首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Metamorphic geology has accumulated a huge body of observation on mineral assemblages that reveal strong patterns in occurrence, summarized, for example, in the idea of metamorphic facies. On the realization that such patterns needed a simple explanation, there has been considerable a posteriori success from adopting the idea that equilibrium thermodynamics can be used on mineral assemblages to make sense of the patterns in terms of, for example, the pressure and temperature of formation of mineral assemblages. In doing so, a particularly simple implicit assumption is made, that mineral assemblages operate essentially hydrostatically. Structural geologists have studied the same rocks for different ends, but, remarkably, the phenomena they are interested in depend on non‐hydrostatic stress. We look at the effect of such behaviour on mineral equilibria. With adoption of some plausible assumptions about how metamorphism in the crust works, the consequence of minerals being non‐hydrostatically stressed is commonly second order in equilibrium calculations.  相似文献   

2.
Thermal recovery from a hot dry rock (HDR) reservoir viewed as a deformable fractured medium is investigated with a focus on the assumption of local thermal non‐equilibrium (LTNE). Hydraulic diffusion, thermal diffusion, forced convection and deformation are considered in a two‐phase framework, the solid phase being made by impermeable solid blocks separated by saturated fractures. The finite element approximation of the constitutive and field equations is formulated and applied to obtain the response of a generic HDR reservoir to circulation tests. A change of time profile of the outlet fluid temperature is observed as the fracture spacing increases, switching from a single‐step pattern to a double‐step pattern, a feature which is viewed as characteristic of established LTNE. A dimensionless number is proposed to delineate between local thermal equilibrium (LTE) and non‐equilibrium. This number embodies local physical properties of the mixture, elements of the geometry of the reservoir and the production flow rate. All the above properties being fixed, the resulting fracture spacing threshold between LTNE and LTE is found to decrease with increasing porosity or fluid velocity. The thermally induced effective stress is tensile near the injection well, illustrating the thermal contraction of the rock, while the pressure contribution of the fracture fluid is negligible during the late period. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A new non‐local damage model is presented. Non‐locality (of integral or gradient type) is incorporated into the model by means of non‐local displacements. This contrasts with existing damage models, where a non‐local strain or strain‐related state variable is used. The new model is very attractive from a computational viewpoint, especially regarding the computation of the consistent tangent matrix needed to achieve quadratic convergence in Newton iterations. At the same time, its physical response is very similar to that of the standard models, including its regularization capabilities. All these aspects are discussed in detail and illustrated by means of numerical examples. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
To improve the stability and efficiency of explicit technique, one proposed method is to use an unconditionally stable alternating direction explicit (ADE) scheme. However, the standard ADE scheme is only moderately accurate and restricted to uniform grids. This paper derives a novel high‐order ADE scheme capable of solving the fluid diffusion equation in non‐uniform grids. The new scheme is derived by performing a fourth‐order finite difference approximation to the spatial derivatives of the diffusion equation in non‐uniform grid. The implicit Crank‐Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps, giving rise to a new high‐order ADE scheme. Because the new scheme can be potentially applied in coupled hydro‐mechanical (H‐M) simulation, the pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer program Fast Lagrangian Analysis of Continua. This coupling procedure is called the sequentially explicit coupling technique based on the fourth‐order ADE scheme (SEA‐4). Verifications of well‐known consolidation problems showed that the new ADE scheme and SEA‐4 can reduce computer runtime by 46% to 75% to that of Fast Lagrangian Analysis of Continua's basic scheme. At the same time, the techniques still maintained average percentage error of 1.6% to 3.5% for pore pressure and 0.2% to 1.5% for displacement solutions and were still accurate under typical grid non‐uniformities. This result suggests that the new high‐order ADE scheme can provide an efficient explicit technique for solving the flow equation of a coupled H‐M problem, which will be beneficial for large‐scale and long‐term H‐M problems in geoengineering.  相似文献   

5.
