首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss possible mechanisms for the formation of albedo spots on asteroids. We infer that the most likely mechanisms are impact cratering and related processes. This is confirmed by the reflectance spectra of the asteroids 10 Hygiea, 135 Hertha, and 196 Philomela, the results of a spectral frequency analysis of the sizes of features on the surface of 4 Vesta and 21 Lutetia, and the estimates for the parameters of impact features.  相似文献   

2.
This paper presents and discusses selected reflectance spectra of 40 Main Belt asteroids. The spectra have been obtained by the author in the Crimean Laboratory of the Sternberg Astronomical Institute (2003–2009). The aim is to search for new spectral features that characterize the composition of the asteroids’ material. The results are compared with earlier findings to reveal substantial irregularities in the distribution of the chemical-mineralogical compositions of the surface material of a number of minor planets (10 Hygiea, 13 Egeria, 14 Irene, 21 Lutetia, 45 Eugenia, 51 Nemausa, 55 Pandora, 64 Angelina, 69 Hesperia, 80 Sappho, 83 Beatrix, 92 Undina, 129 Antigone, 135 Hertha, and 785 Zwetana), which are manifest at different rotation phases. The vast majority of the analyzed high-temperature asteroids demonstrate subtle spectral features of an atypical hydrated and/or carbonaceous chondrite material (in the form of impurities or separate units), which are likely associated with the peculiarities of the formation of these bodies and the subsequent dynamic and impact processes, which lead, inter alia, to the delivery of atypical materials. Studies of 4 Vesta aboard NASA’s Dawn spacecraft have found that asteroids of similar types can form their own phyllosilicate generations provided that their surface material contains buried icy or hydrated fragments of impacting bodies. The first evidence has been obtained of a spectral phase effect (SPE) at small phase angles (≤4°) for 10 Hygiea, 21 Lutetia, and, possibly, 4 Vesta. The SPE manifests itself in an increasing spectral coefficient of brightness in the visible range with decreasing wavelength. This effect is present in the reflectance spectrum of CM2 carbonaceous material at a phase angle of 10° and absent at larger angles (Cloutis et al., 2011a). The shape of Hygeia’s reflectance spectra at low phase angles appears to be controlled by the SPE during the most part of its rotation period, which may indicate a predominantly carbonaceous chondrite composition on a part of the asteroid’s surface. For Vesta, the SPE may manifest itself in the flat or slightly concave shape of the asteorid’s reflectance spectra at some of the rotation phases, which is likely caused by the increased number of dark spots on corresponding parts of its surface.  相似文献   

3.
Abstract– The 0.35–2.5 μm reflectance spectra of iron meteorite powders and slabs have been studied as a function of composition, surface texture (for slabs), grain size (for powders), and viewing geometry (for powders). Powder spectra are invariably red‐sloped over this wavelength interval and have a narrow range of visible albedos (approximately 10–15% at 0.56 μm). Metal (Fe:Ni) compositional variations have no systematic effect on the powder spectra, increasing grain size results in more red‐sloped spectra, and changes in viewing geometry have variable effects on overall reflectance and spectral slope. Roughened metal slab spectra have a wider, and higher, range of visible albedos than powders (22–74% at 0.56 μm), and are also red‐sloped. Smoother slabs exhibit greater differences from iron meteorite powder spectra, exhibiting wider variations in overall reflectance, spectral slopes, and spectral shapes. No unique spectral parameters exist that allow for powder and slab spectra to be fully separated in all cases. Spectral differences between slabs and powders can be used to constrain possible surface properties, and causes of rotational spectral variations, of M‐asteroids. The magnitude of spectral variations between M‐asteroids and rotational and spectral variability does not necessarily imply a dramatic change in surface properties, as the differences in albedo and/or spectral slope can be accommodated by modest changes in grain size (for powders), small changes in surface roughness (for slabs), or variations in viewing geometry. Since metal powders exhibit much less spectral variability than slabs, M‐asteroid spectral variability requires larger changes in either powder properties or viewing geometry than for slabs for a given degree of spectral variation.  相似文献   

