共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical study which takes into account wave dispersion effects has been carried out in the Indian Ocean to reproduce the initial stage of wave propagation of the tsunami event that occurred on December 26, 2004. Three different numerical models have been used: the nonlinear shallow water (nondispersive), the nonlinear Boussinesq, and the full Navier-Stokes aided by the volume of fluid method to track the free surface. Numerical model results are compared against each other. General features of the wave propagation agreed very well in all numerical studies. However some important differences are observed in the wave patterns, i.e., the development in time of the wave front is shown to be strongly connected to the dispersion effects. Discussions and conclusions are made about the spatial and temporal distribution of the free surface reaffirming that the dispersion mechanism is important for tsunami hazard mitigation. 相似文献
2.
The energetics of the most destructive tsunami in historical time, and that of the under ocean earthquake that triggered this tsunami of 26 December 2004 in the Indian Ocean have been briefly reviewed. This latest tsunami has several other unique characteristics besides being one of the worst natural disasters in human history. It is the first truly global tsunami after modern seismographic and sea level monitoring networks have been put in place. It was the first tsunami on record detected by a satellite, even though at present, global satellite coverage of the oceans for real time tsunami detection is not adequate. Finally, the energy associated with the tsunami and the earthquake that triggered it is so large that speculation has been made about the normal modes of oscillation of the earth, that were triggered by the earthquake as well as some suggestions, that some of the earth's rotational characteristics may have temporarily changed to a discernible degree. Here, we briefly review the energetics of the tsunami and the earthquake that triggered it. 相似文献
3.
In this paper the aim is to investigate whether there are differences between the dispersion and non-dispersion solutions on tsunami propagation. For this purpose, two numerical models of tsunami propagation are compared. One of these numerical models is a nondispersive model that uses Saint Venant equations and the other is a dispersive model that uses Boussinesq equations. The tsunamis resulting from a submarine mass failure (SMF) which is settled at the bottom of the north eastern Sea of Marmara are examined. An analytical solution considering wave dispersion is developed for obtaining near-field tsunami amplitudes above the submarine mass failure. Numerical modeling is used at the sea surface from the common boundary called as liquid boundary with incident waves up to the coastal regions to get the tsunami amplitudes. The output of the analytical model is taken as the disturbances for the numerical method. In the numerical solutions TELEMAC-2D software system is used for both dispersive and nondispersive modeling. The results of the dispersive and nondispersive models are compared to each other. Both temporal and spatial differences in the amplitudes and wave shapes are examined. The obtained results demonstrate that there are no noticeable differences between the dispersion and non-dispersion solutions except some special cases and some special landslide velocities. 相似文献
4.
The Indian Ocean tsunami of December 26, 2004, not only affected the Bay of Bengal coast of India but also part of the Arabian Sea coast of India. In particular, the tsunami caused loss of life and heavy damage on some parts of the Kerala coast in southwest India. The tsunami traveled west, south of Sri Lanka, and some of the tsunami energy was diffracted around Sri Lanka and the southern tip of India and moved northward into the Arabian Sea. However, tsunami, being a long gravity wave with a wave length of a few hundred kilometers, has to take a wide turn. In that process, it missed the very southern part of the Kerala coast and did not achieve large amplitudes there. However, further north, the tsunami achieved amplitudes of upto 5 m and caused loss of life and significant damage. Here we identify the physical oceanographic processes that were responsible for selective amplification of the tsunami in certain locations. 相似文献
5.
M. Baba N. P. Kurian B. T. Murali Krishnan N. Nirupama T. S. Murty 《Marine Geodesy》2006,29(4):271-276
The Tsunami of December 26, 2004, in the Indian Ocean arrived on the coast of Kerala in southwest India some three hours after the tsunami was generated. The tsunami activity persisted throughout that day and, in some locations, even into the early morning of the next day. Based on interviews with eye witnesses, arrival times of tsunami waves are presented here followed by some preliminary analysis of the results. 相似文献
6.
