首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The development of bedforms under unidirectional, oscillatory and combined‐flows results from temporal changes in sediment transport, flow and morphological response. In such flows, the bedform characteristics (for example, height, wavelength and shape) change over time, from their initiation to equilibrium with the imposed conditions, even if the flow conditions remain unchanged. These variations in bedform morphology during development are reflected in the sedimentary structures preserved in the rock record. Hence, understanding the time and morphological development in which bedforms evolve to an equilibrium stage is critical for informed reconstruction of the ancient sedimentary record. This article presents results from a laboratory flume study on bedform development and equilibrium development time conducted under purely unidirectional, purely oscillatory and combined‐flow conditions, which aimed to test and extend an empirical model developed in past work solely for unidirectional ripples. The present results yield a unified model for bedform development and equilibrium under unidirectional, oscillatory and combined‐flows. The experimental results show that the processes of bedform genesis and growth are common to all types of flows, and can be characterized into four stages: (i) incipient bedforms; (ii) growing bedforms; (iii) stabilizing bedforms; and (iv) fully developed bedforms. Furthermore, the development path of bedform; growth exhibits the same general trend for different flow types (for example, unidirectional, oscillatory and combined‐flows), bedform size (for example, small versus large ripples), bedform shape (for example, symmetrical or rounded), bedform planform geometry (for example, two‐dimensional versus three‐dimensional), flow velocities and sediment grain sizes. The equilibrium time for a wide range of bed configurations was determined and found to be inversely proportional to the sediment transport flux occurring for that flow condition.  相似文献   

2.
On the transition between 2D and 3D dunes   总被引:3,自引:0,他引:3  
Sediment transport in sand-bedded alluvial channels is strongly conditioned by bedforms, the planimetric morphology of which can be either two- or three-dimensional. Experiments were undertaken to examine the processes that transform the bed configuration from two-dimensional (2D) dunes to three-dimensional (3D) dunes. A narrowly graded, 500 μm size sand was subjected to a 0·15 m deep, non-varying mean flow ranging from 0·30 to 0·55 m sec−1 in a 1 m wide flume. Changes in the planimetric configuration of the bed were monitored using a high-resolution video camera that produced a series of 10 sec time-lapsed digital images. Image analysis was used to define a critical value of the non-dimensional span (sinuosity) of the bedform crestlines that divides 2D forms from 3D forms. Significant variation in the non-dimensional span is observed that cannot be linked to properties of the flow or bedforms and thus appears random. Images also reveal that, once 2D bedforms are established, minor, transient excesses or deficiencies of sand are passed from one bedform to another. The bedform field appears capable of absorbing a small number of such defects but, as the number grows with time, the resulting morphological perturbations produce a transition in bed state to 3D forms that continue to evolve, but are pattern-stable. The 3D pattern is maintained by the constant rearrangement of crestlines through lobe extension and starving downstream bedforms of sediment, which leads to bifurcation. The experiments demonstrate that 2D bedforms are not stable in this calibre sand and call into question the reliability of bedform phase diagrams that use crestline shape as a discriminator.  相似文献   

3.
The continental shelf of the State of Rio Grande do Norte, Brazil, is an open shelf area located 5°S and 35°W. It is influenced by strong oceanic and wind-driven currents, fair weather, 1·5-m-high waves and a mesotidal regime. This work focuses on the character and the controls on the development of suites of carbonate and siliciclastic bedforms, based on Landsat TM image analysis and extensive ground-truth (diving) investigations. Large-scale bedforms consist of: (i) bioclastic (mainly coralline algae and Halimeda) sand ribbons (5–10 km long, 50–600 m wide) parallel to the shoreline; and (ii) very large transverse siliciclastic dunes (3·4 km long on average, 840 m spacing and 3–8 m high), with troughs that grade rapidly into carbonate sands and gravels. Wave ripples are superposed on all large-scale bedforms, and indicate an onshore shelf sediment transport normal to the main sediment transport direction. The occurrence of these large-scale bedforms is primarily determined by the north-westerly flowing residual oceanic and tidal currents, resulting mainly in coast-parallel transport. Models of shelf bedform formation predict sand ribbons to occur in higher energy settings rather than in large dunes. However, in the study area, sand ribbons occur in an area of coarse, low-density and easily transportable bioclastic sands and gravels compared with the very large transverse dunes in an offshore area that is composed of denser medium-grained siliciclastic sands. It suggests that the availability of different sediment types is likely to exert an influence on the nature of the bedforms generated. The offshore sand supply is time limited and originates from sea floor erosion of sandstones of former sea-level lowstands. The trough areas of both sand ribbons and very large transverse dunes comprise coarse calcareous algal gravels that support benthic communities of variable maturity. Diverse mature communities result in sediment stabilization through branching algal growth and binding that is thought to modify the morphology of dunes and sand ribbons. The occurrence and the nature of the bedforms is controlled by their hydrodynamic setting, by grain composition that reflects the geological history of the area and by the carbonate-producing benthic marine communities that inhabit the trough areas.  相似文献   