4.
To compare the spectra of main-belt S-type asteroids and ordinary chondrites, we investigated the correlation between the reflectance peak position near 750 nm, the bend of the spectral curves in the 359–701 nm region, the linear gradient in the 359–853 nm range, and the absorption band position near 950 nm. In the diagrams of spectral parameters, the regions occupied by S-type asteroids and ordinary chondrites are separated. The modeling of the optical effect of maturation of ordinary-chondrite samples, which leads to variations in the meteorite spectral parameters, was carried out under the following conditions: (1) the increase of the concentration of reduced-iron grains (SMFe) in particles without any change in their size; (2) the increase/decrease of the size of particles at a constant concentration of SMFe in them; (3) we also examined different relations between the concentration and the size of SMFe in particles. But, under no conditions did we manage to bring into coincidence the asteroid and meteorite regions simultaneously in all spectral-parameter diagrams. Hence, the conclusion was made that the difference between the reflectance spectra of ordinary chondrites and those of large main-belt S-type asteroids is determined not only by space weathering of asteroidal surfaces but also by systematic differences in the material composition.  相似文献   

5.
Abstract Thermal metamorphism study of the C, G, B, and F asteroids has been revisited using their UV, visible, NIR, and 3 μm reflectance spectra. High-quality reflectance spectra of seven selected C, G, B, and F asteroids have been compared with spectra for 29 carbonaceous chondrites, including thermally-metamorphosed CI/CM meteorites. There are three sets of spectral counterparts, among which 511 Davida and B-7904 are the most similar to each other in terms of both spectral shape and brightness. By comparing the 0.7 μm and 3 μm absorption strengths of 21 C, G, B, and F asteroids and heated Murchison samples, these asteroids have been grouped into three heating-temperature ranges. These correspond to (1) <400 °C: phyllosilicate-rich; (2) 400–600 °C: phyllosilicates transformed to anhydrous silicates; and (3) >600 °C: fully anhydrous. A good correlation between the UV and 3 μm absorption strengths has been confirmed for the C, G, B, and F asteroids and the CI, CM, and CR meteorites. A plot of the UV absorption strength vs. the IRAS diameter for 142 C, G, B, and F asteroids shows that the maximum UV absorption strength decreases as the diameter increases for the asteroids >60 km, with a notable exception, Ceres. These relationships suggest that some of the larger asteroids may be the heated inner portions of once larger bodies and that common CI/CM meteorites may have come from the lost outer portions, which escaped extensive late-stage heating events.  相似文献   

6.
We present near infrared reflectance spectra from 0.8 to 2.5 μm of two asteroids with low Tisserand invariant, 1373 Cincinnati and 2906 Caltech. We compare our spectra with cometary nuclei and other asteroids in their class. Asteroids Cincinnati and Caltech have Tisserand invariant values of 2.72 and 2.97, respectively, values less than 3 are considered suggestive of cometary origin. The observed spectral slopes in the near-infrared are consistent with both the spectra of cometary nuclei and of primitive asteroids. However, both asteroids have features in the near-infrared that are not seen in cometary nuclei, but are present in other X-type asteroids. 1373 Cincinnati has a sharp slope change between 0.75 and 1.0 μm and 2906 Caltech has a broad and shallow absorption between 1.35 and 2.2 μm. Our attempts to model the visible and near-infrared spectrum of these two objects, with the components successfully used by Emery and Brown (2004, Icarus 164, 104–121) to fit Trojan asteroids, did not yield acceptable fits.Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract to the National Aeronautics and Space Administration.  相似文献   

7.
Phase reddening is an effect that produces an increase of the spectral slope and variations in the strength of the absorption bands as the phase angle increases. In order to understand its effect on spectroscopic observations of asteroids, we have analyzed the visible and near-infrared spectra (0.45–2.5 μm) of 12 near-Earth asteroids observed at different phase angles. All these asteroids are classified as either S-complex or Q-type asteroids. In addition, we have acquired laboratory spectra of three different types of ordinary chondrites at phase angles ranging from 13° to 120°. We have found that both, asteroid and meteorite spectra show an increase in band depths with increasing phase angle. In the case of the asteroids the Band I depth increases in the range of ~2° < g < 70° and the Band II depth increases in the range of ~2° < g < 55°. Using this information we have derived equations that can be used to correct the effect of phase reddening in the band depths. Of the three meteorite samples, the (olivine-rich) LL6 ordinary chondrite is the most affected by phase reddening. The studied ordinary chondrites have their maximum spectral contrast of Band I depths at a phase angle of ~60°, followed by a decrease between 60° and 120° phase angle. The Band II depths of these samples have their maximum spectral contrast at phase angles of 30–60° which then gradually decreases to 120° phase angle. The spectral slope of the ordinary chondrites spectra shows a significant increase with increasing phase angle for g > 30°. Variations in band centers and band area ratio (BAR) values were also found, however they seems to have no significant impact on the mineralogical analysis. Our study showed that the increase in spectral slope caused by phase reddening is comparable to certain degree of space weathering. In particular, an increase in phase angle in the range of 30–120° will produce a reddening of the reflectance spectra equivalent to exposure times of ~0.1 × 106–1.3 × 106 years at about 1 AU from the Sun. This increase in spectral slope due to phase reddening is also comparable to the effects caused by the addition of different fractions of SMFe. Furthermore, we found that under some circumstances phase reddening could lead to an ambiguous taxonomic classification of asteroids.  相似文献   

