首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ore Geology Reviews》2003,22(1-2):17-39
Many talc deposits occur in the Hwanggangri Mineralized Zone (HMZ) in dolomitic marbles of the Cambro-Ordovician Samtaesan Formation within 1 km of the contact with the Cretaceous Muamsa Granite. Talc commonly forms fine-grained, fibrous aggregates, or pseudomorphs after tremolite; abundant tremolite is included as impurities in the talc ore. Talc generally was derived from tremolite in calc-silicate rock within the dolomitic marble. Calc-silicate rock, consisting mainly of tremolite and diopside, was generated from silicic metasomatism during the prograde stage, which promoted decarbonation reactions until dolomite was exhausted locally. Hydrothermal alteration of calc-silicate rock to talc is marked by the addition of Mg and Si, and the leaching of Ca; Cr, Co, and Ni were relatively immobile during the retrograde stage. Contact metamorphism related to the granite intrusion generated the successive appearance of tremolite, diopside, and forsterite, or wollastonite-bearing assemblages in the marble, depending on the bulk rock composition. The XCO2 content of the metamorphic fluids rose initially above XCO2=0.6, and decreased steadily toward a water-rich composition with increasing temperature above 600 °C in the calcitic marble, while buffered reaction of the dolomitic marble occurred at higher XCO2 conditions above 600 °C. Talc mineralization developed under metastable conditions with infiltration of large amounts of igneous fluids along a fault-shattered zone during the retrograde stage and is characterized by the loss of Ca2+ with the addition of Mg2+. Oxygen and carbon isotopic variations of carbonate and calc-silicate minerals are in agreement with theoretical relationships determined for decarbonation products of contact metamorphism. Talc formation temperatures obtained from oxygen isotope fractionation, TXCO2 relationships, and activity diagrams range from 380 to 400 °C.  相似文献   

2.
Abstract. The supergiant Xikuangshan Sb deposit is located in the Middle to Upper Devonian limestone of central Hunan, China. Primary ores are composed of early-stage stibnite and calcite with rare pyrite, early main-stage stibnite and quartz, and late main-stage stibnite and calcite. New sulfur isotope data reveal the clustering of δ34S values (+5 ∼ +8 %) for both early and late main-stage stibnite; a single early-stage stibnite exhibits δ34S value (+7.5 %) identical to its main ore-stage counterparts and the coexisting calcite has almost unmodified carbon isotope composition (-4.4 %). The data suggest a probable common source of sulfur for stibnite that was deposited at different paragenetic stages. A much wider variation in δ34S values for early main-stage stibnite (+3.5 to +16.3 %, av. +7.5 %) compared to that for late main-stage stibnite (+5.3 to +8.1 %, av. +6.2 %) can be interpreted to be due to local interaction of earlier ore fluid with Devonian host rocks. The previous studies show that the Precambrian basement contains elevated Sb concentrations, and two distinctive sulfur reservoirs with δ34Spyrite values at ca. +11 ∼ +24 % and -7.0 ∼-11 %. The homogenizing effect for sulfur hydrothermally leached from the two reservoirs might have provided ore constituents for the Xikuangshan fluids.  相似文献   

3.
Abstract. Fluid inclusion and oxygen isotope studies are performed to obtain temperatures and oxygen isotopic compositions of hydrothermal fluids for the vein-type tungsten-copper deposit at Takatori in Ibaraki Prefecture, Japan. Temperatures of the hydrothermal fluids are calculated from fluid inclusion data. The calculation incorporates the effects of the salinity, gas concentration, and fluid pressure. The fluid temperatures range from 370 to 460C. For these calculations, this study obtains a density equation for H2O-NaCl-CO2 solution at the vapor-liquid two-phase boundary. Then the present study combines the obtained equation with the equation of state by Bowers and Helgeson (1983).
The fluid temperatures determined in this study are applied to the calculation of oxygen isotopic compositions of the hydrothermal fluids. The calculation of the oxygen isotopic compositions is based on the oxygen isotope analyses of vein quartz. The oxygen isotopic compositions of vein quartz range from +13.5 to +14.4 % relative to SMOW. Then, the oxygen isotopic compositions of the hydrothermal fluids in equilibrium with the vein quartz are calculated to be from +9.7 to +10.5 %. These δ18Ofluid values agree with those of magmatic fluids derived from the ilmenite-series granitic rock, which is related to the mineralization. Keywords: Takatori tungsten-copper deposit, fluid inclusion, oxygen isotope, vein quartz, H2O-NaCl-CO2 solution, density  相似文献   