4.
Mountney  & Howell 《Sedimentology》2000,47(4):825-849
Sets of aeolian cross‐strata within the Cretaceous Etjo Formation of NW Namibia are bounded by a hierarchy of surfaces, the origin of which are ascribed to one of four processes related to aeolian bedform and erg behaviour. The base of the main aeolian succession is characterized by a basin‐wide erosional supersurface that formed in response to a period of aeolian deflation before the onset of the main phase of erg building. Interdune migration surfaces formed by draa migration are planar in sections parallel to the palaeowind and are inclined at up to 5° in an upwind direction (SW). Perpendicular to the palaeowind, interdune surfaces form 500‐m‐wide troughs, signifying crestline sinuosity within the original bedforms. Superimposition surfaces are inclined at 5–10° in a downwind direction and indicate the migration of crescentic oblique dunes over larger, slipfaceless transverse draa. Reactivation surfaces associated with minor changes in dune slipface orientation are distinct from other bounding surface types because overlying cross‐strata lie parallel to them, rather than downlap onto them. Analysis of the geometry of these bounding surfaces, together with the orientation of the cross‐strata within the sets that they bound, has enabled the detailed morphology of the original bedforms to be reconstructed. The maximum preserved thickness of individual aeolian sets varies systematically across the basin, from 52 m in the basin depocentre to only 8 m at the basin margin. The set architecture indicates that this spatial variation is primarily the result of decreased angles of bedform climb at the basin margin, rather than the presence of smaller bedforms. Similarly, a temporal reduction in the angle‐of‐climb, rather than a reduction in bedform size, is considered to be responsible for an upward decrease in preserved set thickness. Reductions in bedform climb angle reflect progressive loss of accommodation space as the accumulating erg filled the basin.  相似文献   

5.
Open‐framework gravel (OFG) in river deposits is important because of its exceptionally high permeability, resulting from the lack of sediment in the pore spaces between the gravel grains. Fluvial OFG occurs as planar strata and cross strata of varying scale, and is interbedded with sand and sandy gravel. The origin of OFG has been related to: (1) proportion of sand available relative to gravel; (2) separation of sand from gravel during a specific flow stage and sediment transport rate (either high, falling or low); (3) separation of sand from gravel in bedforms superimposed on the backs of larger bedforms; (4) flow separation in the lee of dunes or unit bars. Laboratory flume experiments were undertaken to test and develop these theories for the origin of OFG. Bed sediment size distribution (sandy gravel with a mean diameter of 1·5 mm) was kept constant, but flow depth, flow velocity and aggradation rate were varied. Bedforms produced under these flow conditions were bedload sheets, dunes and unit bars. The fundamental cause of OFG is the sorting of sand from gravel associated with flow separation at the crest of bedforms, and further segregation of grain sizes during avalanching on the steep lee side. Sand in transport near the bed is deposited in the trough of the bedform, whereas bed‐load gravel avalanches down the leeside and overruns the sand in the trough. The effectiveness of this sorting mechanism increases as the height of the bedform increases. Infiltration of sand into the gravel framework is of minor importance in these experiments, and occurs mainly in bedform troughs. The geometry and proportion of OFG in fluvial deposits are influenced by variation in height of bedforms as they migrate, superposition of small bedforms on the backs of larger bedforms, aggradation rate, and changes in sediment supply. If the height of a bedform increases as it migrates downstream, so does the amount of OFG. Changes in the character of OFG on the lee‐side of unit bars depend on grain‐size sorting in the superimposed bedforms (dunes and bedload sheets). Thick deposits of cross‐stratified OFG require high bedforms (dunes, unit bars) and large amounts of aggradation. These conditions might be expected to occur during high falling stages in the deeper parts of river channels adjacent to compound‐bar tails and downstream of confluence scours. Increase in the amount of sand supplied relative to gravel reduces the development of OFG. Such increases in sand supply may be related to falling flow stage and/or upstream erosion of sandy deposits.  相似文献   