8.
The correlation between specific meteorites and asteroids is a long-standing problem. The best-known correlation seems to be the HED–Vesta, although several problems still remain to be solved. We report the spectral reflectance analysis (0.4–2.5 μm) of a set of HED meteorites, taken from the RELAB database and three V-type asteroids, taken from MIT-UH-IRTF Joint Campaign for NEO Reconnaissance. We used the Modified Gaussian Model to fit the spectra to a series of overlapping, modified Gaussian absorptions. The fitted individual bands are validated against established laboratory calibrations. With spectral resolution extending to the near-infrared, we are able to resolve the presence of both high-calcium pyroxene (HCP) and low-calcium pyroxene (LCP) and, thus, use the HCP/(HCP + LCP) ratios to remotely trace igneous processing on the parent asteroids. A search of this mineral provides a useful probe of differentiation. The high HCP/(HCP + LCP) ratios found require extensive differentiation of these asteroids and/or their primordial parent body. The degree of melting obtained for the eucrites, using the former ratio, is comparable with that obtained for all V-type asteroids here analyzed, suggesting a comparable geologic history.  相似文献   

9.
Spectrophotometric observations of 145 Adeona, 704 Interamnia, 779 Nina, and 1474 Beira—asteroids of close primitive types—allowed us to detect similar mineralogical absorption bands in their reflectance spectra centered in the range 0.35 to 0.92 μm; the bands are at 0.38, 0.44, and 0.67–0.71 μm. On the same asteroids, the spectral signs of simultaneous sublimation activity were found for the first time. Namely, there are maxima at ~0.35–0.60 μm in the reflectance spectra of Adeona, Interamnia, and Nina and at ~0.55–075 μm in the spectra of Beira. We connect this activity with small heliocentric distances of the asteroids and, consequently, with a high insolation at their surfaces. Examination of the samples of probable analogues allowed us to identify Fe3+ and Fe2+ in the material of these asteroids through the mentioned absorption bands. For analogues, we took powdered samples of carbonaceous chondrites Orgueil (CI), Mighei (CM2), Murchison (CM2), and Boriskino (CM2), as well as hydrosilicates of the serpentine group. Laboratory spectral reflectance study of the samples of low-iron Mg serpentines (<2 wt % FeO) showed that the equivalent width of the absorption band centered at 0.44–0.46 μm strongly correlates with the content of Fe3+ in octahedral and tetrahedral coordinations. Our conclusion is that this absorption band can be used as a qualitative indicator of Fe3+ in the surface matter of asteroids and other solid celestial bodies. The comparison of the listed analog samples and the asteroids by parameters of the spectral features suggests that the silicate component of the asteroids' surface material is a mixture of hydrated and oxidized compounds, including oxides and hydroxides of bivalent and trivalent iron and carbonaceous-chondritic material. At the same time, the sublimation activity of Adeona, Interamnia, Nina, and Beira at high surface temperatures points to a substantial content of water ice in their material. This contradicts the previously existing notions on the C-type and similar asteroids as bodies containing water only in the bound state. Moreover, since the sublimation process simultaneously occurs in four primitive-type bodies at small heliocentric distances, we may suppose that this phenomenon is common for the main-belt asteroids.  相似文献   