The yield vertex non‐coaxial theory is implemented into a critical state soil model, CASM (Int. J. Numer. Anal. Meth. Geomech. 1998; 22 :621–653) to investigate the non‐coaxial influences on the stress–strain simulations of real soil behaviour in the presence of principal stress rotations. The CASM is a unified clay and sand model, developed based on the soil critical state concept and the state parameter concept. Without loss of simplicity, it is capable of simulating the behaviour of sands and clays within a wide range of densities. The non‐coaxial CASM is employed to simulate the simple shear responses of Erksak sand and Weald clay under different densities and initial stress states. Dependence of the soil behaviour on the Lode angle and different plastic flow rules in the deviatoric plane are also considered in the study of non‐coaxial influences. All the predictions indicate that the use of the non‐coaxial model makes the orientations of the principal stress and the principal strain rate different during the early stage of shearing, and they approach the same ultimate values with an increase in loading. These ultimate orientations are dependent on the density of soils, and independent of their initial stress states. The use of the non‐coaxial model also softens the shear stress evolutions, compared with the coaxial model. It is also found that the ultimate shear strengths by using the coaxial and non‐coaxial models are dependent on the plastic flow rules in the deviatoric plane. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
A method is presented for coupling cubic‐order quadrilateral finite elements with the finite side of a new coordinate ascent hierarchical infinite element. At a common side shared by a hierarchical infinite element and an arbitrary number of finite elements, the displacements are minimized in the least square sense with respect to the degrees‐of‐freedom of the finite elements. This leads to a set of equations that relate the degrees‐of‐freedom of the finite and hierarchical infinite elements on the shared side. The method is applied to a non‐homogeneous cross‐anisotropic half‐space subjected to a non‐uniform circular loading with Young's and shear moduli varying with depth according to the power law. A constant mesh constructed from coupled finite and hierarchical infinite elements is used and convergence is sought simply by increasing the degree of the interpolating polynomial. The displacements and stresses produced by conical and parabolic circular loads applied on the surface are obtained. The efficiency of the proposed method is demonstrated through convergence and comparison studies. New results produced by a frusto‐conical circular load applied on the surface of a half‐space made up of heavily consolidated London clay are provided. The non‐homogeneity parameter and degree of anisotropy are shown to influence the soil response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Metagranodiorite samples from the Brossasco‐Isasca Unit, Dora‐Maira Massif, western Alps, show pseudomorphous and coronitic textures where igneous minerals were partially replaced by ultra‐high pressure (UHP) metamorphic assemblages. The original magmatic paragenesis consisted of quartz, plagioclase, K‐feldspar, biotite and minor phases. During UHP metamorphism, the plagioclase (site P) was replaced by zoisite, jadeite, quartz, K‐feldspar and kyanite, and coronitic reactions developed between biotite and adjacent minerals. At the original igneous biotite–quartz contact (site A), a single corona of poorly zoned garnet is developed, whereas at the biotite–K‐feldspar (site B) and biotite–plagioclase (site C) contacts, composite coronas are formed. Integration of results from petrographic observations, calculations of mineral stoichiometry and thermodynamic calculations of mineral stability has allowed the determination of the metamorphic reactions involved and the estimation of the metamorphic conditions, which reached as high as 24 kbar and 650 °C. Accurate microanalysis by energy‐dispersive spectroscopy (EDS) and statistical analysis of the data allowed us to identify, for the first time in a natural Na‐pyroxene of metagranitoid rocks, the end‐member Ca‐Eskola.  相似文献   

8.