6.
Current understanding of bedform dynamics is largely based on field and laboratory observations of bedforms in steady flow environments. There are relatively few investigations of bedforms in flows dominated by unsteadiness associated with rapidly changing flows or tides. As a consequence, the ability to predict bedform response to variable flow is rudimentary. Using high‐resolution multibeam bathymetric data, this study explores the dynamics of a dune field developed by tidally modulated, fluvially dominated flow in the Fraser River Estuary, British Columbia, Canada. The dunes were dominantly low lee angle features characteristic of large, deep river channels. Data were collected over a field ca 1·0 km long and 0·5 km wide through a complete diurnal tidal cycle during the rising limb of the hydrograph immediately prior to peak freshet, yielding the most comprehensive characterization of low‐angle dunes ever reported. The data show that bedform height and lee angle slope respond to variable flow by declining as the tide ebbs, then increasing as the tide rises and the flow velocities decrease. Bedform lengths do not appear to respond to the changes in velocity caused by the tides. Changes in the bedform height and lee angle have a counterclockwise hysteresis with mean flow velocity, indicating that changes in the bedform geometry lag changes in the flow. The data reveal that lee angle slope responds directly to suspended sediment concentration, supporting previous speculation that low‐angle dune morphology is maintained by erosion of the dune stoss and crest at high flow, and deposition of that material in the dune trough.  相似文献   

7.
Subaqueous dunes are formed on the KwaZulu-Natal outer-shelf due to sediment transport by the Agulhas Current (geostrophic current). These dunes occur within two dune fields at depths of ? 35 to ? 70 m. The net sediment transport direction is south, but short-period reversals form northward-migrating bedforms. The dune fields are physically bounded by late Pleistocene beachrock and aeolianite ledges. A bedform hierarchy has been recognized in the dune fields comprising a system of three generations of climbing bedforms. The outer dunefield has given rise to a sand ridge (H=12 m; L=4 km; W=1.1 km; and an 8° lee slope) whereas the inner dune fields have achieved large-scale dune status. Bedload parting zones within the dune fields occur where the sediment transport direction switches from north to south due to reversals in the geostrophic flow; these zones occur at depths of ? 60, ? 47 and ? 45 m. An interpretative stratigraphic model is presented on what such geostrophite deposits would look like in the ancient sedimentary record.  相似文献   

8.
Interpreting the physical dynamics of ancient environments requires an understanding of how current‐generated sedimentary structures, such as ripples and dunes, are created. Traditional interpretations of these structures are based on experimental flume studies of unconsolidated quartz sand, in which stepwise increases in flow velocity yield a suite of sedimentary structures analogous to those found in the rock record. Yet cyanobacteria, which were excluded from these studies, are pervasive in wet sandy environments and secrete sufficient extracellular polysaccharides to inhibit grain movement and markedly change the conditions under which sedimentary structures form. Here, the results of flume experiments using cyanobacteria‐inoculated quartz sand are reported which demonstrate that microbes strongly influence the behaviour of unconsolidated sand. In medium sand, thin (ca 0·1 to 0·5 mm thick) microbial communities growing at the sediment–water interface can nearly double the flow velocity required to produce the traditional sequence of ripple→dune→plane‐bed lamination bedforms. In some cases, these thin film‐like microbial communities can inhibit the growth of ripples or dunes entirely, and instead bed shear stresses result in flip‐over and rip‐up structures. Thicker (ca≥1 mm thick) microbial mats mediate terracing of erosional edges; they also, foster transport of multi‐grain aggregates and yield a bedform progression consisting of flip‐overs→roll‐ups→rip‐ups of bound sand.  相似文献   