4.
M.J. Bickle 《地学学报》1996,8(3):270-276
The seawater 87Sr/86Sr curve implies a 50–100 Myr episodicity in weathering rate which requires a corresponding variation in CO2 degassing from the solid earth to the atmosphere. It is proposed that this is caused by orogenesis, which both produces CO2 as a result of metamorphic decarbonation reactions, and consumes extra CO2 as a consequence of erosion-enhanced weathering. Global climate on the geological time-scale is therefore contTolled by the difference between the relatively large and variable orogenic-moderated degassing and weathering CO2 fluxes.  相似文献   

5.
A large mass of dolomitic marble including many eclogite blocks occurs in orthogneisses of the Rongcheng area of the Su-Lu province, eastern China. The marble consists mainly of dolomite, calcite (formerly aragonite), graphite, forsterite, diopside, talc, tremolite and phlogopite. Aggregates of talc and calcite occur at the boundary between dolomite and diopside. Tremolite is a reaction product between talc and calcite. Eclogite blocks are rimmed by dark green amphibolite. The primary mineral assemblage in the core of eclogite is Na-bearing garnet (up to 0.2  wt% Na2O), omphacitic pyroxene, clintonite and rutile. Secondary minerals are pargasitic/edenitic amphibole, plagioclase, sodic diopside, chlorite, zoisite and titanite. The peak metamorphic conditions, based on stability of the dolomite+forsterite+aragonite (now calcite)+graphite assemblage, under conditions where tremolite is unstable, are estimated at T  =610–660 °C and P =2.5–3.5  GPa (for X CO=0.001). A reaction between dolomite and diopside to form talc under tremolite-unstable conditions indicates a temperature decrease under ultra-high-pressure conditions ( P >2.4  GPa, X CO<0.0013). The formation of secondary tremolite is consistent with a nearly adiabatic pressure decrease post-dating the ultra-high-pressure metamorphism. The temperature decrease under ultra-high-pressure conditions preceding decompression may reflect the underplating of a cold slab, and the rapid decompression probably corresponds to the upwelling stage promoted by the delamination of a downwelling lithospheric root. The P – T  conditions of the amphibolitization stage are estimated at <0.9  GPa and <460 °C, and are similar to conditions recorded by the surrounding orthogneisses.  相似文献   

6.
Garnet peridotites occur as lenses, blocks or layers within granulite–amphibolite facies gneiss in the Dabie-Sulu ultra-high-pressure (UHP) terrane and contain coesite-bearing eclogite. Two distinct types of garnet peridotite were identified based on mode of occurrence and petrochemical characteristics. Type A mantle-derived peridotites originated from either: (1) the mantle wedge above a subduction zone, (2) the footwall mantle of the subducted slab, or (3) were ancient mantle fragments emplaced at crustal depths prior to UHP metamorphism, whereas type B crustal peridotite and pyroxenite are a portion of mafic–ultramafic complexes that were intruded into the continental crust as magmas prior to subduction. Most type A peridotites were derived from a depleted mantle and exhibit petrochemical characteristics of mantle rocks; however, Sr and Nd isotope compositions of some peridotites have been modified by crustal contamination during subduction and/or exhumation. Type B peridotite and pyroxenite show cumulate structure, and some have experienced crustal metasomatism and contamination documented by high 87Sr/86Sr ratios (0.707–0.708), low εNd( t ) values (−6 to −9) and low δ18O values of minerals (+2.92 to +4.52). Garnet peridotites of both types experienced multi-stage recrystallization; some of them record prograde histories. High- P–T  estimates (760–970 °C and 4.0–6.5±0.2 GPa) of peak metamorphism indicate that both mantle-derived and crustal ultramafic rocks were subducted to profound depths >100 km (the deepest may be ≥180–200 km) and experienced UHP metamorphism in a subduction zone with an extremely low geothermal gradient of <5 °C km−1.  相似文献   

