首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bimodal NW Etendeka province is located at the continentalend of the Tristan plume trace in coastal Namibia. It comprisesa high-Ti (Khumib type) and three low-Ti basalt (Tafelberg,Kuidas and Esmeralda types) suites, with, at stratigraphicallyhigher level, interstratified high-Ti latites (three units)and quartz latites (five units), and one low-Ti quartz latite.Khumib basalts are enriched in high field strength elementsand light rare earth elements relative to low-Ti types and exhibittrace element affinities with Tristan da Cunha lavas. The unradiogenic206Pb/204Pb ratios of Khumib basalts are distinctive, most plottingto the left of the 132 Ma Geochron, together with elevated 207Pb/204Pbratios, and Sr–Nd isotopic compositions plotting in thelower 143Nd/144Nd part of mantle array (EM1-like). The low-Tibasalts have less coherent trace element patterns and variable,radiogenic initial Sr (  相似文献   

2.
Mount Erebus, Ross Island, Antarctica, is an active, intraplate,alkaline volcano. The strongly undersaturated sodic lavas rangefrom basanite to anorthoclase phonolite, and are termed theErebus lineage (EL). The lavas are porphyritic with olivine(Fo88–51), clinopyroxene (Wo45–53En36–41Fs8–30),opaque oxides (Usp31–76), feldspar (An72–11), andapatite. Rare earth element (REE) contents increase only slightlywith increasing differentiation compared with other incompatibleelements. The light REE are enriched (LaN/YbN= 14–20)and there are no significant Eu anomalies. 87Sr/86Sr is uniformand low ({small tilde} 0.7030) throughout the EL, suggestingderivation of the basanites from a depleted asthenospheric mantlesource, and lack of significant crustal contamination duringfractionation of the basanite. Regular geochemical trends indicatethat the EL evolved from the basanites by fractional crystallization.Major element mass balance calculations and trace element modelsshow that fractionation of 16% olivine, 52% clinopyroxene, 14%Fe-Ti oxides, 11% feldspar, 3% nepheline, and 3% apatite froma basanite parent leaves 23.5% anorthoclase phonolite. Minor volumes of less undersaturated, more iron-rich benmoreite,phonolite, and trachyte are termed the enriched iron series(EFS). The trachytes have 87Sr/86Sr of 0.704, higher than otherEFS and EL rocks, and they probably evolved by a combined assimilation-fractionalcrystallization process. The large volume of phonolite at Mt. Erebus requires significantbasanite production. This occurs by low degrees of partial meltingin a mantle plume (here termed the Erebus plume) rising at arate of about 6 cm/yr.  相似文献   

3.
A convergent margin magma series with characteristic low Nband Ta abundances and enrichments in alkalis and alkaline earthsis intercalated with typical intraplate alkalic basalts in aback-arc setting, 200–250 km above the Wadati-Benioffzone on the North Island, New Zealand. These two contrastingmagma types, together with late-stage K-rich maflc lavas, wereerupted over a short time period (1{dot}60–2{dot}74 Ma)and constitute the Alexandra Volcanics. Field relationshipsindicate that these diverse magma types were contemporaneous,and thus their mantle source regions coexisted, in a singletectonic environment. The convergent margin magma series forms a linear chain of stratovolcanoesaligned at right angles to the present subduction zone. Closed-systempolybaric fractional crystallization models can explain theevolution from ankaramites to transitional olivine basalts toolivine tholeiites to high-Al basalts to medium- and high-Kandesites. The most primitive lavas have geochemical (high LIL/LREEand LIL/HFS element ratios) and Sr, Nd, and Pb isotopic compositionstypical of convergent margin magmas. Calculated source compositionssuggest that three components are involved: a MORB component,a component derived from subducted oceanic crust, and a contributionfrom subducted sediments. The alkalic basalts occur as dispersed monogenetic volcanoesand are intercalated with the larger convergent margin stratovolcanocs.These basalts are enriched in LILE, LREE, Nb, and Ta, and havelow Ba/Nb and Ba/La ratios, all of which are characteristicof ocean island (intraplate) basalts (OIBs). Their relativelyhigh Nd (+5{dot}5 and low 87Sr/86Sr(0{dot}703l–0{dot}7036)are also typical of OIBs. These alkalic magmas were derivedfrom the underlying continental lithospheric mantle that hasbeen enriched by upward-migrating silica-undersaturated melts,probably including volatiles, from the low- velocity zone. Asubducted slab component is not required to account for theirincompatible element enriched character. The K-rich mafic lavas, basanites, and absarokites are volumetricallyminor and cap the largest of the stratovolcanoes, Pirongia.The basanites have geochemical and isotopic compositions whichsuggest they are mixtures of multiple source components, includingthe alkalic and convergent margin region.  相似文献   

