suggestion that phosphogenesis in the Georgina Basin was related to ‘Oceanic Anoxic Events'.  相似文献   

13.
四川成都盆地某深层富钾卤水的地球化学特征及成因   总被引:7,自引:0,他引:7  
本文报道了四川成都盆地某深层富钾层卤水的化学组成,氧、氢、硫和硼同位素组成以及25℃等温蒸发析盐过程中,从卤水中获得的固相物质组成。在此基础上讨论了卤水的成因,认为该卤水是蒸发浓缩的海相卤水、非海相卤水以及埋藏成岩过程中封存卤水对地层中海相蒸发盐溶滤作用形成的混合水。  相似文献   

14.
谭睿昶  李荣  王垚 《古地理学报》2018,20(3):389-408
为认识中三叠世拉丁期华南地区碳酸盐岩台地边缘沉积演化及其海平面变化特征,文中主要选取贵州关岭扒子场剖面,以岩石学特征研究为基础,建立中三叠统拉丁阶垄头组的沉积演化序列,来恢复其沉积时期的海平面变化特征。中三叠统垄头组按其岩石类型及组合特征可分为3段: 下段主体为核形石灰岩—叠层石沉积旋回,代表潮间带至潮上带环境。中段下亚段由核形石灰岩—泥晶灰岩—玛瑙纹层状灰岩旋回组成,最顶层的玛瑙纹层状灰岩指示地表暴露环境;中段上亚段为核形石灰岩—叠层石旋回,代表潮间带至潮上带环境。上段由代表潮间带至潮下带的核形石灰岩—似球粒灰岩旋回组成。垄头组沉积特征表明,该沉积时期黔西南地区海平面整体表现为持续上升,但在中段沉积时期发生过一次海平面下降事件,导致沉积物持续遭受地表暴露,随后海平面开始上升,又恢复到潮坪沉积环境。与国内外中三叠世拉丁期海平面变化研究结果相比,贵州地区垄头组中段沉积时期的海平面下降很可能是拉丁期大海退的产物,但自中段上亚段至上段沉积时期,海平面逐渐上升,与同时期的黔西南地区和全球海平面变化趋势一致。该结果对于认识玛瑙纹层状灰岩成因及中三叠世晚期生物复苏研究具有重要意义。  相似文献   

15.
石盐的流体包裹体成分可提供古流体组成的物理化学信息,用以探查卤水组成变化及环境演化规律等。四川盆地位于上扬子地台,其中的早-中三叠纪沉积建造是中国海相找钾的有利层位之一。获取石盐沉积时期的卤水成分信息,是深刻认识四川盆地古海水蒸发浓缩程度的重要途径。文章利用激光剥蚀电感耦合等离子体质谱法,对采自川东地区长平3井嘉陵江组的石盐流体包裹体开展了化学组成分析,结果显示古卤水化学类型为Mg_SO4型;流体包裹体中的ρ(K~+)与现代海水浓缩到钾石盐析出阶段的ρ(K~+)基本一致,可能揭示了盆地三叠纪时期古卤水已达到钾石盐析出阶段,对四川盆地沉积环境演化及钾盐成矿规律研究等具有重要的理论意义。  相似文献   

16.
青海省同仁地区处于祁连和秦岭造山带的接合部,构造演化历史悠久。本次工作在该地区隆务河一带发现较好的二叠—三叠系剖面。将该剖面从下而上划分为上二叠统石关组、下三叠统果木沟组和江里沟组,其中江里沟组又进一步划分为下部的浊积岩段和上部的风暴岩段,初步确定了二叠—三叠纪的界线。沉积序列、沉积相和沉积物表明上二叠统石关组和下三叠统果木沟组为一套陆源碎屑浊积岩,下三叠统江里沟组下部为一套不纯的内碎屑浊积岩,而下三叠统江里沟组上部为风暴岩沉积。根据沉积相和火山岩夹层的地球化学特征认为该地区上二叠统石关组和下三叠统果木沟组处于半深海的活动大陆边缘,下三叠统江里沟组早期的浊积岩段处于较稳定的半深海大陆边缘。根据沉积相和遗迹化石,恢复了晚二叠世—早三叠世的海平面变化特征。  相似文献   