10.
We observed ten M- and X-class main-belt asteroids with the Arecibo Observatory's S-band (12.6 cm) radar. The X-class asteroids were targeted based on their albedos or other properties which suggested they might be M-class. This work brings the total number of main-belt M-class asteroids observed with radar to 14. We find that three of these asteroids have rotation rates significantly different from what was previously reported. Based on their high radar albedo, we find that only four of the fourteen—16 Psyche, 216 Kleopatra, 758 Mancunia, and 785 Zwetana—are almost certainly metallic. 129 Antigone has a moderately high radar albedo and we suggest it may be a CH/CB/Bencubbinite parent body. Three other asteroids, 97 Klotho, 224 Oceana, and 796 Sarita have radar albedos significantly higher than the average main belt asteroid and we cannot rule out a significant metal content for them. Five of our target asteroids, 16 Psyche, 129 Antigone, 135 Hertha, 758 Mancunia, and 785 Zwetana, show variations in their radar albedo with rotation. We can rule out shape and composition in most cases, leaving variations in thickness, porosity, or surface roughness of the regolith to be the most likely causes. With the exception of 129 Antigone, we find no hydrated M-class asteroids (W-class; Rivkin, A.S., Howell, E.S., Lebofsky, L.A., Clark, B.E., Britt, D.T., 2000. Icarus 145, 351-368) to have high radar albedos.  相似文献   

11.
Abstract— We have studied the petrography, reflectance spectra, and Ar‐Ar systematics of the Orivinio meteorite. Orvinio is an H chondrite not an L chondrite as sometimes reported. The material in the meteorite was involved in several impact events. One impact event produced large swaths of impact melt from H chondrite material surrounding relict clasts of chondrule‐bearing material. Not only were portions of a bulk H chondrite planestesimal melted during the impact event, but shock redistribution of metal and sulfide phases in the meteorite dramatically altered its reflectance spectra. Both the melt and relict clasts are darker than unshocked H chondrite material, bearing spectral similarities to some C‐class asteroids. Such shock metamorphism, which lowers the albedo of an object without increasing its spectral slope, may partially explain some of the variation among S‐class asteroids and some of the trends seen on asteroid 433 Eros. Noble gases record the evidence of at least two, and perhaps three, impact events in the meteorite and its predecessor rocks. The most significant evidence is for an event that occurred 600 Ma ago or less, perhaps ?325 Ma ago or less. There is also a signature of 4.2 Ga in the Ar‐Ar systematics, which could either reflect complete degassing of the rock at that time or partial degassing of even the most retentive sites in the more recent event.  相似文献   

12.
We have conducted a radar-driven observational campaign of 22 main-belt asteroids (MBAs) focused on Bus–DeMeo Xc- and Xk-type objects (Tholen X and M class asteroids) using the Arecibo radar and NASA Infrared Telescope Facilities (IRTF). Sixteen of our targets were near-simultaneously observed with radar and those observations are described in a companion paper (Shepard, M.K., and 19 colleagues [2010]. Icarus, in press). We find that most of the highest metal-content asteroids, as suggested by radar, tend to exhibit silicate absorption features at both 0.9 and 1.9 μm, and the lowest metal-content asteroids tend to exhibit either no bands or only the 0.9 μm band. Eleven of the asteroids were observed at several rotational longitudes in the near-infrared and significant variations in continuum slope were found for nine in the spectral regions 1.1–1.45 μm and 1.6–2.3 μm. We utilized visible wavelength data (Bus, S.J., Binzel, R.P. [2002b]. Icarus 158, 146–177; Fornasier, S., Clark, B.E., Dotto, E., Migliorini, A., Ockert-Bell, M., Barucci, M.A. [2010]. Icarus 210, 655–673.) for a more complete compositional analysis of our targets. Compositional evidence is derived from our target asteroid spectra using two different methods: (1) a χ2 search for spectral matches in the RELAB database, and (2) parametric comparisons with meteorites. This paper synthesizes the results of the RELAB search and the parametric comparisons with compositional suggestions based on radar observations. We find that for six of the seven asteroids with the highest iron abundances, our spectral results are consistent with the radar evidence (16 Psyche, 216 Kleopatra, 347 Pariana, 758 Mancunia, 779 Nina, and 785 Zwetana). Three of the seven asteroids with the lowest metal abundances, our spectral results are consistent with the radar evidence (21 Lutetia, 135 Hertha, 497 Iva). The remaining seven asteroids (22 Kalliope, 97 Klotho, 110 Lydia, 129 Antigone, 224 Oceana, 678 Fredegundis, and 771 Libera) have ambiguous compositional interpretations when comparing the spectral analogs to the radar analogs. The number of objects with ambiguous results from this multi-wavelength survey using visible, near-infrared, and radar wavelengths indicates that perhaps a third diagnostic wavelength region (such as the mid-infrared around 2–4 μm, the mid-infrared around 10–15 μm, and/or the ultraviolet around 0.2–0.4 μm) should be explored to resolve the discrepancies.  相似文献   