南印度洋海浪场时空特征分析 总被引:1,自引:0,他引:1
根据 1950 —1995 年共 46 a 的南印度洋船舶气象报资料,按 5°× 5°网格统计的海浪要素进行分析研究。通过分析每月各要素的等值线分布图,得出南印度洋海浪场季节变化特点不如北半球各大洋显著,但仍有较明显的季节变化,只是季节性差异较小,冬季比夏季海浪强盛,相应的平均波高、大浪大涌频率也较大;盛行风浪传播方向、涌浪传播方向基本一致,10°S 以北为季风气候区,而其它海域则信风区常年盛行 SE 向浪,40°S 以南盛行偏 W 向浪。本文提供了南印度洋海域较为翔实的海浪场资料及变化规律。 相似文献
7.
N. P. Kurian K. Rajith B. T. Murali Krishnan N. Nirupama T. S. Murty 《Marine Geodesy》2006,29(4):277-281
During the Indian Ocean tsunami of December 26, 2004, specific observations were made by our survey team about the arrival times of several tsunami waves, their amplitudes, maximum extent of horizontal inundation on land and initial withdrawal of the ocean. Here the observations on the horizontal inundation and initial withdrawal are presented and briefly discussed. 相似文献
8.
S. Srinivasalu N. Thangadurai Adam D. Switzer V. Ram Mohan T. Ayyamperumal 《Marine Geology》2007,240(1-4):65-75
Laterally extensive sand sheets deposited by the 26th December 2004 Asian tsunami provide a valuable modern analogue for comparison with wash over deposits of unknown origin. In many places on the east coast of India, distinct deposits of marine sand drape the landscape and overlie the muddy soils of the coastal plain. This paper discusses detailed measurements of coastal topography, tsunami flow height, and deposit thickness made at Kalpakkam, India. Five transects were examined in detail to assess the sedimentology and spatial distribution of the tsunami deposit. Near the mean water line, the tsunami eroded approximately 10–25 cm of sand from the beach and berm. At Kalpakkam the sand sheet deposited by the tsunami begins 25 m from the shore extending 420 m inland where it becomes thin and patchy approximately 30 m from the limit of inundation. In some cases, the deposit consists of 2 to 4 normally graded units, with coarse sand near the base and fine sand at the top, a characteristic observed in many tsunami deposits worldwide. In many places, the deposits also contain numerous thin laminated units, a characteristic usually associated with storm over wash. The presence of the laminated beds is indicative of the complexity of tsunami sedimentation on the coast. Such observations are essential to the formation of definitive facies models for palaeo-overwash studies that are capable of distinguishing between sediments deposited by storms or tsunami. 相似文献
9.
ENSO and Indian Ocean dipole mode in three coupled GCMs 总被引:3,自引:0,他引:3
The simulated ENSO and Indian Ocean dipole (IOD) mode events from three coupled GCMs with the same oceanic component model, CPMO, CPM1 and FGCMO, are compared. The only difference between the CPMO and the CPM 1 comes from the coupling scheme at the air-sea interface, e.g., flux anomaly coupling scheme for the former and direct coupling scheme for the latter. The FGCMO is also a directly coupled GCM, but its atmospheric component model is the NCAR CCM3 rather than the NCC T63AGCM as in the other two coupled GCMs CPMO and CPM1. All three coupled models show E1Nifio-like interannual variability in the tropic Pacific, but the FGCMO shows a bit stronger amplitude of E1 Nifio events and both the CPMO and the CPM1 show much weaker amplitude than the observed one. In the meanwhile, the quasi-biennial variability dominates in the FGCMO simulations, and 4 a and longer periods are significant in both the CPMO and CPM 1 models. As the E1 Nifio events simulated by the three coupled GCMs, the simulated Indian Ocean dipole mode events are stronger from the coupled model FGCMO and weaker from both the CPMO and CPM1 models than those from observation. 相似文献
10.
Vinu Valsala 《Journal of Oceanography》2008,64(4):479-494
The combined and individual responses of the first and second baroclinic mode dynamics of the tropical Indian Ocean to the
well-known Indian Ocean Dipole mode (IOD) wind anomalies are investigated. The IOD forced first baroclinic Rossby waves arrive
at the western boundary in three months, while the reflected component from the eastern boundary with opposite phase arrives
in five to six months, both carry input energy to the west. The inclusion of the second baroclinic mode slows down the wave
propagation by mode coupling and stretches the energy spectrum to a relatively longer time scale. The total energy exists
in the equatorial wave guide for at least five months from the forcing, as much as 10% of that of the atmospheric input, which
mainly dissipates at the western boundary. The individual responses of the ocean to IOD interannual wind anomaly show that
the significant modes of oceanic anomalies are confined to a wave guide of 10° on either side of the equator. 相似文献
11.