9.
10.
《Sedimentology》2018,65(1):191-208
The formative conditions for bedform spurs and their roles in bedform dynamics and associated sediment transport are described herein. Bedform spurs are formed by helical vortices that trail from the lee surface of oblique segments of bedform crest lines. Trailing helical vortices quickly route sediment away from the lee surface of their parent bedform, scouring troughs and placing this bed material into the body of the spur. The geometric configuration of bedform spurs to their parent bedform crests is predicted by a cross‐stream Strouhal number. When present, spur‐bearing bedforms and their associated trailing helical wakes exert tremendous control on bedform morphology by routing enhanced sediment transport between adjacent bedforms. Field measurements collected at the North Loup River, Nebraska, and flume experiments described in previous studies demonstrate that this trailing helical vortex‐mediated sediment transport is a mechanism for bedform deformation, interactions and transitions between two‐dimensional and three‐dimensional bedforms.  相似文献   

11.
Supercritical‐flow phenomena are fairly common in modern sedimentary environments, yet their recognition and analysis remain difficult in the stratigraphic record. This fact is commonly ascribed to the poor preservation potential of deposits from high‐energy supercritical flows. However, the number of flume data sets on supercritical‐flow dynamics and sedimentary structures is very limited in comparison with available data for subcritical flows, which hampers the recognition and interpretation of such deposits. The results of systematic flume experiments spanning a broad range of supercritical‐flow bedforms (antidunes, chutes‐and‐pools and cyclic steps) developed in mobile sand beds of variable grain sizes are presented. Flow character and related bedform patterns are constrained through time‐series measurements of bed configurations, flow depths, flow velocities and Froude numbers. The results allow the refinement and extension of some widely used bedform stability diagrams in the supercritical‐flow domain, clarifying in particular the morphodynamic relations between antidunes and cyclic steps. The onset of antidunes is controlled by flows exceeding a threshold Froude number. The transition from antidunes to cyclic steps in fine to medium‐grained sand occurs at a threshold mobility parameter. Sedimentary structures associated with supercritical bedforms developed under variable aggradation rates are revealed by means of combining flume results and synthetic stratigraphy. The sedimentary structures are compared with examples from field and other flume studies. Aggradation rate is seen to exert an important control on the geometry of supercritical‐flow structures and should be considered when identifying supercritical bedforms in the sedimentary record.  相似文献   

12.
An empirical model of aeolian dune lee-face airflow   总被引:12,自引:0,他引:12  
Airflow data, gathered over dunes ranging from 60-m tall complex-crescentic dunes to 2-m tall simplecrescentic dunes, were used to develop an empirical model of dune lee-face airflow for straight-crested dunes. The nature of lee-face flow varies and was found to be controlled by the interaction of at least three factors (dune shape, the incidence angle between the primary wind direction and the dune brinkline and atmospheric thermal stability). Three types of lee-face flow (separated, attached and deflected along slope, or attached and undeflected) were found to occur. Separated flows, characterized by a zone of low-speed (0–3O% of crestal speed) back-eddy flow, typically occur leeward of steep-sided dunes in transverse flow conditions. Unstable atmospheric thermal stability also favours flow separation. Attached flows, characterized by higher flow speeds (up to 84% of crestal speed) that are a cosine function of the incidence angle, typically occur leeward of dunes that have a lower average lee slope and are subject to oblique flow conditions. Depending on the slope of the lee face, attached flow may be either deflected along slope (lee slopes greater than about 20°), or have the same direction as the primary flow (lee slopes less than about 20°). Neutral atmospheric thermal stability also favours flow attachment. As each of the three types of lee-face flow is defined by a range of wind speeds and directions, the nature of lee-face flow is intimately tied to the type of aeolian depositional process (i.e. wind ripple or superimposed dune migration, grainflow, or grainfall) that occurs on the lee slope and the resulting pattern of dune deposits. Therefore, the model presented in this paper can be used to enhance the interpretation of palaeowind regime and dune type from aeolian cross-strata.  相似文献   