7.
The δ13Ccarb and 87Sr/86Sr secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local δ13Ccarb fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative δ13Ccarb excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590–544 Myr interval, and two age-groups at 660–610 and 740–690 Myr can be resolved.  相似文献   

8.
U–Pb age, trace element and Hf isotope compositions of zircon were analysed for a metasedimentary rock and two amphibolites from the Kongling terrane in the northern part of the Yangtze Craton. The zircon shows distinct morphological and chemical characteristics. Most zircon in an amphibolite shows oscillatory zoning, high Th/U and 176Lu/177Hf ratios, high formation temperature, high trace element contents, clear negative Eu anomaly, as well as HREE-enriched patterns, suggesting that it is igneous. The zircon yields a weighted mean 207Pb/206Pb age of 2857 ± 8 Ma, representing the age of the magmatic protolith. The zircon in the other two samples is metamorphic. It has low Th/U ratios, low trace element concentrations, variable HREE contents (33.8 ≥ LuN≥2213; 14.7 ≤ LuN/SmN ≤ 354) and 176Lu/177Hf ratios (0.000030–0.001168). The data indicate that the zircon formed in the presence of garnet and under upper amphibolite facies conditions. The metamorphic zircon yields a weighted mean 207Pb/206Pb age of 2010 ± 13 Ma. These results combined with previously obtained Palaeoproterozoic metamorphic ages suggest a c. 2.0 Ga Palaeoproterozoic collisional event in the Yangtze Craton, which may result from the assembly of the supercontinent Columbia. The zircon in two samples yields weighted mean two-stage Hf model ( T DM2) ages of 3217 ± 110 and 2943 ± 50 Ma, respectively, indicating that their protoliths were mainly derived from Archean crust.  相似文献   

9.
A. Gerdes 《地学学报》2001,13(4):305-312
Recent studies have shown that melts and residues may not equilibrate during anatexis, and uncertainty exists about the scale on which magmas can be homogenized. This study of elemental and isotopic homogeneity of the South Bohemian Weinsberg granites (˜ 5000 km2) identifies three voluminous, relatively homogeneous magma batches. Each batch has different 87Sr/86Srinit (0.7080, 0.7093 and 0.7106), but all equilibrated at ˜ 327–329 Ma, very similar to the time of monazite crystallization. The data cannot entirely prove melt/residue equilibration during anatexis. However, elemental and isotopic compositions imply magma generation by partial melting of heterogeneous South Bohemian crust and chemical differentiation subsequent to Sr-isotope equilibration. Assuming relatively rapid ascent and solidification rates, magma homogenization must have occurred mostly just after partial melting, during melt segregation and accumulation in the deeper crust with slow prograde heating. Models of rapid crustal heating and instantaneous melt extraction are incompatible with the data.  相似文献   