R. Rajaraman S. Joseph Winston T. S. Murty Hema Achyuthan N. Nirupama 《Marine Geodesy》2006,29(3):167-178
The State of Tamil Nadu was the most affected region in India during the tsunami of December 26, 2004, in the Indian Ocean, in terms of loss of life and damage. Numerical simulation was made for three tsunamis, the December 26, 2004, event, the Sumatra tsunami of 1833, and a hypothetical tsunami originating in the Andaman-Nicobar region. Since inundation is not included in these simulations, the tsunami amplitudes were deduced at the 10m depth contour in the ocean, off several locations on the coast of Tamil Nadu. The computed amplitudes appear reasonable as compared to known tsunami amplitudes from past events. 相似文献
12.
印度洋海表温度的变化及其对印度夏季季风降水影响的诊断研究 总被引:8,自引:1,他引:8
对印度洋海表温度(SST)的主要特征及变化趋势进行分析,并研究了其与印度夏季季风降水(ISMR)和季风环流的关系,揭示出:从北印度洋到南半球中高纬度印度洋,SST最显著的变化模态是全海盆一致的变化,近50 a来总体趋势是上升的,在1976,1986年以及1996年间分别有一次跳跃性增温,与太平洋SST变化趋势基本一致.除了长期变化趋势外,南印度洋中高纬度比热带地区有更显著的模态分布.在印度洋SST升温的背景下,ISMR具有逐渐减少的趋势,但两者相关较弱.印度洋SST发生跳跃后的不同阶段,许多海区SST与ISMR相关均发生变化,但在春季,热带外南印度洋具有一对相对稳定区,其分布与EOF分析的第2模态相似.根据它们的分布,文中定义了春季南半球偶极子(SIOD),在正SIOD(PSIOD)情况下印度降水偏多,而负SIOD(NSIOD)则反之.环流分析表明,PSIOD(NSIOD)通过与大气的相互作用,对夏季马斯克林高压具有增强(减弱)作用,进而使得索马里越赤道气流增强(减弱),在印度地区低空产生异常的辐合(辐散),高层辐散(辐合),从而影响印度季风环流,使得印度季风降水偏多(少). 相似文献
13.
14.
本文根据多年的天气图、卫星云图以及1980~1990年的NCEP再分析资料,通过统计分析和合成分析等方法建立了能够在南印度洋特定海区引起12m/s以上大风天气的高纬低压系统概念模型,并对主要的南印度洋西部副高型、南印度洋倒"品"字型作了详细的阐述。该天气概念模型主要发生在南半球的冬、春季。(1)南印度洋西部副高天气过程多由高纬度低压系统发展引起。在这一过程中,副高与高纬低压系统由纬向型向经向型转变,海平面气压槽和850hPa高度槽受到槽后冷平流的驱动不断向东北方向移动,并扫过南印度洋东部。(2)南印度洋倒"品"字天气模型中,低压槽受斜压系统的驱动东移并发展加深,与南印度洋东部的副高中心之间形成大风带。该天气概念模型的建立对南印度洋海区大风的预报可起到一定指导作用。 相似文献
15.
主要介绍印度洋偶极子(IOD)的时空特征、演变机制和可预报性的研究进展。IOD是东西热带印度洋反相的海温异常,是热带印度洋的年际海温变率最主要的两种异常结构之一。关于IOD的演变机制,特别是ENSO在其中所起作用,一直是学界争论的热点。一些学者认为,IOD是ENSO通过遥相关作用对热带印度洋造成的影响;另一些学者则认为,IOD是热带印度洋内部海气振荡的产物。本研究重点讨论这两种观点的相关证据以及IOD与ENSO的关系。此外,现有多数模式对IOD的预报时效小于3~4个月,潜在的预报时效则大于5个月,但这些对IOD的可预报性研究尚处于起步阶段,还有很大发展空间。 相似文献
16.