13.
Asteroid 21 Lutetia is one of the objects of the Rosetta mission carried out by the European Space Agency (ESA). The Rosetta spacecraft launched in 2004 is to approach Lutetia in July 2010, and then it will be directed to the comet Churyumov-Gerasimenko. Asteroid 4 Vesta is planned to be investigated in 2011 from the Dawn spacecraft launched by the National Aeronautics and Space Administration (NASA) in 2007 (its second object is the largest asteroid, 1 Ceres). The observed characteristics of Lutetia and Vesta are different and even contradictory. In spite of the intense and versatile ground-based studies, the origin and evolution of these minor planets remain obscure or not completely clear. The types of Lutetia and Vesta (M and V, respectively) determined from their spectra correspond to the high-temperature mineralogy, which agrees with their albedo estimated from the Infrared Astronomical Satellite (IRAS) observations. However, according to the opinion of some researchers, Lutetia is of the C type, and, therefore, its mineralogy is of the lowtemperature type. In turn, hydrosilicate formations have been found in some places on the surface of Vesta. Our observations also testify that at some relative phases of rotation (RP), the reflectance spectra of Lutetia and Vesta demonstrate features confirming the presence of hydrosilicates in the surface material. However, this fact can be reconciled with the magmatic nature of Lutetia and Vesta if the hydrated material was delivered to their surfaces by falling primitive bodies. Such small bodies are probably present everywhere in the main asteroid belt and can be the relicts of silicate-icy planetesimals from Jupiter’s formation zone or the fragments of primitive-type asteroids. When interpreting the reflectance spectra of Lutetia and Vesta, we discuss the spectral classification by Tholen (1984) from the standpoint of its general importance for the estimation of the mineralogical type of the asteroids and the study of their origin and evolution.  相似文献   

14.
E.A. Cloutis  P. Hudon  T. Hiroi 《Icarus》2011,216(1):309-346
We have examined the spectral reflectance properties and available modal mineralogies of 39 CM carbonaceous chondrites to determine their range of spectral variability and to diagnose their spectral features. We have also reviewed the published literature on CM mineralogy and subclassification, surveyed the published spectral literature and added new measurements of CM chondrites and relevant end members and mineral mixtures, and measured 11 parameters and searched pair-wise for correlations between all quantities. CM spectra are characterized by overall slopes that can range from modestly blue-sloped to red-sloped, with brighter spectra being generally more red-sloped. Spectral slopes, as measured by the 2.4:0.56 μm and 2.4 μm:visible region peak reflectance ratios, range from 0.90 to 2.32, and 0.81 to 2.24, respectively, with values <1 indicating blue-sloped spectra. Matrix-enriched CM spectra can be even more blue-sloped than bulk samples, with ratios as low as 0.85. There is no apparent correlation between spectral slope and grain size for CM chondrite spectra - both fine-grained powders and chips can exhibit blue-sloped spectra. Maximum reflectance across the 0.3-2.5 μm interval ranges from 2.9% to 20.0%, and from 2.8% to 14.0% at 0.56 μm. Matrix-enriched CM spectra can be darker than bulk samples, with maximum reflectance as low as 2.1%. CM spectra exhibit nearly ubiquitous absorption bands near 0.7, 0.9, and 1.1 μm, with depths up to 12%, and, less commonly, absorption bands in other wavelength regions (e.g., 0.4-0.5, 0.65, 2.2 μm). The depths of the 0.7, 0.9, and 1.1 μm absorption features vary largely in tandem, suggesting a single cause, specifically serpentine-group phyllosilicates. The generally high Fe content, high phyllosilicate abundance relative to mafic silicates, and dual Fe valence state in CM phyllosilicates, all suggest that the phyllosilicates will exhibit strong absorption bands in the 0.7 μm region (due to Fe3+-Fe2+ charge transfers), and the 0.9-1.2 μm region (due to Fe2+ crystal field transitions), and generally dominate over mafic silicates. CM petrologic subtypes exhibit a positive correlation between degree of aqueous alteration and depth of the 0.7 μm absorption band. This is consistent with the decrease in fine-grained opaques that accompanies aqueous alteration. There is no consistent relationship between degree of aqueous alteration and evidence for a 0.65 μm region saponite-group phyllosilicate absorption band. Spectra of different subsamples of a single CM can show large variations in absolute reflectance and overall slope. This is probably due to petrologic variations that likely exist within a single CM chondrite, as duplicate spectra for a single subsample show much less spectral variability. When the full suite of available CM spectra is considered, few clear spectral-compositional trends emerge. This indicates that multiple compositional and physical factors affect absolute reflectance, absorption band depths, and absorption band wavelength positions. Asteroids with reflectance spectra that exhibit absorption features consistent with CM spectra (i.e., absorption bands near 0.7 and 0.9 μm) include members from multiple taxonomic groups. This suggests that on CM parent bodies, aqueous alteration resulted in the consistent production of serpentine-group phyllosilicates, however resulting absolute reflectances and spectral shapes seen in CM reflectance spectra are highly variable, accounting for the presence of phyllosilicate features in reflectance spectra of asteroids across diverse taxonomic groups.  相似文献   