10.
Calcsilicate xenoliths occur in large numbers in some lavas and pyroclastic flows of Lascar Volcano. Their whole-rock major element and REE compositions indicate that the protolith was the Upper Cretaceous Yacoraite Formation, which crops out extensively in NW Argentina. The whole-rock major element compositions of the xenoliths fall into specific groups suggesting a strong geochemical zonation in the skarn zone. Three geochemical zones have been identified; (1) an outer metamorphic zone rich in wollastonite; (2) a middle zone rich in pyroxene and garnet; (3) an inner zone rich in pyroxene and magnetite. The two innermost zones have developed from the wollastonite zone by infiltration of metasomatic fluids rich in Fe, Mn, Mg, Ti and Al. Whole-rock REE patterns have not changed significantly during prograde metamorphism and metasomatism, indicating REE immobility in the altering fluids. Retrograde alteration by acid-sulphate fluids produced anhydrite skarns and secondary calcite and wilkeite veins in the wollastonite zone. The carbon and oxygen isotopic compositions of this calcite indicate that it formed by Rayleigh crystallization from a low-temperature (<200 °C) fluid containing dissolved H2CO3. The calculated δ18O of the water in this fluid suggests a magmatic origin whereas the calculated δ13C of the dissolved carbonate is consistent with derivation from rocks of the Yacoraite Formation at 350 °C. It is suggested that the magmatic acid-sulphate fluid was responsible for leaching carbonate from the surrounding carbonate rocks and redepositing it in the skarn zone. REEs were mobilized during the retrograde acid-sulphate and acid-carbonate alteration. A negative Ce anomaly associated with this carbonate and sulphate indicates high oxygen fugacities in the mineralizing fluids.  相似文献   

11.
Abstract Fluids, some of which are CO2-rich (up to 40 mol.% CO2) and some of which are highly saline (up to 18 wt% NaCl equivalent), are trapped as fluid inclusions in quartz-calcite (∼ metallic minerals) veins which cross-cut the pumpellyite-actinolite to amphibolite facies rocks of the Alpine Schist. Fluids were commonly trapped as immiscible liquid-vapour mixes in quartz and calcite showing open-space growth textures. Fluid entrapment occurred at fluid pressures near 500 bars (possibly as low as 150 bars) at temperatures ranging from 260 to 330° C. Saline fluids may have formed by partitioning of dissolved salts into an aqueous phase on segregation of immiscible fluids from a low-density CO2-rich fluid. Calcite deposited by these fluids has δ13C ranging from – 8.4 to – 11.5 and δ18O from + 4 to + 13. Isotopic data, fluid compositions and mode of occurrence suggest that the fluids are derived from high-grade metamorphic rocks. Fluid interaction with wall-rock has caused biotite crystallization and/or recrystallization in some rocks and retrogression of biotite to chlorite in other rocks.
Fluid penetration through the rock is almost pervasive in many areas where permeability, probably related to Alpine Fault activity, has focussed fluids on a regional scale into fractured rocks. The fluid flow process is made possible by high uplift-rates (in excess of 10 mm/year) bringing hot rocks near to the surface.  相似文献   

12.
Abstract. The Re-Os isotopic compositions of sulfide ores were analyzed for the Gacun, a volcanogenic massive sulfide deposit in southwestern China, to constrain the timing of mineralization. Sulfide ores from the deposit have a wide range of Re and Os concentrations, varying from 80.2 to 1543.2 ppb and from 0.307 to 8.83 ppb, respectively, and yielded a limited field of high 187Re/188Os and high 187Os/188Os ratios, ranging from 1452 to 3309 and from 5.77 to 13.24, respectively. All sulfide samples yielded an isochron with an age of 217±28 Ma and an initial 187Os/188Os ratio of around 0.52±0.73. The Re-Os isochron age agrees with ages previously constrained by the other isotopic dating of the host rocks and fossil strata for the deposit. The rhythmic variation in 187Os/188Os and 187Re/188Os ratios within massive sulfide zone records a complicated process for ore-forming fluids episodically vented into the brine pool on the Mesozoic seafloor.  相似文献   