4.
The Miocene–Quaternary Jemez Mountains volcanic field(JMVF), the site of the Valles caldera, lies at the intersectionof the Jemez lineament, a Proterozoic suture, and the CenozoicRio Grande rift. Parental magmas are of two types: K-depletedsilica-undersaturated, derived from the partial melting of lithosphericmantle with residual amphibole, and tholeiitic, derived fromeither asthenospheric or lithospheric mantle. Variability insilica-undersaturated basalts reflects contributions of meltsderived from lherzolitic and pyroxenitic mantle, representingheterogeneous lithosphere associated with the suture. The Kdepletion is inherited by fractionated, crustally contaminatedderivatives (hawaiites and mugearites), leading to distinctiveincompatible trace element signatures, with Th/(Nb,Ta) and La/(Nb,Ta)greater than, but K/(Nb,Ta) similar to, Bulk Silicate Earth.These compositions dominate the mafic and intermediate lavas,and the JMVF is therefore derived largely, and perhaps entirely,from melting of fertile continental Jemez lineament lithosphereduring rift-related extension. Significant variations in Pband Nd isotope ratios (206Pb/204Pb = 17·20–18·93;143Nd/144Nd = 0·51244–0·51272) result fromcrustal contamination, whereas 87Sr/86Sr is low and relativelyuniform (0·7040–0·7048). We compare theeffects of contamination by low-87Sr/86Sr crust with assimilationof high-87Sr/86Sr granitoid by partial melting, with Sr retainedin a feldspathic residue. Both models satisfactorily reproducethe isotopic features of the rocks, but the lack of a measurableEu anomaly in most JMVF mafic lavas is difficult to reconcilewith a major role for residual plagioclase during petrogenesis. KEY WORDS: Jemez Mountains volcanic field; Rio Grande rift; lithospheric mantle; crustal contamination; trace elements; radiogenic isotopes  相似文献   

5.
Hawaiian volcanoes, dominantly shields of tholeiitic basalt,form as the Pacific Plate migrates over a hotspot in the mantle.As these shields migrate away from the hotspot, highly alkaliclavas, forming the rejuvenated stage of volcanism, may eruptafter an interval of erosion lasting for 0·25–2·5Myr. Alkalic lavas with geochemical characteristics similarto rejuvenated- stage lavas erupted on the sea floor north ofOahu along the Hawaiian Arch. The variable Tb/Yb, Sr/Ce, K/Ce,Rb/La, Ba/La, Ti/Eu and Zr/Sm ratios in lavas forming the NorthArch and the rejuvenated-stage Honolulu Volcanics were controlledduring partial melting by residual garnet, clinopyroxene, Fe–Tioxides and phlogopite. However, the distinctively high Ba/Thand Sr/Nd ratios of lava forming the North Arch and HonoluluVolcanics reflect source characteristics. These characteristicsare also associated with shield tholeiitic basalt; hence theyarise from the Hawaiian hotspot, which is interpreted to bea mantle plume. Inversion of the batch melting equation usingabundances of highly incompatible elements, such as Th and La,requires enriched sources with 10–55% clinopyroxene and5–25% garnet for North Arch lavas. The 87Sr/86Sr and 143Nd/144Ndratios in lavas forming the North Arch and Honolulu Volcanicsare consistent with mixing between the Hawaiian plume and adepleted component related to mid-ocean ridge basalts. Specifically,the enrichment of incompatible elements coupled with low 87Sr/86Srand high 143Nd/144Nd relative to bulk Earth ratios is best explainedby derivation from depleted lithosphere recently metasomatizedby incipient melt (<2% melting) from the Hawaiian plume.In this metasomatized source, the incompatible element abundances,as well as Sr and Nd isotopic ratios, are controlled by incipientmelts. In contrast, the large range of published 187Os/188Osdata (0·134–0·176) reflects heterogeneitycaused by various proportions of pyroxenite veins residing ina depleted peridotite matrix. KEY WORDS: Hawaiian plume; Honolulu Volcanics; North Arch; plume–lithosphere interaction; rejuvenated stage; trace element geochemistry; alkalic lavas  相似文献   

6.
Vico volcano has erupted potassic and ultrapotassic magmas,ranging from silica-saturated to silica-undersaturated types,in three distinct volcanic periods over the past 0·5Myr. During Period I magma compositions changed from latiteto trachyte and rhyolite, with minor phono-tephrite; duringPeriods II and III the erupted magmas were primarly phono-tephriteto tephri-phonolite and phonolite; however, magmatic episodesinvolving leucite-free eruptives with latitic, trachytic andolivine latitic compositions also occurred. In Period II, leucite-bearingmagmas (87Sr/86Srinitial = 0·71037–0·71115)were derived from a primitive tephrite parental magma. Modellingof phonolites with different modal plagioclase and Sr contentsindicates that low-Sr phonolitic lavas differentiated from tephri-phonoliteby fractional crystallization of 7% olivine + 27% clinopyroxene+ 54% plagioclase + 10% Fe–Ti oxides + 4% apatite at lowpressure, whereas high-Sr phonolitic lavas were generated byfractional crystallization at higher pressure. More differentiatedphonolites were generated from the parental magma of the high-Srphonolitic tephra by fractional crystallization of 10–29%clinopyroxene + 12–15% plagioclase + 44–67% sanidine+ 2–4% phlogopite + 1–3% apatite + 7–10% Fe–Tioxides. In contrast, leucite-bearing rocks of Period III (87Sr/86Srinitial= 0·70812–0·70948) were derived from a potassictrachybasalt by assimilation–fractional crystallizationwith 20–40% of solid removed and r = 0·4–0·5(where r is assimilation rate/crystallization rate) at differentpressures. Silica-saturated magmas of Period II (87Sr/86Srinitial= 0·71044–0·71052) appear to have been generatedfrom an olivine latite similar to some of the youngest eruptedproducts. A primitive tephrite, a potassic trachybasalt andan olivine latite are inferred to be the parental magmas atVico. These magmas were generated by partial melting of a veinedlithospheric mantle sources with different vein–peridotite/wall-rockproportions, amount of residual apatite and distinct isolationtimes for the veins. KEY WORDS: isotope and trace element geochemistry; polybaric differentiation; veined mantle; potassic and ultrapotassic rocks; Vico volcano; central Italy  相似文献   