A simple thermo‐hydro‐mechanical (THM) constitutive model for unsaturated soils is described. The effective stress concept is extended to unsaturated soils with the introduction of a capillary stress. This capillary stress is based on a microstructural model and calculated from attraction forces due to water menisci. The effect of desaturation and the thermal softening phenomenon are modelled with a minimal number of material parameters and based on existing models. THM process is qualitatively and quantitatively modelled by using experimental data and previous work to show the application of the model, including a drying path under mechanical stress with transition between saturated and unsaturated states, a heating path under constant suction and a deviatoric path with imposed suction and temperature. The results show that the present model can simulate the THM behaviour in unsaturated soils in a satisfactory way. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The paper presents a mechanical model for non‐isothermal behaviour of unsaturated soils. The model is based on an incrementally non‐linear hypoplastic model for saturated clays and can therefore tackle the non‐linear behaviour of overconsolidated soils. A hypoplastic model for non‐isothermal behaviour of saturated soils was developed and combined with the existing hypoplastic model for unsaturated soils based on the effective stress principle. Features of the soil behaviour that are included into the model, and those that are not, are clearly distinguished. The number of model parameters is kept to a minimum, and they all have a clear physical interpretation, to facilitate the model usefulness for practical applications. The step‐by‐step procedure used for the parameter calibration is described. The model is finally evaluated using a comprehensive set of experimental data for the thermo‐mechanical behaviour of an unsaturated compacted silt. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
It is normally accepted that materials inside the shear band undergo severe rotation of the principal stress direction, which causes non‐coaxiality between the principal stress and principal plastic strain rate. However, classical plasticity flow theory implicitly assumes that the principal stress and the principal plastic strain rate are coaxial; thus, it may not correctly predict the onset of the shear band. In addition, classical continuum does not contain any internal length scales; as a result, it cannot provide a reasonable shear band thickness. In this study, the original vertex non‐coaxial plastic model based on the classical continuum is extended to the Cosserat continuum. The corresponding codes are implemented via the interface of the user defined element subroutine in ABAQUS. Through a simple shear test, the effectiveness of the user's codes is verified. Through a uniaxial compression test, the influence of non‐coaxiality on the onset, the orientation, and the thickness of the shear band is investigated. Results show that the onset of the shear localization is delayed, and the thickness of the shear band is widened when the non‐coaxial degree increases, while the orientation of the shear band is little affected by the non‐coaxial degree. In addition, it is found that the non‐coaxiality can weaken the micro‐polar effect to some extent; nonetheless, the Cosserat non‐coaxial model still has its advantage over the classical non‐coaxial model in capturing the pre‐bifurcation as well as the post‐bifurcation behaviors of strain localization. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This paper integrates random field simulation of soil spatial variability with numerical modeling of coupled flow and deformation to investigate consolidation in spatially random unsaturated soil. The spatial variability of soil properties is simulated using the covariance matrix decomposition method. The random soil properties are imported into an interactive multiphysics software COMSOL to solve the governing partial differential equations. The effects of the spatial variability of Young's modulus and saturated permeability together with unsaturated hydraulic parameters on the dissipation of excess pore water pressure and settlement are investigated using an example of consolidation in a saturated‐unsaturated soil column because of loading. It is found that the surface settlement and the pore water pressure profile during the process of consolidation are significantly affected by the spatially varying Young's modulus. The mean value of the settlement of the spatially random soil is more than 100% greater than that of the deterministic case, and the surface settlement is subject to large uncertainty, which implies that consolidation settlement is difficult to predict accurately based on the conventional deterministic approach. The uncertainty of the settlement increases with the scale of fluctuation because of the averaging effect of spatial variability. The effects of spatial variability of saturated permeability ksat and air entry parameters are much less significant than that of elastic modulus. The spatial variability of air entry value parameters affects the uncertainties of settlement and excess pore pressure mostly in the unsaturated zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The development of a coupled damage‐plasticity constitutive model for concrete is presented. Emphasis is put on thermodynamic admissibility, rigour and consistency both in the formulation of the model, and in the identification of model parameters based on experimental tests. The key feature of the thermodynamic framework used in this study is that all behaviour of the model can be derived from two specified energy potentials, following procedures established beforehand. Based on this framework, a constitutive model featuring full coupling between damage and plasticity in both tension and compression is developed. Tensile and compressive responses of the material are captured using two separate damage criteria, and a yield criterion with a multiple hardening rule. A crucial part of this study is the identification of model parameters, with these all being shown to be identifiable and computable based on standard tests on concrete. Behaviour of the model is assessed against experimental data on concrete. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the non‐coaxial relation between the principal plastic strain increments and the principal stresses, which results from the internal friction in geomaterials, is analyzed, and the phenomenon of the unbalanced development of plastic flow in two conjugate directions is discussed. A non‐coaxial, unbalanced plastic flow model for Coulomb frictional materials is developed and used to determine the orientation of shear band in geomaterials. It is shown that the unbalanced index r of plastic flow has important effect on the orientation of the shear band, and the orientation determined by the conventional plastic flow theory is only a special case of the proposed model when r=0. This result soundly explains the reason that the geomaterials with the same internal friction angle and dilatancy angle can have very different shear band orientations. In addition, the difference between the intrinsic and apparent dilatancy angles is analyzed, and it is emphasized that the dilatancy angle commonly used in practice is indeed the apparent dilatancy angle. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The development of bedforms under unidirectional, oscillatory and combined‐flows results from temporal changes in sediment transport, flow and morphological response. In such flows, the bedform characteristics (for example, height, wavelength and shape) change over time, from their initiation to equilibrium with the imposed conditions, even if the flow conditions remain unchanged. These variations in bedform morphology during development are reflected in the sedimentary structures preserved in the rock record. Hence, understanding the time and morphological development in which bedforms evolve to an equilibrium stage is critical for informed reconstruction of the ancient sedimentary record. This article presents results from a laboratory flume study on bedform development and equilibrium development time conducted under purely unidirectional, purely oscillatory and combined‐flow conditions, which aimed to test and extend an empirical model developed in past work solely for unidirectional ripples. The present results yield a unified model for bedform development and equilibrium under unidirectional, oscillatory and combined‐flows. The experimental results show that the processes of bedform genesis and growth are common to all types of flows, and can be characterized into four stages: (i) incipient bedforms; (ii) growing bedforms; (iii) stabilizing bedforms; and (iv) fully developed bedforms. Furthermore, the development path of bedform; growth exhibits the same general trend for different flow types (for example, unidirectional, oscillatory and combined‐flows), bedform size (for example, small versus large ripples), bedform shape (for example, symmetrical or rounded), bedform planform geometry (for example, two‐dimensional versus three‐dimensional), flow velocities and sediment grain sizes. The equilibrium time for a wide range of bed configurations was determined and found to be inversely proportional to the sediment transport flux occurring for that flow condition.  相似文献   

15.
16.
This paper presents a non‐linear coupled finite element–boundary element approach for the prediction of free field vibrations due to vibratory and impact pile driving. Both the non‐linear constitutive behavior of the soil in the vicinity of the pile and the dynamic interaction between the pile and the soil are accounted for. A subdomain approach is used, defining a generalized structure consisting of the pile and a bounded region of soil around the pile, and an unbounded exterior linear soil domain. The soil around the pile may exhibit non‐linear constitutive behavior and is modelled with a time‐domain finite element method. The dynamic stiffness matrix of the exterior unbounded soil domain is calculated using a boundary element formulation in the frequency domain based on a limited number of modes defined on the interface between the generalized structure and the unbounded soil. The soil–structure interaction forces are evaluated as a convolution of the displacement history and the soil flexibility matrices, which are obtained by an inverse Fourier transformation from the frequency to the time domain. This results in a hybrid frequency–time domain formulation of the non‐linear dynamic soil–structure interaction problem, which is solved in the time domain using Newmark's time integration method; the interaction force time history is evaluated using the θ‐scheme in order to obtain stable solutions. The proposed hybrid formulation is validated for linear problems of vibratory and impact pile driving, showing very good agreement with the results obtained with a frequency‐domain solution. Linear predictions, however, overestimate the free field peak particle velocities as observed in reported field experiments during vibratory and impact pile driving at comparable levels of the transferred energy. This is mainly due to energy dissipation related to plastic deformations in the soil around the pile. Ground vibrations due to vibratory and impact pile driving are, therefore, also computed with a non‐linear model where the soil is modelled as an isotropic elastic, perfectly plastic solid, which yields according to the Drucker–Prager failure criterion. This results in lower predicted free field vibrations with respect to linear predictions, which are also in much better agreement with experimental results recorded during vibratory and impact pile driving. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