13.
Calcite and quartz veins have formed, and are forming, in steeply dipping fissures in the actively rising Alpine Schist metamorphic belt of New Zealand. The fluids that deposited these minerals were mostly under hydrostatic pressure almost down to the brittle-ductile transition, which has been raised to 5-6 km depth by rapid uplift. Some fluids were trapped under lithostatic pressures. Fluids in the fissure veins were immiscible H2O + NaCl-CO2 mixtures at 200-350 C. Bulk fluid composition is 15-20 mol% CO2 and <4.3 total mol CH4+ N2+ Ar/100mol H2O. Water hydrogen isotopic ratio δDH2O in the fissure veins spans -29 to -68‰, δ18OH2O -0.7 to 8.5‰, and bulk carbon isotopic ratio δ13C ranges from -3.7 to -11.7‰. The oxygen and hydrogen isotopic data suggest that the water has a predominantly meteoric source, and has undergone an oxygen isotope shift as a result of interaction with the host metamorphic rock. Similar fluids were present during cooling and uplift. Dissolved carbon is not wholly derived from residual metamorphic fluids; part may be generated by oxidation of graphite.  相似文献   

14.
ABSTRACT
The mineralogy and isotope geochemistry of carbonate minerals in the Coorong area are determined by the water chemistry of different depositional environments ranging from seawater to evaporitically modified continental water. The different isotopic compositions of coexisting calcite and dolomite suggest that each of the above two minerals was formed from water of composition and origin unique to that specific mineral. In addition, the dolomite was not formed by simple solid state cation exchange.
The occurrence of two types of dolomite was shown by isotope analysis and SEM observations. The dolomite, which is isotopically light (δ13C = -1 to -2% 0 ; δ18O=+3 to +5%0) and of fine grain size (˜ 0·5 μm) probably precipitated under the influence of evaporitically modified continental water. Coarser grained dolomite (up to 4 μm) is isotopically heavier (δ13C=+3 to +4%0; δ18O=+5 to + 6%0) contains Mg in excess of Ca and was formed in or close to equilibrium with atmospheric CO2 probably by the dolomitization of aragonite.  相似文献   

15.
Fluid compositions and bedding‐scale patterns of fluid flow during contact metamorphism of the Weeks Formation in the Notch Peak aureole, Utah, were determined from mineralogy and stable isotope compositions. The Weeks Formation contains calc‐silicate and nearly pure carbonate layers that are interbedded on centimetre to decimetre scales. The prograde metamorphic sequence is characterized by the appearance of phlogopite, diopside, and wollastonite. By accounting for the solution properties of Fe, it is shown that the tremolite stability field was very narrow and perhaps absent in the prograde sequence. Unshifted oxygen and carbon isotopic ratios in calcite and silicate minerals at all grades, except above the wollastonite isograd, show that there was little to no infiltration of disequilibrium fluids. The fluid composition is poorly constrained, but X(CO2)fluid must have been >0.1, as indicated by the absence of talc, and has probably increased with progress of decarbonation reactions. The occurrence of scapolite and oxidation of graphite in calc‐silicate beds of the upper diopside zone provide the first evidence for limited infiltration of external aqueous fluids. Significantly larger amounts of aqueous fluid infiltrated the wollastonite zone. The aqueous fluids are recorded by the presence of vesuvianite, large decreases in δ18O values of silicate minerals from c. 16‰ in the diopside zone to c. 10‰ in the wollastonite zone, and extensive oxidation of graphite. The carbonate beds interacted with the fluids only along margins where graphite was destroyed, calcite coarsened, and isotopic ratios shifted. The wollastonite isograd represents a boundary between a high aqueous fluid‐flux region on its higher‐grade side and a low fluid‐flux region on its lower‐grade side. Preferential flow of aqueous fluids within the wollastonite zone was promoted by permeability created by the wollastonite‐forming reaction and the natural tendency of fluids to flow upward and down‐temperature near the intrusion‐wall rock contact.  相似文献   