15.
We performed ion irradiation of mineral samples with 50 keV He+, aimed to investigate ion irradiation effects on diagnostic spectral features. Reflectance spectra of samples in 0.375–2.5 μm are measured before and after ion irradiation. Silicates, including Luobusha olivine, plagioclase and basaltic glass, have shown reddening and darkening of reflectance spectra at the VIS–NIR range. Olivine is more sensitive to ion irradiation than plagioclase and basaltic glass. Irradiated Panzhihua ilmenite exhibits higher reflectance and stronger absorption features, which is totally different from lunar soil and analog silicate materials in other experiments. Using continuum removal and MGM fit, we extracted and compared absorption features of olivine spectra before and after irradiation. Ion irradiation can induce band strength decrease of olivine but negligible band centers shift. We estimate band centers shift caused by ion irradiation are quite limited, even less than variations due to chemical composition in silicates. It provides one possible explanation for no systematic shift in band positions in lunar soil. Irradiated Luobusha olivine spectrum matches spectra of olivine-dominated asteroids. Our results suggest space weathering should be new clues to explain the subtle difference between A-type asteroid spectra and laboratory spectra of olivine.  相似文献   

16.
The results of ground-based spectrophotometry of the icy Galilean satellites of Jupiter—Europa, Ganymede, and Callisto—are discussed. The observations were carried out in the 0.39–0.92 μm range with the use of the CCD spectrometer mounted on the 1.25-m telescope of the Crimean laboratory of the Sternberg Astronomical Institute in March 2004. It is noted that the calculated reflectance spectra of the satellites mainly agree with the analogous data of the earlier ground-based observations and investigations in the Voyager and Galileo space missions. The present study was aimed at identifying new weak absorption bands (with the relative intensity of ~3–5%) in the reflectance spectra of these bodies with laboratory measurements (Landau et al., 1962; Ramaprasad et al., 1978; Burns, 1993; Busarev et al., 2008). It has been ascertained that the spectra of all of the considered objects contain weak absorption bands of molecular oxygen adsorbed into water ice, which is apparently caused by the radiative implantation of O+ ions into the surface material of the satellites in the magnetosphere of Jupiter. At the same time, spectral features of iron of different valence (Fe2+ and Fe3+) values typical of hydrated silicates were detected on Ganymede and Callisto, while probable indications of methane of presumably endogenous origin, adsorbed into water ice, were found on Europa. The reflectance spectra of the icy Galilean satellites were compared to the reflectance spectra of the asteroids 51 Nemausa (C-class) and 92 Undina (X-class).  相似文献   