印度洋东部金枪鱼延绳钓渔业研究--大眼金枪鱼(Thunnus obesus)的生物学特征 总被引:4,自引:0,他引:4
根据作者在印度洋东部海域的延绳钓生产实践,对渔获的大眼金枪鱼群体的群体构成、摄食、繁殖等基本生物学特征进行了初步探讨.结果表明,渔获群体由纯重10~115kg、叉长80~195cm个体组成,纯重与叉长关系式w=2.000×10-5×L2.969;渔获物以3~5龄个体为主,雄性个体所占比例明显高于雌性个体,且随年龄增长雄性个体所占比例逐步提高.鱼群在该海域产卵期较长,不同年龄组性腺发育节律有明显差异. 相似文献
17.
Warren B. White Kathryn A. Gloersen Francis Marsac Yves M. Tourre 《Journal of Oceanography》2004,60(3):531-541
Interannual coupled Rossby waves in the extratropical Indian Ocean propagate westward in covarying pycnocline depth, sea surface
temperature, and meridional surface wind anomalies from the west coast of Australia between 15°S and 35°S, taking 3–4 years
to transit the interior ocean to Madagascar. In the interior subtropical gyre, where the tuna longline catch (TLC) mainly
concerns two species (albacore and bigeye), these waves have been observed to affect year-to-year changes in catch, with wave
crests (troughs) in the main pycnocline associated with high (low) TLC anomalies. This suggested that tuna longline catch
is associated with the entrainment of nutrient-rich pycnocline water into the photic zone and a subsequent increase in primary
productivity there. Here, this hypothesis is examined within the context of SeaWiFS chlorophyll concentration (CC). We find
the situation the opposite of that expected, with wave crests (troughs) in the main pycnocline associated with low (high)
CC anomalies averaged over the photic zone. These results are shown to be consistent with a model relating the anomalous CC
tendency to upper-layer divergence in the wave, not unlike that relating surface slicks to upper-layer divergence in internal
gravity waves. Thus, the connection between interannual coupled Rossby waves and TLC in the interior subtropical gyre does
not appear to derive from wave-induced modulation of the pelagic food web.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
18.
19.
赤道印度洋中部断面东西水交换的季节变化及其区域差异 总被引:2,自引:2,他引:2
采用海洋再分析资料和实测资料研究了热带印度洋中部东西水交换特征。结果表明存在两个相互独立的过程,即北印度洋过程(4°~6°N)和赤道过程(2°S-2°N)。北印度洋过程受季风影响显著,11月至翌年3月冬季风期间表现出很强的低盐水向西输送,5-9月夏季风期间则为高盐水向东输送;由于冬季风期间的输送较强,年平均表现为低盐水向西输送。赤道过程分为表层过程和次表层过程。表层赤道过程受局地风场驱动,有明显的半年周期;4-5月和10-11月的东向流将赤道西印度洋的高盐水向东输送,其余月份相反;向东的输送较强,年平均表现为净高盐水向东输送。在次表层赤道过程没有明显的季节变化,海流全年一致向东,将海盆西部的高盐水向东输送。 相似文献
20.
赤道印度洋海温偶极子的气候影响及数值模拟研究 总被引:5,自引:0,他引:5
在分析研究印度洋海温变化的基本特征,尤其是在分析赤道印度洋海温偶极子及其影响的基础上,利用IAP9L大气环流模式模拟研究了赤道印度洋海温偶极子异常对亚洲季风区气候变化的影响.其结果表明,印度洋、亚洲南部和东部地区的流场和降水都对印度洋海温异常的强迫作用比较敏感.正位相印度洋偶极子的作用使得赤道东印度洋-印度次大陆南部-阿拉伯海一带出现距平东风,孟加拉湾-中南半岛出现异常反气旋性环流,从而对减少印度南部和中南半岛南部、印度尼西亚地区的夏季降水,以及增加中国南部和东非的夏季降水有十分重要的作用.与此相反,负位相印度洋偶极子的作用将使赤道东印度洋附近出现西风异常,孟加拉湾-中南半岛存在异常气旋性环流,从而使印度次大陆和中南半岛南部、印度尼西亚地区的降水增加,使中国西部和孟加拉湾的降水减少.数值模拟结果与资料分析相互映证,切实地揭示了印度洋海温偶极子对亚洲季风区的气候变化有重要影响. 相似文献