16.
对安徽新桥矿床进行系统的野外地质调查和矿相学研究发现,层状矿体中的胶状黄铁矿交代矽卡岩磁铁矿矿体,为探讨层状硫化物矿床是早期沉积成因还是岩浆热液成因提供了新的地质约束。对铜陵矿集区内的新桥矿床层状菱铁矿矿体和凤凰山矽卡岩型矿体中的菱铁矿开展了Fe同位素组成的对比研究,结果显示:新桥矿床菱铁矿与典型低温热液脉型矿床和沉积铁矿中的菱铁矿在Fe同位素组成特征上有所不同,而与凤凰山矽卡岩型矿床中的菱铁矿更为接近;新桥矿床中胶状黄铁矿和菱铁矿相对于磁铁矿富集Fe的轻同位素,表明磁铁矿不是过去认为的由胶状黄铁矿和菱铁矿矿胚层经热液改造形成,而是与典型的岩浆热液有关。新桥矿区层状硫化物矿体和矽卡岩型矿体中,近岩体矽卡岩和最早形成的金属矿物磁铁矿比岩体更为富集Fe的轻同位素,而赋矿围岩比岩体更为富集Fe的重同位素。同时,不同矿化阶段形成的含铁矿物和不同空间位置的硫化物中的Fe同位素组成呈现出时空分带现象,Fe同位素组成的时空演化特征与流体出溶、流体演化非常一致,并且符合同位素分馏的基本理论,表明层状硫化物矿体和矽卡岩型矿体具有相同的成矿物质来源,为同一流体体系演化的产物。新桥矿区岩相学的研究结果和Fe同位素组成特征均表明,新桥层状硫化物矿床不是海西期喷流沉积成矿作用的产物,而是燕山期热液成矿作用的产物,为一个典型的热液成因矿床。  相似文献   

17.
目前关于恰功矽卡岩型铁矿床的流体演化过程及成矿机制,尤其是铁-铅矿体的成矿作用尚缺研究.对不同阶段的主要矿物进行包裹体均一温度-盐度、激光拉曼光谱分析以及H-O同位素测试.进矽卡岩阶段包裹体均一温度为400~550℃;盐度为15.5%~20.9% NaCleqv,其中S型盐度高达56.5% NaCleqv;气液相成分均为H2O.退化蚀变阶段包裹体均一温度为350~420℃;盐度集中于14.1%~16.6% NaCleqv,少量为2%~8% NaCleqv,而S型包裹体盐度亦高达55.8% NaCleqv;气液相成分均为H2O,液相富含HCO3-和CO32-.石英-方铅矿阶段包裹体均一温度范围为238~343℃,对应盐度为3.1~13.9% NaCleqv,其中含CO2三相包裹体完全均一温度集中在290~310℃,盐度为1.6%~11.2% NaCleqv.石英-方解石阶段包裹体均一温度与盐度分别为242~360℃和1.7%~11.8% NaCleqv,气液相成分均为H2O.H-O同位素显示:进矽卡岩阶段δDH2O为-106.4‰~-113.2‰,δ18OH2O为6.2‰~8.0‰;退化蚀变阶段δDH2O为-84.8‰~-130.1‰,δ18OH2O为2.7‰~5.5‰,退化蚀变阶段δ18OH2O值相对进矽卡岩阶段低;石英-方铅矿阶段δDH2O为-95.3‰~-103.8‰,δ18OH2O为-1.6‰~-0.7‰;石英-方解石阶段δDH2O为-67.4‰~-101.0‰,δ18OH2O为-0.8‰~0.6‰.结果表明流体整体具有从高温、中-高盐度逐渐向低温、低盐度演化的特征,矽卡岩期成矿流体来源于岩浆出溶;矽卡岩期流体的不混溶作用并与围岩发生反应是磁铁矿沉淀的重要机制,石英-方铅矿阶段流体温压下降是方铅矿沉淀的根本原因.   相似文献   