17.
J.M. Carvano  T. Mothé-Diniz 《Icarus》2003,161(2):356-382
We present an analysis of 460 featureless asteroid spectra in the range 0.5-0.92 μm obtained in the Small Solar System Objects Spectroscopic Survey. The spectra are described in terms of the continuum steepness (cSlope), its concavity (RRE), and the blue wing of drop in the UV reflectance (BD). Comparison with meteorite spectra confirms the link between CM meteorites and asteroids with asteroids with 0.7 μm band. Also, it is found that asteroids with extreme negative slope values may be related to CK chondrites and that asteroids with pronounced concave-down curvature are related to CO chondrites. An analysis of the distribution of the spectral parameters with semimajor axis, diameter, and albedo is performed.  相似文献   

18.
E.A. Cloutis  T. Hiroi 《Icarus》2011,212(1):180-209
Existing reflectance spectra of CI chondrites (18 spectra of 3 CIs) have been augmented with new (18 spectra of 2 CIs) reflectance spectra to ascertain the spectral variability of this meteorite class and provide insights into their spectral properties as a function of grain size, composition, particle packing, and viewing geometry. Particle packing and viewing geometry effects have not previously been examined for CI chondrites. The current analysis is focused on the 0.3-2.5 μm interval, as this region is available for the largest number of CI spectra. Reflectance spectra of powdered CI1 chondrites are uniformly dark (<10% maximum reflectance) but otherwise exhibit a high degree of spectral variability. Overall spectral slopes range from red (increasing reflectance with increasing wavelength) to blue (decreasing reflectance with increasing wavelength). A number of the CI spectra exhibit weak (<5% deep) absorption bands that can be attributed to both phyllosilicates and magnetite. Very weak absorption bands attributable to other CI phases, such as carbonates, sulfates, and organic matter may be present in one or a few spectra, but their identification is not robust. We found that darker spectra are generally correlated with bluer spectral slopes: a behavior most consistent with an increasing abundance of fine-grained magnetite and/or insoluble organic material (IOM), as no other CI opaque phase appears able to produce concurrent darkening and bluing. Magnetite can also explain the presence of an absorption feature near 1 μm in some CI spectra. The most blue-sloped spectra are generally associated with the larger grain size samples. For incidence and emission angles <60°, increasing phase angle results in darker and redder spectra, particularly below ∼1 μm. At high incidence angles (60°), increasing emission angle results in brighter and redder spectra. More densely packed samples and underdense (fluffed) samples show lower overall reflectance than normally packed and flat-surface powdered samples. Some B-class asteroids exhibit selected spectral properties consistent with CI chondrites, although perfect spectral matches have not been found. Because many CI chondrite spectra exhibit absorption features that can be related to specific mineral phases, the search for CI parent bodies can fruitfully be conducted using such parameters.  相似文献   

19.
We present near-infrared spectra of 23 B-type asteroids obtained with the NICS camera-spectrograph at the 3.56 m Telescopio Nazionale Galileo. We also compile additional visible and near-infrared spectra of another 22 B-type asteroids from the literature. A total of 45 B-types are analyzed. No significant trends in orbital properties of our sample were detected when compared with all known B-types and all known asteroids. The reflectance spectra of the asteroids in the 0.8–2.5 μm range show a continuous shape variation, from a monotonic negative (blue) slope to a positive (red) slope. This continuous spectral trend is filling the gap between the two main groups of B-types published by Clark et al. ([2010]. J. Geophys. Res., 115, 6005–6027). We found no clear correlations between the spectral slope and the asteroids’ sizes or heliocentric distances. We apply a clustering technique to reduce the volume of data to six optimized “average spectra” or “centroids”, representative of the whole sample. These centroids are then compared against meteorite spectra from the RELAB database. We found carbonaceous chondrites as the best meteorite analogs for the six centroids. There is a progressive change in analogs that correlates with the spectral slope: from CM2 chondrites (water-rich, aqueously altered) for the reddest centroid, to CK4 chondrites (dry, heated/thermally altered) for the bluest one.  相似文献   

20.
We present reflectance spectra of 19 V-type asteroids obtained at the 3.6 m Telescopio Nazionale Galileo covering 0.8 to 2.5 μm. For 8 of these asteroids we obtained also visible spectra in the same observational run. The range from 0.8 to 2.5 μm, encompassing the 1 and 2 μm pyroxene features, allows a precise mineralogical characterization of these asteroids. The obtained data suggests the possible coexistence of distinct mineralogical groups among the V-type asteroids, either probing different layers of (4) Vesta or coming from different bodies. No clear correlation was found between mineralogies and the objects being, or not, member of the Vesta dynamical family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号