13.
Natural dams formed by landslides may produce disastrous debris flows after dam outburst. However, studies on the critical conditions required for the formation of outburst debris flow resulting from natural dam failure are still at an early stage. In this paper, we present the results of a series of laboratory tests that assessed three different materials, five different flume bed slope angles (2°, 7°, 9°, 10°, and 13°), two in-flow rates, and four types of dam geometric shapes. The results showed that the unit weight of downstream fluid increased with increasing bed channel slope. Additionally, a critical flume bed angle was found for debris flow formation. Furthermore, the combination of lake volume and flume bed angle was found to influence the formation of debris flow. A nonlinear trend was observed between the unit weights of debris flow and the uniformity coefficients of solid material. Based on the theory of stream power, a critical condition for debris flow formation from natural dam failure was established. Based on two case studies, the results indicate that the condition that was established for debris flow formation following natural dam failure agrees well with reality.  相似文献   

14.
Large symmetric and asymmetric dunes occur in the Fraser River, Canada. Symmetric dunes have stoss and lee sides of similar length, stoss and lee slope angles <8°, and rounded crests. Asymmetric dunes have superimposed small dunes on stoss sides, sharp crests, stoss sides longer than lee sides, stoss side slopes <3° and straight lee side slopes up to 19°. There is no evidence for lee side flow separation, although intermittent separated flow is possible, especially over asymmetric dunes. Dune symmetry and crest rounding of symmetric dunes are associated with high sediment transport rates. High near-bed velocity and bed load transport near dune crests result in crest rounding. Long, low-angle lee sides are produced by deposition of suspended sediment in dune troughs. Asymmetric dunes appear to be transitional features between large symmetric dunes and smaller dunes adjusted to lower flow velocity and sediment transport conditions. Small dunes on stoss sides reduce near-bed flow velocity and bed load transport, causing a sharper dune crest. Reduced deposition of suspended sediment in troughs results in a short, steep lee slope. Dunes in the Fraser River fall into upper plane bed or antidune stability fields on flume-based bedform phase diagrams. These diagrams are probably not applicable to large dunes in deep natural flows and care must be taken in modelling procedures that use phase diagram relations to predict bed configuration in such flows.  相似文献   

15.
Experiments have been conducted in a 10 m long laboratory flume to investigate the bedforms which develop from fine, cohesionless sediment beds. Two grades of near uniformly sized silica grains (of median nominal diameters 15 and 66 μm) and six grades of micaceous flakes (ranging in median nominal diameter from 15.5 to 76 μm) were used. A steady subcritical water discharge, which was increased in steps after several hours, was applied to a flat bed of each grade. The developing bedform sequence for fine granular beds was identified as many small-sized primary ripples, isolated primary, transverse primary, secondary ripples and then possibly dunes; this development was almost the same as that observed for coarser grains. The sequence for fine flake beds differed from grains. Only the single bedform type of parting lineations was observed; with increased discharge, the lineations began to oscillate and eventually enter into fluid suspension. The low discharge parallel lineations were thought to be generated by ‘streaks’ or lanes of transversely alternate high and low velocity fluid which have been reported to exist in the viscous sub-layer of a turbulent-smooth boundary, whilst the higher discharge wandering lineations were attributed to low velocity streak ‘bursts’.  相似文献   

16.
Coarse-gravel bedforms which resulted from Pleistocene glacial outburst floods are identified as subaqueous dunes. Comparison of the morphology of these ‘fossil’ structures with modern dunes shows that the form of two-dimensional (2-D) transverse dunes and 3-D cuspate and lunate dunes developed in coarse gravels is comparable with sand-dune morphology within lesser-scale geophysical flows. The similarity of the steepest gravel dunes with equilibrium dunes in sand indicates that grain size is not a major factor in constraining primary duneform. Internal structure indicates that flow over 2-D dunes was relatively uniform but over 3-D bedforms flow was locally variable. Flow separation and complex streaming of flow occurred over the steepest 3-D dunes. Cross-beds are thin and few approach the angle of repose; consequently most dunes did not migrate primarily by avalanching but by stoss-entrained gravel transported over the crests rolling-down and depositing on the lee slopes. Lee-side sediments are often finer than the stoss-slope sediments, which indicates the lee formed when flood power was waning. Some dunes were slightly planed-down during falling stage because lee-side cross-beds tend to be steeper than the angle of the preserved lee slope. However, silt-rich caps indicate that any height reduction was contemporary with the final deposition of foresets. Post-flood modification has been negligible although the modern topography is subdued by loess deposits within the dune troughs.  相似文献   