In quasi‐brittle material the complex process of decohesion between particles in microcracks and localization of the displacement field into macrocracks is limited to a narrow fracture zone, and it is often modelled with cohesive crack models. Since the anisotropic nature of the decohesion process in separation and sliding is essential, it is particularly focused in this paper. Moreover, for cyclic and dynamic loading the unloading, load reversal (including crack closure) and rate dependency are essential features that are included in a new model. The modelling of degradation is based on a ‘localized’ version of anisotropic continuum damage coupled to inelasticity. The concept of strain energy equivalence between the states in the effective and nominal settings is adopted in order to define the free energy of the interface. The proposed fracture criterion is of the Mohr type, with a smooth transition of the failure and kinematics (slip and dilatation) characteristics between tension and shear. The chosen potential, of the Lemaitre‐type, for evolution of the dissipative processes is additively decomposed into plastic and damage parts, and non‐associative constitutive equations are obtained. The constitutive equations are integrated by applying the backward Euler rule and by using Newton iteration. The proposed model is assessed analytically and numerically and a typical calibration procedure for concrete is proposed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The migration of contaminant through soil is usually modeled using the advection‐dispersion equation and assumes that the porous media is stationary without introducing a constitutive equation to represent soil structure. Consequently, time‐dependent deformation induced by soil consolidation or physical remediation is not considered, despite the need to consider these variables during planning for the remediation of contaminated ground, the prediction of contaminated groundwater movement, and the design of engineered landfills. This study focuses on the numerical modeling of solute transfer during consolidation as a first step to resolve some of these issues. We combine a coupling theory‐based mass conservation law for soil‐fluid‐solute phases with finite element modeling to simulate solute transfer during deformation and groundwater convection. We also assessed the sensitivity of solute transfer to the initial boundary conditions. The modeling shows the migration of solute toward the ground surface as a result of ground settlement and the dissipation of excess pore water pressure. The form of solute transport is dependent on the ground conditions, including factors such as the loading schedule, contamination depth, and water content. The results indicate that an understanding of the interaction between coupling phases is essential in predicting solute transfer in ground deformation and could provide an appropriate approach to ground management for soil remediation.  相似文献   

19.
Although numerous numerical models have been proposed for simulating the coupled hydromechanical behaviors in unsaturated soils, few studies satisfactorily reproduced the soil–water–air three‐phase coupling processes. Particularly, the impacts of deformation dependence of water retention curve, bonding stress, and gas flow on the coupled processes were less examined within a coupled soil–water–air model. Based on our newly developed constitutive models (Hu et al., 2013, 2014, 2015) in which the soil–water–air couplings have been appropriately captured, this study develops a computer code named F2Mus3D to investigate the coupled processes with a focus on the above impacts. In the numerical implementation, the generalized‐α time integration scheme was adopted to solve the equations, and a return‐mapping implicit stress integration scheme was used to update the state variables. The numerical model was verified by two well‐designed laboratory tests and was applied for modeling the coupled elastoplastic deformation and two‐phase fluid flow processes in a homogenous soil slope induced by rainfall infiltration. The simulation results demonstrated that the numerical model well reproduces the initiation of a sheared zone at the toe of the slope and its propagation toward the crest as the rain infiltration proceeds, which manifests a typical mechanism for rainfall‐induced shallow landslides. The simulated plastic strain and deformation would be remarkably underestimated when the bonding stress and/or the deformation‐dependent nature of hydraulic properties are ignored in the coupled model. But on the contrary, the negligence of gas flow in the slope soil results in an overestimation of the rainfall‐induced deformation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
为了研究温度对水饱和边坡夹层力学参数的影响,将水饱和边坡夹层视为固-液两相的线弹性体,建立了水饱和边坡夹层热-孔隙水-力耦合作用的力学模型,并推导了其耦合控制方程;采用物理相似模拟的方法,建立了与边坡原型相似的试验模型,研究温度引起的边坡夹层力学参数的变化特征;通过比较分析理论计算结果与模型试验结果,验证了所建立的耦合力学模型的适用性。研究结果表明:孔隙水压力系数和热压力系数是引起水饱和边坡夹层孔隙水压力增加的关键控制因素;孔隙水压力系数取决于孔隙排水压缩特性和固相介质压缩特性,这两者差值越大,孔隙水压力系数越大;孔隙水热膨胀系数和孔隙体积热膨胀系数是影响热压力系数的主要因素,这两者差值越大,热压力系数也越大;边坡夹层孔隙水压力随温度升高呈现出先缓慢增加而后急剧增加的变化特征,而黏聚力和抗剪强度随温度升高而缓慢降低,且孔隙水压力的理论计算结果与试验测试结果吻合良好。因此,水饱和边坡夹层热-孔隙水-力耦合作用的力学模型能较好地反映孔隙水压力在加热升温过程中的变化特征,为科学地预测和控制类似边坡工程的稳定性提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号