首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We present an analysis of the RXTE observations of 4U 1630−47 during its 1998 outburst. The light curve and the spectral evolution of the outburst were significantly different from the outbursts of the same source in 1996 and 1999. Special emphasis was placed on observations taken during the initial rise and during the maximum of the outburst. The maximum of the outburst was divided into three plateaux, with almost constant flux within each plateau, and fast jumps between them. The spectral and timing parameters are stable for each individual plateau, but significantly different between the plateaux. The variability detected on the first plateau is of special interest. During these observations the source exhibits quasi-regular oscillations with a period of ∼ 10–20 s. Our analysis revealed a difference in temporal behaviour of the source at high and low fluxes during this period of time. The source behaviour can be generally explained in the framework of the two-phase model of accretion flow, involving a hot inner Comptonization region and surrounding optically thick disc.
The variability and spectral evolution of the source were similar to what was observed earlier for other X-ray novae. We show that 4U 1630−47 resembles, in several aspects, other transient and persistent black hole binaries.  相似文献   

3.
XTE J1748−288 is a black hole X-ray transient which went into outburst in 1998 June. The X-ray light curves showed canonical morphologies, with minor variations on the 'fast rise exponential decay' profile. The radio source, however, reached an unusually high flux density of over 600 mJy. This high radio flux was accompanied by an exceptional  (>20  per cent)  fractional linear polarization, the variability of which was anticorrelated with the flux density. We use this variability to discuss possible depolarization mechanisms and to predict the underlying behaviour of the (unresolved) core/jet components.  相似文献   

4.
5.
We revisit the discovery outburst of the X-ray transient XTE J1550−564 during which relativistic jets were observed in 1998 September, and review the radio images obtained with the Australian Long Baseline Array, and light curves obtained with the Molonglo Observatory Synthesis Telescope and the Australia Telescope Compact Array. Based on H i spectra, we constrain the source distance to between 3.3 and 4.9 kpc. The radio images, taken some 2 d apart, show the evolution of an ejection event. The apparent separation velocity of the two outermost ejecta is at least  1.3 c   and may be as large as  1.9 c   ; when relativistic effects are taken into account, the inferred true velocity is  ≥ 0.8 c   . The flux densities appear to peak simultaneously during the outburst, with a rather flat (although still optically thin) spectral index of −0.2.  相似文献   

6.
We present optical photometry of the X-ray transient XTE J2123−058, obtained in 1998 July–October. The light curves are strongly modulated on the 5.95-h orbital period, and exhibit dramatic changes in amplitude and form during the decline. We used synthetic models, which include the effect of partial eclipses and X-ray heating effects, to estimate the system parameters, and we constrain the binary inclination to be i =73°±4. The model is successful in reproducing the light curves at different stages of the decay by requiring the accretion disc to become smaller and thinner by 30 per cent as the system fades by 1.7 mag in the optical. From August 26 the system reaches quiescence with a mean magnitude of R =21.7±0.1 and our data are consistent with the optical variability being dominated by the ellipsoidal modulation of the companion.  相似文献   

7.
8.
9.
10.
We report on new X-ray outbursts observed with Swift from three Supergiant Fast X-ray Transients (SFXTs): XTE J1739−302, IGR J17544−2619 and IGR J08408−4503. XTE J1739−302 underwent a new outburst on 2008 August 13, IGR J17544−2619 on 2008 September 4 and IGR J08408−4503 on 2008 September 21. While the XTE J1739−302 and IGR J08408−4503 bright emission triggered the Swift /Burst Alert Telescope, IGR J17544−2619 did not, thus we could perform a spectral investigation only of the spectrum below 10 keV. The broad-band spectra from XTE J1739−302 and IGR J08408−4503 were compatible with the X-ray spectral shape displayed during the previous flares. A variable absorbing column density during the flare was observed in XTE J1739−302 for the first time. The broad-band spectrum of IGR J08408−4503 requires the presence of two distinct photon populations, a cold one (∼0.3 keV) most likely from a thermal halo around the neutron star and a hotter one (1.4–1.8 keV) from the accreting column. The outburst from XTE J1739−302 could be monitored with a very good sampling, thus revealing a shape which can be explained with a second wind component in this SFXT, in analogy to what we have suggested in the periodic SFXT IGR J11215−5952. The outburst recurrence time-scale in IGR J17544−2619 during our monitoring campaign with Swift suggests a long orbital period of ∼150 d (in a highly eccentric orbit), compatible with what previously observed with INTEGRAL .  相似文献   

