首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jan Hjort  Miska Luoto 《Geomorphology》2009,112(3-4):324-333
Vegetation is often considered to stabilize geomorphic processes. An increasing abundance of vegetation may cause negative feedbacks within a periglacial system. In this study, we explored the importance of vegetation on the occurrence of active cryoturbation-dominated feature fields in subarctic Finland on a landscape scale. The vegetation–cryoturbation interaction was studied across three altitudinal zones by applying hierarchical partitioning (HP) and variation partitioning (VP) methods that overcome collinearity problems in multivariate analysis. Firstly, our results showed that vegetation factors, especially the canopy cover of the field-layer vegetation and the total above ground biomass, were among the most important environmental variables affecting the occurrence of active cryoturbation features. Moreover, vegetation factors were for the most part positively associated with cryoturbation. Under the predicted global warming, the ‘greening’ of arctic and subarctic regions may, therefore, decrease and also increase the activity of the periglacial processes in sparsely vegetated terrain. Secondly, our analyses gave contrasting results of the environmental factors of the periglacial processes across altitudinal zones, although the relative importance of the vegetation group was rather constant throughout the zones. Thus, we stress the importance of the spatial study setting in geomorphic studies in topographically varying relief. We recommend either taking the altitudinal zonation of the landscape into consideration or studying the features within a predetermined zone to decrease misinterpretations in environment–process relationships. Methodologically, our results encourage wider applications of partitioning methods in multivariate settings in geomorphology.  相似文献   

2.
The self-organization of step-pools in mountain streams   总被引:2,自引:0,他引:2  
Spontaneous, autogenic self-organization has been described in numerous geomorphic systems, but it has not been investigated in detail with respect to coarse bedforms in general or step-pools in particular. In this paper, we review the spatial organization of step-pool systems and present example evidence of step-pool development as an autogenic self-organization process. We then outline the mathematical language for defining spatially divergent self-organization and test these ideas using two unique field examples from Oregon (Andrews Experimental Forest) and California (Baxter Creek), where step-pools developed from planar beds in artificially manipulated channels. Results show that step-pool development is consistent with a spatially divergent self-organization phenomenon. Entropy increases as initially undifferentiated planar channels diverge into steps and pools, then declines when a series of steps and pools of consistent size and spacing is established, signifying stability in the system. The self-organization process is accompanied by increasing flow resistance and decreasing slope (through increasing the “vertical sinuosity” of the step-pool profile and creation of low- or negative gradient pool areas), suggesting a minimization of stream power. The self-adjustment of the step-pool bed profile over time represents another manifestation of a general process that results in rhythmic patterns on the surface of Earth.  相似文献   

3.
Classic geomorphic theory on the dynamics of delta evolution posits a purely physical mechanism for spatial and temporal patterns of sediment accumulation over decades to centuries. Meanwhile, intertidal marsh vegetation that grows on deltas is well known to influence short-term fluid mechanics and sediment transport. This dichotomy points toward a large gap in the understanding of the role of vegetation in delta evolution as a function of spatial and temporal scale. In the research reported here, substrate characteristics and seasonal sedimentation rates in a tidal freshwater delta at the head of a Chesapeake Bay tributary were studied to assess the existence and extent of physical–ecological interactions on a delta over the seasonal to interannual time scale. Both vegetation data and sediment variables showed significant spatial variations at this time scale. When multiple regression analysis was used to compare vegetated versus nonvegetated conditions on the studied delta, 84% of the spatial variation in sedimentation with vegetation was explained by plant association and distance to the nearest distributary channel. In contrast, only 33% of the spatial variation in sedimentation could be explained when no vegetation was present, and in that case, the dominant variable was distance to the subtidal front. Spatial variability in organic content was less sensitive to vegetation and strongly influenced by the distance to the subtidal front. Substrate grain size parameters were explained by distance to the subtidal front and to the nearest distributary channel. This research demonstrates that sediment sequestration, and thus delta evolution, is highly predictable at the habitat scale and is driven by a strong interplay between abiotic and biotic variables.  相似文献   

4.
The last decade has witnessed the development of a series of cellular models that simulate the processes operating within river channels and drive their geomorphic evolution. Their proliferation can be partly attributed to the relative simplicity of cellular models and their ability to address some of the shortcomings of other numerical models. By using relaxed interpretations of the equations determining fluid flow, cellular models allow rapid solutions of water depths and velocities. These can then be used to drive (usually) conventional sediment transport relations to determine erosion and deposition and alter the channel form. The key advance of using these physically based yet simplified approaches is that they allow us to apply models to a range of spatial scales (1–100 km2) and time periods (1–100 years) that are especially relevant to contemporary management and fluvial studies.However, these approaches are not without their limitations and technical problems. This paper reviews the findings of nearly 10 years of research into modelling fluvial systems with cellular techniques, principally focusing on improvements in routing water and how fluvial erosion and deposition (including lateral erosion) are represented. These ideas are illustrated using sample simulations of the River Teifi, Wales. A detailed case study is then presented, demonstrating how cellular models can explore the interactions between vegetation and the morphological dynamics of the braided Waitaki River, New Zealand. Finally, difficulties associated with model validation and the problems, prospects and future issues important to the further development and application of these cellular fluvial models are outlined.  相似文献   