17.
Sedimentological characteristics and zircon provenance dating of the Babulu Formation in the Fohorem area, Timor-Leste, provide new insights into depositional process, detailed sedimentary environment and the distribution of source rocks in the provenance. Detrital zircon sensitive high-resolution ion microprobe (SHRIMP) U–Pb ages range from Neoarchean to Triassic, with the main age pulses being Paleozoic to Triassic. In addition, the maximum deposition ages based on the youngest major age peak (ca 256–238 Ma) of zircon grains indicate that the basal sedimentation of the Babulu Formation occurred after the early Upper Triassic. The formation consists predominantly of mudstone with minor sandstone, limestone and conglomerate that were deposited in a deep marine environment. These deposits are composed of six lithofacies that can be grouped into three facies associations (FAs) based on the constituent lithofacies and bedding features: basin plain deposits (FA I), distal fringe lobe deposits (FA II) and medial to distal lobe deposits (FA III). The predominance of mudstone (FA I) together with intervening thin-bedded sandstones (FA II) suggest that the paleodepositional environment was a low energy setting with slightly basin-ward input of the distal part of the depositional lobes. Discrete and abrupt occurrences of thick-bedded sandstone (FA III) within the FA I mudstone suggests that sandstone originated from a collapse of upslope sediments rather than a progressive progradation of deltaic turbidites. This combined petrological and geochronological study demonstrates that the Babulu Formation in the Fohorem area of the Timor-Leste was initiated as a submarine lobe system in a relatively deep marine environment during the Upper Triassic and represents the extension of the Gondwana Sequence at the Australian margin.  相似文献   

18.
To constrain the tectonic evolution of the eastern segment of the Paleo-Asian Ocean, we conducted zircon U–Pb-Hf dating and whole-rock geochemical analyses for metasedimentary rocks from the Dongnancha Formation in the Huadian area in central Jilin Province, Northeastern (NE) China. Most detrital zircons from the metasedimentary rocks display clear oscillatory zoning and striped absorption in cathodoluminescence (CL) images and have Th/U ratios of 0.1–1.8, thus indicating a magmatic origin. U–Pb isotopic dating using LA-ICP-MS method for zircon samples from the metasedimentary rocks reveals that the depositional age can be constrained to the period between 250 and 222 Ma. Geochemical data reveal low to intermediate degrees of weathering of the source material and compositionally low to intermediate maturity. Detailed analyses of detrital zircon U–Pb-Hf geochronology and geochemistry show that these metasedimentary rocks are derived from a bidirectional provenance. The predominant derivation is from Permian–Early Triassic felsic-intermediate igneous rocks of central Jilin Province and adjacent regions in the northern margin of the North China Craton, although felsic-intermediate igneous rocks and continental material in the eastern segment of the Central Asian Orogenic Belt from the Cambrian–Carboniferous represent additional sources and minor amounts of Paleoproterozoic–Neoproterozoic material have been input from the North China Craton. A number of geochemical indicators and tectonic discrimination diagrams collectively indicate a continental island arc-active continental margin setting for the deposition of the protoliths of the metasedimentary rocks. The results of geochemical and geochronological analyses of the provenance and tectonic setting of the metasedimentary rocks indicate that the Dongnancha Formation was likely deposited in an intermountain basin in a post-orogenic fast uplift setting, suggesting that the final closure of the eastern segment of the Paleo-Asian Ocean in the Huadian area of central Jinlin Province likely occurred between the Early Triassic and Middle Triassic.  相似文献   

19.
Cation and anion concentrations and oxygen and hydrogen isotopic ratios of brines in the Asmari Formation (Oligocene–early Miocene) from the Marun oil field of southwest Iran were measured to identify the origin of these brines (e.g. salt dissolution vs. seawater evaporation) as well as the involvement of water–rock reaction processes in their evolution. Marun brines are characterized by having higher concentrations of calcium (11 000–20 000 mg/L), chlorine (120 000–160 000 mg/L) and bromide (600–1000 mg/L) compared to modern seawater. Samples are also enriched in 18O relative to seawater, fall to the right of the Global Meteoric Water Line and local rain water, and plot close to the halite brine trajectory on the δD versus δ18O diagram. Geochemical characteristics of Marun brines are inconsistent with a meteoric origin, but instead correspond to residual evaporated seawater modified by water–rock interaction, most significantly dolomitization. In addition, anhydrite precipitation or sulphate reduction appears to be important in chemical modification of the Marun brines, as indicated by lower sulphate contents relative to evaporated seawater. Extensive dolomitization, the presence of anhydrite nodules and high salinity fluid inclusions in the upper parts of the Asmari Formation fit a model whereby the Marun brines likely originated from the seepage reflux of concentrated seawater during the deposition of the overlying Gachsaran Formation evaporites in the Miocene. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
四川盆地东部(以下简称川东)海相三叠系地层广泛分布,与其有关的油气、盐卤、天青石及硬石膏等矿产资源丰富,是一个具有重要经济价值的层位。笔者于1981—1985年间在20万km2范围的盐类矿产普查工作中,采集了近150件零星样品进行碳、氧、硫稳定同位素分析(图1),积累的数据展示了在极其复杂的地史背景下各种地质-地球化学作用产生的物质交换效应及同位素分馏,形成不同元素在不同层位(地质体)的丰度特征,拟结合地质背景进行环境解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号