7.
Within the Zitácuaro–Valle de Bravo (ZVB) regionof the central Mexican Volcanic Belt (MVB), three lava serieshave erupted during the Quaternary: (1) high-K2O basaltic andesitesand andesites; (2) medium-K2O basaltic andesites, andesitesand dacites; (3) high-TiO2 basalts and basaltic andesites. Thedominant feature of the first two groups is the lack of plagioclaseaccompanying the various ferromagnesian phenocrysts (olivine,orthopyroxene, augite, and hornblende) in all but the dacites.This absence of plagioclase in the phenocryst assemblages ofthe high-K2O and medium-K2O intermediate lavas is significantbecause it indicates high water contents during the stage ofphenocryst equilibration. In contrast, the high-TiO2 group ischaracterized by phenocrysts of plagioclase and olivine. Thespatial distribution of these three lava series is systematic.The southern section of the ZVB transect, 280–330 km fromthe Middle America Trench (MAT), is characterized by high-K2Omelts that are relatively enriched in fluid-mobile elementsand have the highest 87Sr/86Sr ratios. Medium-K2O basaltic andesiteand andesite lavas are present throughout the transect, butthose closest to the MAT are MgO-rich (3·5–9·4wt %) and have phenocryst assemblages indicative of high magmaticwater contents (3·5–6·5 wt % water) andrelatively low temperatures (950–1000°C). In markedcontrast, the northern section of the ZVB transect (380–480km from the MAT) has high-TiO2, high field strength element(HFSE)-enriched magmas that have comparatively dry (< 1·5wt % magmatic water) and hot (1100–1200°C) phenocrystequilibration conditions. The central section of the ZVB transect(330–380 km from the MAT) is a transition zone and producesmoderately light rare earth element (LREE) and large ion lithophileelement (LILE)-enriched, medium-K2O lavas with phenocryst assemblagesindicative of intermediate (1·5–3·5 wt %)water contents and temperatures. The high-K2O series compositionsare the most enriched in LILE and LREE, with a narrow rangeof radiogenic 87Sr/86Sr from 0·704245 to 0·704507,143Nd/144Nd values ranging from 0·512857 to 0·512927(Nd = 4·27–5·63), and 208Pb/204Pb valuesfrom 38·248 to 38·442, 207Pb/204Pb values from15·563 to 15·585, and 206Pb/204Pb values from18·598 to 18·688. The medium-K2O series compositionsare only moderately enriched in the LILE and LREE, with a broaderrange of 87Sr/86Sr, but similar 143Nd/144Nd and 208Pb/204Pbvalues to those of the high-K2O series. In contrast, the high-TiO2series compositions have little enrichment in LILE or LREE andinstead are enriched in the HFSE and heavy rare earth elements(HREE). The high-TiO2 lavas are isotopically distinct in theirlower and narrower range of 143Nd/144Nd. The isotopic variationsare believed to reflect the upper mantle magma source regionsas the low content of phenocrysts in most lavas precludes significantupper crustal assimilation or magma mixing, other than thatrepresented by the presence of quartz xenocrysts (< 2 vol.%) with rhyolitic glass inclusions, which are found in manyof these lavas. The systematic spatial variation in compositionof the three lava series is a reflection of the underlying subduction-modifiedmantle and its evolution. KEY WORDS: central Mexico; geochemistry; isotopes; Quaternary volcanism; hydrous lavas  相似文献   