11.
12.
The outburst of X-ray transient source XTE J2012+381 was detected by the RXTE All-Sky Monitor on 1998 May 24th. Following the outburst, X-ray observations of the source were made in the 2–18 keV energy band with the Pointed Proportional Counters of the Indian X-ray Astronomy Experiment (IXAE) on-board the Indian satellite IRS-P3 during 1998 June 2nd–10th. The X-ray flux of the source in the main outburst decreased exponentially during the period of observation. No large amplitude short-term variability in the intensity is detected from the source. The power density spectrum obtained from the timing analysis of the data shows no indication of any quasi-periodic oscillations in 0.002–0.5 Hz band. The hardness ratio i.e. the ratio of counts in 6–18 keV to 2–6 keV band, indicates that the X-ray spectrum is soft with spectral index >2. From the similarities of the X-ray properties with those of other black hole transients, we conclude that the X-ray transient XTE J2012+381 is likely to be a black hole.  相似文献   

13.
14.
15.
16.
We present the results of the analysis of Rossi X-ray Timing Explorer ( RXTE ) observations of the new X-ray transient, SWIFT J1753.5−0127, during its outburst in 2005 July. The source was caught at the peak of the burst with a flux of 7.19e-09 erg s−1cm−2 in the 3–25 keV energy range and observed until it decreased by about a factor of 10. The photon index of the power-law component, which is dominant during the entire outburst, decreases from ∼1.76 to 1.6. However, towards the end of the observations the photon index is found to increase, indicating a softening of the spectra. The presence of an ultrasoft thermal component, during the bright phases of the burst, is clear from the fits to the data. The temperature associated with this thermal component is 0.4 keV. We believe that this thermal component could be due to the presence of an accretion disc. Assuming a distance of 8.5 kpc,   L X/ L Edd≃ 0.05  at the peak of the burst, for a black hole of mass  10 M  . The source is found to be locked in the low/hard state during the entire outburst and likely falls in the category of the X-ray transients that are observed in the low/hard state throughout the outburst. We discuss the physical scenario of the low/hard state outburst for this source.  相似文献   

17.
We present Very Large Telescope (VLT) low-resolution spectroscopy of the neutron star X-ray transient XTE J2123−058 during its quiescent state. Our data reveal the presence of a K7V companion which contributes 77 per cent to the total flux at λ 6300 and orbits the neutron star at     . Contrary to other soft X-ray transients (SXTs), the H α emission is almost exactly in antiphase with the velocity curve of the optical companion. Using the light-centre technique we obtain     and hence     This, combined with a previous determination of the inclination angle     yields     and     . M 2 agrees well with the observed spectral type. Doppler tomography of the H α emission shows a non-symmetric accretion disc distribution mimicking that seen in SW Sex stars. Although we find a large systemic velocity of −     this value is consistent with the galactic rotation velocity at the position of J2123−058, and hence a halo origin. The formation scenario of J2123−058 is still unresolved.  相似文献   

18.
We present a precise timing analysis of the accreting millisecond pulsar XTE J1814−338 during its 2003 outburst, observed by RXTE . A full orbital solution is given for the first time; Doppler effects induced by the motion of the source in the binary system were corrected, leading to a refined estimate of the orbital period,   P orb= 15 388.7229(2)  s, and of the projected semimajor axis,   a sin  i / c = 0.390633(9)  light-second. We could then investigate the spin behaviour of the accreting compact object during the outburst. We report here a refined value of the spin frequency  (ν= 314.356 108 79(1) Hz)  and the first estimate of the spin frequency derivative of this source while accreting     . This spin-down behaviour arises when both the fundamental frequency and the second harmonic are taken into consideration. We discuss this in the context of the interaction between the disc and the quickly rotating magnetosphere, at accretion rates sufficiently low to allow a threading of the accretion disc in regions where the Keplerian velocity is slower than the magnetosphere velocity. We also present indications of a jitter of the pulse phases around the mean trend, which we argue results from movements of the accreting hotspots in response to variations of the accretion rate.  相似文献   

19.
Low and intermediate frequency quasi-periodic oscillations (QPOs) are thought to be due to oscillations of Comptonizing regions or hot regions embedded in Keplerian discs. Observational evidence of evolutions of QPOs would therefore be very important as they throw lights on the dynamics of the hotter region. Our aim is to find systems in which there is a well-defined correlation among the frequencies of the QPOs over a range of time so as to understand the physical picture. In this paper, we concentrate on the archival data of XTE J1550−564 obtained during 1998 outburst, and study the systematic drifts during the rising phase from the 1998 September 7 to the 1998 September 19, when the QPO frequency increased monotonically from 81 mHz to 13.1 Hz. Immediately after that, QPO frequency started to decrease and on the 1998 September 26, the QPO frequency became 2.62 Hz. After that, its value remained almost constant. This frequency drift can be modelled satisfactorily with a propagatory oscillating shock solution where the post-shock region behaves as the Comptonized region. Comparing with the nature of a more recent 2005 outburst of another black hole candidate GRO 1655−40, where QPOs disappeared at the end of the rising phase, we conjecture that this so-called 'outburst' may not be a full-fledged outburst.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号