17.
The ability to predict bedform migration in rivers is critical for estimating bed material load, yet there is no relation for predicting bedform migration (downstream translation) that covers the full range of conditions under which subcritical bedforms develop. Here, the relation between bedform migration rates and transport stage is explored using a field and several flume data sets. Transport stage is defined as the non‐dimensional Shields stress divided by its value at the threshold for sediment entrainment. Statistically significant positive correlations between both ripple and dune migration rates and transport stage are found. Stratification of the data by the flow depth to grain‐size ratio improved the amount of variability in migration rates that was explained by transport stage to ca 70%. As transport stage increases for a given depth to grain‐size ratio, migration rates increase. For a given transport stage, the migration rate increases as the flow depth to grain‐size ratio gets smaller. In coarser sediment, bedforms move faster than in finer sediment at the same transport stage. Normalization of dune migration rates by the settling velocity of bed sediment partially collapses the data. Given the large amount of variability that arises from combining data sets from different sources, using different equipment, the partial collapse is remarkable and warrants further testing in the laboratory and field.  相似文献   

18.
An experimental study into the geometry of supply-limited dunes   总被引:3,自引:0,他引:3  
The relationship between dune geometry and the volume of mobile sediment was studied in flume experiments. In these flume experiments, the volume of mobile sediment on top of an immobile coarse sediment layer was increased stepwise and the bedform characteristics were observed. A strong relationship was found between the volume that is mobile – and therefore available for bedform formation – and the dune dimensions and regularity. If the sediment supply is limited, dunes are smaller and more regular. Series of experiments with a decreasing supply limitation were conducted for different flow velocities and water depths. The relationship between the dune dimensions and the available volume is different for each series. The observed relationships between dune dimensions and layer thickness collapse to one relationship for height and one for length if scaling parameters are introduced. Current models for bedform dimensions under alluvial conditions can be extended to partial transport conditions using this relationship.  相似文献   

19.
Bedform climbing in theory and nature   总被引:7,自引:0,他引:7  
Where bedforms migrate during deposition, they move upward (climb) with respect to the generalized sediment surface. Sediment deposited on each lee slope and not eroded during the passage of a following trough is left behind as a cross-stratified bed. Because sediment is thus transferred from bedforms to underlying strata, bedforms must decrease in cross-sectional area or in number, or both, unless sediment lost from bedforms during deposition is replaced with sediment transported from outside the depositional area. Where sediment is transported solely by downcurrent migration of two-dimensional bedforms, the mean thickness of cross-stratified beds is equal to the decrease in bedform cross-sectional area divided by the migration distance over which that size decrease occurs; where bedforms migrate more than one spacing while depositing cross-strata, bed thickness is only a fraction of bedform height. Equations that describe this depositional process explain the downcurrent decrease in size of tidal sand waves in St Andrew Bay, Florida, and the downwind decrease in size of transverse aeolian dunes on the Oregon coast. Using the same concepts, dunes that deposited the Navajo, De Chelly, and Entrada Sandstones are calculated to have had mean heights between several tens and several hundreds of metres.  相似文献   

20.
植物的存在改变了河流水动力特性,造成独特的床面冲淤态势。利用实验室水槽模拟含淹没植物的河道,对床面形态和紊流统计特性参数进行测量,研究不同类型紊流作用下的床面冲淤特征以及床面起伏对流动的影响。结果表明:床面剪切紊流条件下,床面形态为马蹄坑-沙沟/沙脊与沙波复合分布,床面变形加剧了流速沿水深不均匀分布并促进水流动量交换;在自由剪切混合层紊流条件下,床面形态为植物根部马蹄形冲坑及其后方沙沟、沙脊交错分布,床面变形对流动的影响并不显著;“类二重紊流”条件下,床面形态同样表现为马蹄坑-沙沟/沙脊-沙波复合,床面变形促进植物层内部的水流动量交换、抑制紊动清扫,抑制植物层外部的动量交换、促进紊动喷射。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号