8.
Pliocene volcanics on the island of Bequia comprise two interbeddedsuites of basalts and andesites. The isotopically homogeneoussuite (IHS) has a limited range of Sr—Nd—Pb isotopes(87Sr/86Sr 0.7040–0.7046, 143 Nd/144 Nd 0.5130 and 206Pb/204Pb 19.36–19.51), and mantle-like 18O values (5.5in clinopyroxene). The isotopically diverse suite (IDS) is characterizedby much wider ranges of radiogenic isotopes (87 Sr/86Sr 0.7048–0.7077,143 Nd/144 Nd 0.5128–0.5123 and 206 Pb/204 Pb 19.7–20.2),in which all of the Sr and Pb ratios are higher and Nd ratiosare lower than those of the IHS. The IDS is also characterizedby high 18 O values, up to 7.6 in clinopyroxene. The Sr andPb isotope ratios are too high, and the Nd isotope ratios aretoo low in the IDS for any of these lavas to be derived fromunmodified depleted mantle. Both suites are petrologically very similar and their majorelement compositions and phenocryst contents suggest that theywere formed largely by fractional crystallization of a hydroustholeiitic melt at pressures <3 kbar. The isotopic ratiosand enrichments in large ion lithophile elements (LILE), andto some extent light rare earth elements (LREE), as comparedwith mid-ocean ridge basalts (MORB), of the IHS lavas suggestthat they were derived from a depleted mantle source which hadbeen re-enriched by the addition of 1–4% of a subductioncomponent. This component probably comprised a mixture of dehydrationfluids, and perhaps minor siliceous melts, released from subductingsediments and mafic crust. The extreme isotopic ranges, largeenrichments in incompatible elements, more fractionated LREEpatterns and higher 18 O values of the IDS lavas are interpretedas resulting from 10–55% assimilation—fractionalcrystallization of sediments, derived from the Guyana Shield,which are present in the arc crust, by IHS type melts. KEY WORDS: trace elements; radiogenic isotopes; arc lavas; Lesser Antilles *Corresponding author.  相似文献   

9.
New mineral and bulk-rock analyses, as well as Nd, Sr and Pbisotope compositions are presented for lavas from Grande Comore,Moheli and Mayotte, thru of the four main islands of the ComoresArchipelago in the western Indian Ocean, and these data an usedto evaluate the petrogenesis, evolution and mantle source regioncharacteristics of Comorean lavas. The typically silica-undersaturated,alkaline lavas from all three islands can be grouped into twodistinct types: La Grille-type (LGT) lavas, which display strongrelative depletions in K, and Karthala-type (KT) lavas, whichdo not. With the exception of the lavas erupted by La Grillevolcano on Grande Comore, which exhibit the petrographic andgeochemical characteristics expected of primary mantle-derivedmagmas, all Comorean lavas analysed have experienced compositionalmodifications after they segregated from their source regions.Much of this variation can be explained quantitatively by fractionalcrystallization processes dominated by the fractionation ofolivineand clinopyroxene. Semi-quantitative modelling shows that theconsistent and fundamental difference in composition betweenK-depleted LGT lavas and normal KT lavas can be attributed topartial melting processes, provided amphibole is a residualmantle phase after extraction of LGT magmas at low degrees ofmelting. Low absolute abundances of the heavy rare earth elementsin LGT magmas are interpreted to reflect partial melting withinthe garnet stability field In contrast, KT magmas, which donot show relative K depletions, are considered to be the productsof somewhat larger degrees of partial melting of an amphibolefreesource at comparatively shallower depths. Whereas the Nd andSr isotopic compositions of Comorean lavas (which show a significantrange: 87Sr/86Sr = 0.70319–0.70393; 143Nd/Nd = 0.51263–0.51288)bear evidence for a time-averaged depletion in incompatibleelements, the high incompatible element abundances of the lavasare interpreted to reflect the effects of a recent mantle enrichmentevent. At depths well within the garnet stability field thismantle enrichment is interpreted to have taken the form of modalmetasomatism with the introduction of amphibole (giving riseto the source of LGT magmas), whereas cryptic metasomatism tookplace at shallower levels (giving rise to the source of KT lavas).The Nd, Sr and Pb isotope signature of the majority of Comoreanlavas (both LGT and KT) is proposed to be the result of predominant4contributions from a somewhat heterogeneous source4 4 4 presentativeof the ambient sub-Comorean mantle, comprising a mixture betweena HIMU component and a component on the depleted portion ofthe mantle array (possibly the source of Indian Ocean MORB),with only limited contributions from an EM I plume component.The lavas erupted by Karthala volcano (the youngest Comoreanlavas), however, have significantly different isotopic compositionsfrom all other Comorean lavas (lower 143Nd/144Nd and higher87Sr/86Sr), suggesting increased contributions from the EM Icomponent. KEY WORDS: basalt petrogenesis; Comores; mantle geochemistry; ocean island basalts *Telephone: 27-21-6502921. Fax: 27-21-6503781 e-mail: alr{at}geology.uct.ac.za.  相似文献   