18.
Abstract. The Onsen site is an active submarine hydrothermal system hosted by the Desmos caldera in the Eastern Manus Basin, Papua New Guinea. The hydrothermal fluid is very acidic (pH=1.5) and abundant native sulfur is deposited around the vent. The δ34S values of native sulfur range from -6.5 to -9.3 %o. δ34S values of H2S and SO4 in the hydrothermal fluid are -4.3 to -9.9 %o and +18.6 to +20.0 %o, respectively. These δ34S values are significantly lower than those of the other hydrothermal systems so far reported. These low δ34S values and the acidic nature of the vent fluids suggest that volcanic SO2 gas plays an important role on the sulfur isotope systematic of the Onsen hydrothermal system. Relationship among the δ34S values of S-bearing species can be successively explained by the model based on the disproportionation reaction starting from the volcanic SO2 gas. The predicted δ34S values of SO2 agree with the measured whole rock δ34S values. δD and δ18O values of clay minerals separated from the altered rock samples also suggest the contribution of the magmatic fluid to the hydrothermal system. Present stable isotopic study strongly suggests that the Onsen hydrothermal site in the Desmos caldera is a magmatic submarine hydrothermal system.  相似文献   

19.
Oxygen isotope exchange and closure temperatures in cooling rocks   总被引:3,自引:0,他引:3  
Retrograde exchange of oxygen isotopes between minerals in igneous and metamorphic rocks by means of diffusion is explored using a finite difference computer model, which predicts both the zonation profile of δ18O within grains, and the bulk δ18O value of each mineral in the rock. Apparent oxygen isotope equilibrium temperatures that would be observed in these rocks are calculated from the δ18O values of each mineral pair within the rock. In systems which cool linearly from a sufficiently high temperature or at a low enough cooling rate, such that the final oxygen isotope values are not dependent upon the initial oxygen isotope values ('slow cooling'), the apparent oxygen isotope temperature derived for a rock composed of a single mineral pair can be shown to be simply related to the Dodson closure temperatures ( T c) for the two phases and the mode of the rock. Adding a third phase into a system which undergoes 'slow' cooling will cause the apparent temperature derived for the two minerals already present to differ from the simple relationship for a two-phase system. In some systems oxygen isotope reversals can be developed. If cooling is not 'slow', then the mineral δ18O values resulting from cooling will be partly dependent upon the initial temperature of the system concerned. The model successfully simulates the mineral δ18O values that are often observed in granitic rocks. Application of the model will help in assessing the validity of oxygen isotope thermometry in different geological settings, and allows quantitative prediction of the oxygen isotope fractionations that are developed in cooling closed systems.  相似文献   

20.
The Archean mafic–ultramafic complex of Lac des Iles, Ontario, Canada, hosts economic platinum group elements (PGE)-Au-Cu-Ni mineralization in the Roby Zone. All lithologies in the North Roby Zone have been affected by hydrothermal alteration. The alteration products include talc (the most dominant mineral), anthophyllite, serpentine, actinolite, tremolite, chlorite, hornblende, zoisite, clinozoisite, epidote and sericite. In the altered rocks, light rare earth elements (La, Ce, Nd, Sm), Pb, Rb, Ba, Cs, S and possibly Y have been added by hydrothermal solution whereas Eu and heavy rare earth elements (Yb, Gd, Dy, Er) remained immobile. There are five types of fluid inclusions in the pegmatitic plagioclase with homogenization temperature and salinity ranging from 240°C to 445°C and 15.37 to 48.52 wt% equivalent NaCl, respectively. The δ18O and δD of talc range form 6.2‰ to 6.9‰ and −28‰ to −48‰, respectively. δ18O and δD water in equilibrium with talc during the hydrothermal alteration suggest a modified source for the hydrothermal solution. Microthermometry and stable isotope studies suggest that high temperature–high salinity fluid was diluted by, and mixed with, low temperature–low salinity meteoric solution. This mechanism precipitated the hydrothermal assemblage and redistributed trace elements during and after pegmatite formation in the North Ruby Zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号