10.
The Miocene to Quaternary lavas of northwestern Syria range from basanite, alkali basalts, and tholeiites to basaltic andesites, hawaiites, and mugearites. Crustal assimilation and fractional crystallization processes (AFC) modified the composition of the mantle derived magmas. Crustal assimilation is indicated by decreasing Nb/U (52.8–17.9) and increasing Pb/Nd (0.09–0.21) and by variable isotopic compositions of the lavas (87Sr/86Sr: 0.7036–0.7048, 143Nd/144Nd: 0.51294–0.51269, 206Pb/204Pb: 18.98–18.60) throughout the differentiation. Modeling of the AFC processes indicates that the magmas have assimilated up to 25% of continental upper crust. The stratigraphy of the lavas reveals decreasing degrees and increasing depths of melting with time and the strongly fractionated heavy rare earth elements indicate melt generation in the garnet stability field. Modeling of melt formation based on trace element contents suggests that 8–10% melting of the asthenospheric mantle source produced the tholeiites, whereas basanite and alkali basalts are formed by 2–4% melting of a similar source.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
We report Sr-, Nd- and Pb-isotopic compositions for the lavasof Mauritius, the second youngest volcanic island in the Réunionhotspot. The lavas of the Older Series (7·8–5·5Ma) have identical isotopic compositions (87Sr/86Sr = 0·70411to 0·70422,143Nd/144Nd = 0·512865 to 0·512854,and 206Pb/204Pb = 19·016 to 19·041) to those ofRéunion, where the center of volcanic activity is currentlylocated. The lavas of the Intermediate Series (3·5–1·9Ma) and Younger Series (0·70–0·17 Ma) areshifted to lower Sr-isotopic compositions (0·70364–0·70394,with 143Nd/144Nd = 0·512813 to 0·512948 and 206Pb/204Pb= 18·794 to 18·984). The Intermediate Series lavashave similar trace-element characteristics (e.g. Zr–Nb,Ba–Y) to those of Rodrigues, in both cases requiring theinvolvement of an enriched mantle-like component in the mantlesource. During the volcanic history of Mauritius, the magmaslost the principal isotopic characteristics of the Réunionhotspot with time, and became gradually imprinted with the isotopicsignature of a shallower mantle source that produced the CentralIndian Ridge basalts. KEY WORDS: hotspot; isotopes; Mauritius; Réunion; trace element  相似文献   

12.
The 1800 Kaupulehu flow on Hualalai Volcano, Hawaii, containsabundant xcnoliths of dunitc, wehrlite, and olivine clinopyroxenitewith minor gabbro, troctolite, anorthosite, and wcbstcrite.The petrography and mineral compositions of 41 dunite, wehrlite,and olivine clinopyroxenite xenoliths have been studied, andclinopyroxene separates from eight of these have been analyzedfor Ba, K, Rb, Sr, rare earth elements, 87Sr/86Sr, and 143Nd/144Nd.Temperatures of equilibration obtained by olivine-spinel andpyroxene geothermometry range from 1000 to 1200 C. Mineralogicaldata combined with published fluid inclusion data indicate depthsof origin in the range of 8–30 km. The rarity of orthopyroxene, the presence of Fe-rich olivine(Fo8189) and clinopyroxene (Fs512), and the occurrenceof high TiO2 in spinel (0.9–2.8 wt.%) and clinopyroxene(035–1.33 wt%) all indicate that the xenoliths are cumulates,not residues from partial fusion. The separated clinopyrox-eneshave 87Sr/86Sr (0-70348.0-70367) and 143Nd/144Nd (0.51293–0.51299)values that are different from Sr and Nd isotope ratios of Pacificabyssal basalts (>0.7032 and >0-5130, respectively). Also,clinopyroxenes and spinels in the xenoliths have generally higherTiO2 contents (>O.35 and >0.91 wt.%, respectively) thantheir counterparts in abyssal cumulates (<0.40 and <0.70wt%,respectively). These differences indicate that the xenolithsare not a normal component of oceanic crust. Because the xenoliths and alkalic to transitional Hualalai lavashave similar values for Cr/(Cr + Al) and Cr/(Cr + Al + Fe3+)of spinels, 87Sr/86Sr of clinopyroxenes, and whole-rock 3He/4He,we conclude that the xenoliths are cumulates from such magmas.Multiple parental magmas for the xenoliths are indicated byslightly heterogeneous 87Sr/86Sr of clinopyroxene separates.Depths of formation of the xenoliths are estimated to be {smalltilde}8–30 km. Extensive crystallization of olivine in the absence of pyroxenesand plagioclase is a characteristic and prominent feature ofHawaiian tholeiitic magmatism. Dunite xenoliths crystallizedfrom alkalic magmas have previously been reported from MaunaKea Volcano (Atwill & Garcia, 1985) and Loihi Seamount (Clague,1988). Our finding of an alkalic signature for dunite xenolithsfrom a third Hawaiian volcano, Hualalai, shows that early olivinecrystallization should be considered a characteristic not justof Hawaiian tholeiitic magmatism but also of Hawaiian alkalicmagmatism.  相似文献   

13.
This paper presents field, geochemical and isotopic (Sr, Nd,Pb) results on basalts from the Antipodes, Campbell and ChathamIslands, New Zealand. New 40Ar/39Ar age determinations alongwith previous K–Ar dates reveal three major episodes ofvolcanic activity on Chatham Island (85–82, 41–35,5 Ma). Chatham and Antipodes samples comprise basanite, alkaliand transitional basalts that have HIMU-like isotopic (206Pb/204Pb>20·3–20·8, 87Sr/86Sr <0·7033,143Nd/144Nd >0·5128) and trace element affinities(Ce/Pb 28–36, Nb/U 34–66, Ba/Nb 4–7). Thegeochemistry of transitional to Q-normative samples from CampbellIsland is explained by interaction with continental crust. Thevolcanism is part of a long-lived (100 Myr), low-volume, diffusealkaline magmatic province that includes deposits on the Northand South Islands of New Zealand as well as portions of WestAntarctica and SE Australia. All of these continental areaswere juxtaposed on the eastern margin of Gondwanaland at >83Ma. A ubiquitous feature of mafic alkaline rocks from this regionis their depletion in K and Pb relative to other highly incompatibleelements when normalized to primitive mantle values. The inversionof trace element data indicates enriched mantle sources thatcontain variable proportions of hydrous minerals. We proposethat the mantle sources represent continental lithosphere thathost amphibole/phlogopite-rich veins formed by plume- and/orsubduction-related metasomatism between 500 and 100 Ma. Thestrong HIMU signature (206Pb/204Pb >20·5) is consideredto be an in-grown feature generated by partial dehydration andloss of hydrophile elements (Pb, Rb, K) relative to more magmaphileelements (Th, U, Sr) during short-term storage at the base ofthe lithosphere. KEY WORDS: continental alkaline basalts; lithospheric mantle, mantle metasomatism; New Zealand; OIB, HIMU; Sr, Nd and Pb isotopes; West Antarctica  相似文献   

14.
Lavas from Heard Island, located on the Kerguelen Plateau inthe southern Indian Ocean, exhibit the largest range (e.g.,87Sr/86Sr=0.7047–0.7079) of isotopic compositions yetobserved on a single oceanic island. Isotopic compositions arewell correlated and are accompanied by systematic changes inincompatible trace element ratios, particularly those involvingNb. These variations are interpreted as resulting from mixingbetween two components. One is characterized by high 87Sr/86Sr,low 206Pb/204Pb and 143Nd/144Nd ratios, and negative Nb andEu anomalies, and is derived ultimately from the upper continentalcrust. The other has lower 87Sr/86Sr, and higher 206Pb/204Pband 143Nd/144Nd ratios, and lacks the depletions in Nb and Eu.Two possible compositions are considered for the low-87Sr/86Srcomponent of the source. The first is at the low-87Sr/86Sr endof the Heard Island data array, represented most closely bylavas from the Laurens Peninsula. However, trace element variationssuggest that these lavas might not be representive of the Heardplume. The second is close to the low-87Sr/86Sr end of the isotopicarray for lavas from the main volcano. In this case a lithosphericmantle origin is suggested for the Laurens Peninsula lavas.The relationships between isotopic data, major element compositions,and incompatible trace element ratios indicate that the continent-derivedmaterial is probably present in the mantle source, where itmakes a maximum contribution of <4 wt.% for all but one HeardIsland sample. However, if the Kerguelen Plateau is a submergedcontinental block, shallow-level contamination cannot be ruledout. The binary mixing model developed to explain the Heard Islandgeochemical variations is extended to include other Indian Oceanoceanic island and mid-ocean ridge basalts (OIB and MORB). Weshow that isotopic compositions of Indian Ocean OIB are consistentwith sampling of a regional reservoir in which the same twocomponents exist in variable proportions (generally 1–5wt.% of the continent-derived component). The distinctive isotopiccompositions of Indian Ocean MORB are consistent with mixingof a similar component into an Atlantic-or Pacific-like MORBmantle source. The relatively unradiogenic 206Pb/204Pb isotopiccompositions of these ‘enriched’ Indian Ocean mantlecomponents are unlike any present-day marine sediments and indicatethat their source has had 238U/204Pb ratios (µ) much lowerthan typical upper continental crust for > 1 Ga. These agespre-date the formation of Gondwana (600-130 Ma) and thereforedo not support sediment subduction beneath Gondwana as the causeof enrichment in the sub-Indian Ocean mantle. We propose thatthe enrichment of Indian Ocean OIB sources was due to subductionof upper-crustal material beneath a Proterozoic precursor ofGondwana at 1–2 Ga. The enrichment of the Indian OceanMORB sources could have had a similar origin, or could havebeen derived from sub-continental lithospheric mantle returnedto the asthenospheric mantle, perhaps during the break-up ofGondwana (200–130 Ma).  相似文献   

15.
A High-K, Mantle Derived Plutonic Suite from 'Linga', near Arequipa (Peru)   总被引:2,自引:0,他引:2  
The Linga Group consists of a suite of Cretaceous high-K calc-alkalinerocks intruded into 2?0 Ga old basement in S.E. Peru. The rocksrange in composition from gabbros, through diorites and grandioritesto granites. Microprobe, major and trace element and isotopedata suggest the suite evolved by fractional crystallization,with plagioclase as the dominant phase and with surprisinglylittle interaction with the pre-existing crust. The rocks yieldan Rb/Sr whole rock isochron of 68 ? 3 Ma with an initial Sr-isotoperatio 0.70516 ? 8, and from three Nd-isotope analyses initialNd = – 1?4 to – 2?0. 18 O increases from 5?0 permil in a gabbro to 7?0 per mil in a granite, and models arepresented which suggest that the suite evolved from parentalmagmas which had 18O = 5?8 to 6?0 per mil, 1.5 per cent K2O,63 p.p.m. Rb, 582 p.p.m. Sr, 35 p.p.m. Ce, 0.38 p.p.m. Ta, 87Sr/86Sr= 0.7052, and 143Nd/144Nd = 0.51247. Trace element considerationsimply that these magmas contain contributions from incompatibleelement enriched upper mantle material and from a componentassociated with subduction. The latter is thought to reflectthe preferential mobilization of alkali and alkaline earth elementsby H2O-rich fluids from the subducted slab, and preliminarycalculations indicate that it was responsible for {small tilde}45 per cent of the Sr and {small tilde} 80 per cent of the Kin the more primitive Linga rocks. However, the isotope datasuggest that while the fluids may be from the subducted slab,the elements in this component may also have been mobilizedfrom the overlying mantle wedge.  相似文献   

16.
Ijen Volcanic Complex (IVC) in East Java, Indonesia is situatedon thickened oceanic crust within the Quaternary volcanic frontof the Sunda arc. The 20 km wide calderas complex contains around22 post-caldera eruptive centres, positioned either around thecaldera-rim (CR) or along a roughly NE–SW lineament insidethe caldera (IC). The CR and IC lavas exhibit separate differentiationhistories. Major element and trace element modelling shows thatfractionation of olivine, clinopyroxene, Fe–Ti oxide ±plagioclase is important in the CR group, whereas plagioclaseis the dominant fractionating mineral in the same assemblagefor the IC group. Spatial controls on magmatic differentiationhighlight important structural controls on magma storage andascent at IVC. Mantle-like 18O values, restricted ranges inSr, Nd and Hf isotope ratios, and a lack of correlation betweenisotope ratios and indices of differentiation in IVC lavas areconsistent with magmatic evolution through fractional crystallization.Furthermore, the small ranges in isotopic ratios throughoutthe complex indicate little heterogeneity in the mantle. IVClavas possess higher 176Hf/177Hf and 143Nd/144Nd isotope ratiosthan other volcanoes of Java, representing the least contaminatedsource so far analysed and, therefore, give the best estimateyet of the pre-subduction mantle wedge isotopic compositionbeneath Java. Trace element and radiogenic isotope data areconsistent with a two-stage, three-component petrogenetic modelfor IVC, whereby an Indian-type mid-ocean ridge basalt (I-MORB)-likefertile mantle wedge is first infiltrated by a small percentageof fluid, sourced from the altered oceanic crust, prior to additionof <1% Indian Ocean sediment dominated by pelagic material. KEY WORDS: differentiation; geochemistry; source components; Sr, Nd, Hf and O isotopes; Sunda arc  相似文献   

17.
A Complex Petrogenesis for an Arc Magmatic Suite, St Kitts, Lesser Antilles   总被引:2,自引:0,他引:2  
St Kitts forms one of the northern group of volcanic islandsin the Lesser Antilles arc. Eruptive products from the Mt Liamuigacentre are predominantly olivine + hypersthene-normative, low-Kbasalts through basaltic andesites to quartz-normative, low-Kandesites. Higher-Al and lower-Al groups can be distinguishedin the suite. Mineral assemblages include olivine, clinopyroxene,orthopyroxene, plagioclase and titanomagnetite with rarer amphibole,ilmenite and apatite. Eruptive temperatures of the andesitesare estimated as 963–950°C at fO2 NNO + 1 (whereNNO is the nickel–nickel oxide buffer). Field and mineralchemical data provide evidence for magma mixing. Glass (melt)inclusions in the phenocrysts range in composition from andesiteto high-silica rhyolite. Compositional variations are broadlyconsistent with the evolution of more evolved magmas by crystalfractionation of basaltic parental magmas. The absence of anycovariation between 87Sr/86Sr or 143Nd/144Nd and SiO2 rulesout assimilation of older silicic crust. However, positive correlationsbetween Ba/La, La/Sm and 208Pb/204Pb and between 208Pb/204Pband SiO2 are consistent with assimilation of small amounts (<10%)of biogenic sediments. Trace element and Sr–Nd–Pbisotope data suggest derivation from a normal mid-ocean ridgebasalt (N-MORB)-type mantle source metasomatized by subductedsediment or sediment melt and fluid. The eruptive rocks arecharacterized by 238U excesses that indicate that fluid additionof U occurred <350 kyr ago; U–Th isotope data for mineralseparates are dominated by melt inclusions but would allow crystallizationages of 13–68 ka. However, plagioclase is consistentlydisplaced above these ‘isochrons’, with apparentages of 39–236 ka, and plagioclase crystal size distributionsare concave-upwards. These observations suggest that mixingprocesses are important. The presence of 226Ra excesses in twosamples indicates some fluid addition <8 kyr ago and thatthe magma residence times must also have been less than 8 kyr. KEY WORDS: Sr–Nd–Pb isotopes; U-series isotopes; crystal size distribution; petrogenesis  相似文献   

18.
Stratigraphically well-constrained sequences of late shield-buildingstage lavas from West Maui volcano, Hawaii, show age-dependentcompositional variability distinct from that seen in shield-stagelavas from any other Hawaiian volcano. These distinctions aredefined by 206Pb/204Pb–208Pb/204Pb variation as well as87Sr/86Sr correlation with 206Pb/204Pb and trace element compositions.The West Maui lavas from stratigraphically higher in the sequencehave major and trace element and Sr–Pb–Hf–Ndisotopic compositions similar to Kea-type lavas sampled at theyounger Mauna Kea and Kilauea volcanoes, indicating that theKea compositional end-member of Hawaiian lavas has remainedhomogeneous over  相似文献   

19.
The Ashland pluton is a calc-alkaline plutonic complex thatintruded the western Paleozoic and Triassic belt of the KlamathMountains in late Middle Jurassic time. The pluton comprisesa series of compositionally distinct magma pulses. The oldestrocks are hornblende gabbro and two-pyroxene quartz gabbro withinitial 87Sr/86Sr = 0{dot}7044, 18O = 8{dot}7%, and REE patternswith chondrite normalized La/Lu = 7. These units were followedby a suite of tonalitic rocks (LaN/LuN = 7) and then by a suiteof K2O- and P2O5 rocks of quartz monzodioritic affinity (LaN/LuN= 13–21; LaN/SmN = 2{dot}4–3{dot}) The quartz monzodioriticrocks were then intruded by biotite granodiorite and granitewith lower REE abundances but more fractionated LREE(LaN/LuN= 13–19; LaN/SmN = 4{dot}3–6 and they, in turn,were host to dikes and bosses of hornblende diorite. The latestintrusive activity consisted of aplitic and granitic dikes.Combined phase equilibria and mineral composition data, indicateemplacement conditions of approximately Ptotal = 2{dot}3kb,PH2O between 1{dot}5 and 2{dot}2 kb, and fO2 between the nickel-nickeloxide and hematite-magnetite buffers. Successive pulses of magma display increasing SiO2 togetherwith increasing 18O and decreasing initial 87Sr/86Sr. The isotopicdata are consistent with either (1) combined fractional crystallizationof andesitic magma and concurrent assimilation of crustal materialcharacterized by low Sr1 and high (18O or, more probably, (2)a series of partial melting events in which sources were successivelyless radiogenic but richer in 18O Each intrusive stage displaysevidence for some degree of crystal accumulation and/or fractionalcrystallization but neither process adequately accounts fortheir compositional differences. Consequently, each stage appearsto represent a distinct partial melting or assimilation event. The P2O5-rich nature of the quartz monzodiorite suite suggestsaccumulation of apatite. However, the suite contains abundantmafic microgranitoid enclaves and most apatite in the suiteis acicular. These observations suggest that magma mixing affectedthe compositional variation of the quartz monzodiorite suite.Mass balance calculations are consistent with a simple mixingprocess in which P2O5-rich alkalic basalt magma (representedby the mafic microgranitoid enclaves) was combined with a crystal-poorfelsic magma (represented by the tonalite suite), yielding aquartz monzodioritic magma that then underwent differentiationby crystal fractionation and accumulation.  相似文献   

20.
The Hawaiian–Emperor Seamount Chain (ESC), in the northernPacific Ocean, was produced during the passage of the PacificPlate over the Hawaiian hotspot. Major and trace element concentrationsand Sr–Nd–Pb isotopic compositions of shield andpost-shield lavas from nine of the Emperor Seamounts providea 43 Myr record of the chemistry of the oldest preserved Hawaiianmagmatism during the Late Mesozoic and Early Cenozoic (from85 to 42 Ma). These data demonstrate that there were large variationsin the composition of Hawaiian magmatism over this period. Tholeiiticbasalts from Meiji Seamount (85 Ma), at the northernmost endof the ESC, have low concentrations of incompatible trace elements,and unradiogenic Sr isotopic compositions, compared with youngerlavas from the volcanoes of the Hawaiian Chain (<43 Ma).Lavas from Detroit Seamount (81 Ma) have highly depleted incompatibletrace element and Sr–Nd isotopic compositions, which aresimilar to those of Pacific mid-ocean ridge basalts. Lavas fromthe younger Emperor Seamounts (62–42 Ma) have trace elementcompositions similar to those of lavas from the Hawaiian Islands,but initial 87Sr/86Sr ratios extend to lower values. From 81to 42 Ma there was a systematic increase in 87Sr/86Sr of boththoleiitic and alkalic lavas. The age of the oceanic lithosphereat the time of seamount formation decreases northwards alongthe Emperor Seamount Chain, and the oldest Emperor Seamountswere built upon young, thin lithosphere close to a former spreadingcentre. However, the inferred distance of the Hawaiian plumefrom a former spreading centre, and the isotopic compositionsof the oldest Emperor lavas appear to rule out plume–ridgeinteraction as an explanation for their depleted compositions.We suggest that the observed temporal chemical and isotopicvariations may instead be due to variations in the degree ofmelting of a heterogeneous mantle, resulting from differencesin the thickness of the oceanic lithosphere upon which the EmperorSeamounts were constructed. During the Cretaceous, when theHawaiian plume was situated beneath young, thin lithosphere,the degree of melting within the plume was greater, and incompatibletrace element depleted, refractory mantle components contributedmore to melting. KEY WORDS: Emperor Seamounts; Hawaiian plume; lava geochemistry; lithosphere thickness; mantle heterogeneity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号