5.
Sediment transport processes in the Kärkevagge are investigated concerning their spatial and temporal characteristics due to long–term monitoring. Within this study remote sensing techniques and GIS modelling in connection with geomorphic mapping are applied for identification and characterization of geomorphic process units. Relationships between geomorphometric parameters and slope processes like solifluction, talus creep and rockfall have been analysed. Multitemporal Landsat–TM5 scenes are used as source for landcover characteristics (Normalized Difference Vegetation Index) after preprocessing involving orthorectification and topographic normalization in order to remove possible terrain–induced effects. Additionally, a digital elevation model with a resolution of 20 m for the Kärkevagge catchment is developed and parameters like slope gradient, slope aspect and profile curvature are extracted as input for the analysis of the sediment transport system. The combination of landcover information, geomorphometrical and topological features allows the definition of areas for single process activities. They show specific sediment displacement characteristics depending on material conditions, topological and geometrical features. Geomorphic process units, which show a homogenous composition, are extracted from these available layers.  相似文献   

6.
Sediment transport processes in the Kärkevagge are investigated concerning their spatial and temporal characteristics due to long–term monitoring. Within this study remote sensing techniques and GIS modelling in connection with geomorphic mapping are applied for identification and characterization of geomorphic process units. Relationships between geomorphometric parameters and slope processes like solifluction, talus creep and rockfall have been analysed. Multitemporal Landsat–TM5 scenes are used as source for landcover characteristics (Normalized Difference Vegetation Index) after preprocessing involving orthorectification and topographic normalization in order to remove possible terrain–induced effects. Additionally, a digital elevation model with a resolution of 20 m for the Kärkevagge catchment is developed and parameters like slope gradient, slope aspect and profile curvature are extracted as input for the analysis of the sediment transport system. The combination of landcover information, geomorphometrical and topological features allows the definition of areas for single process activities. They show specific sediment displacement characteristics depending on material conditions, topological and geometrical features. Geomorphic process units, which show a homogenous composition, are extracted from these available layers.  相似文献   

7.
Recognition that Earth/Sun orbital changes are the basic cause for Quaternary climatic variations provides a context for explaining global environmental changes, many of which are preserved in the stratigraphic and geomorphic record of lakes. Paleoclimatic numerical models suggest the mechanisms. In subtropical latitudes such as North Africa the enhanced summer insolation culminating about 10 000 years ago resulted in the increased monsoonal rains that explain the widespread expansion of lakes in now-desert basins. But in the American Southwest lake expansion dates to 18 000–15 000 years ago, when storm tracks were displaced to the south by the ice sheets—themselves a product of earlier orbital changes. The dynamics in the resopnse of different components of the natural system to climatic change are recorded in the stratigraphy of lake sediments, not only by their pollen content as a manifestation of the regional vegetation but also by their microfossils and chemical composition as reflections of lake development.This is the 10th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest for these papers.  相似文献   

8.
This paper presents the detailed rainfall characteristics of 3 key areas located in the eastern monsoon India: the margin of Darjeeling Himalaya, the margin of Bhutanese Himalaya and the Cherrapunji region at the southern slope of Meghalaya Upland. All these areas are sensitive to changes but differ in annual rainfall totals (2000–4000 mm, 4000–6000 m and 6000–23,000 mm respectively) and in the frequency of extreme rainfalls. Therefore the response of geomorphic processes is different, also due to various human impact. In the Darjeeling Himalaya the thresholds may be passed 2–3 times in one century and the system may return to the former equilibrium. At the margin of western Bhutanese Himalaya in 1990s, the clustering of three events caused an acceleration in the transformation and formation of a new trend of evolution, especially in the piedmont zone. In the Cherrapunji of Meghalaya region in the natural conditions the effects of dozens of extreme rainfalls every year were checked by the dense vegetation cover. After deforestation and extensive land use the fertile soil was removed and either the exposed bedrock or armoured debris top layer protect the surface against degradation and facilitate only rapid overland flow. A new “sterile” system has been formed.  相似文献   

9.
We introduce a new computational model designed to simulate and investigate reach-scale alluvial dynamics within a landscape evolution model. The model is based on the cellular automaton concept, whereby the continued iteration of a series of local process ‘rules’ governs the behaviour of the entire system. The model is a modified version of the CAESAR landscape evolution model, which applies a suite of physically based rules to simulate the entrainment, transport and deposition of sediments. The CAESAR model has been altered to improve the representation of hydraulic and geomorphic processes in an alluvial environment. In-channel and overbank flow, sediment entrainment and deposition, suspended load and bed load transport, lateral erosion and bank failure have all been represented as local cellular automaton rules. Although these rules are relatively simple and straightforward, their combined and repeatedly iterated effect is such that complex, non-linear geomorphological response can be simulated within the model. Examples of such larger-scale, emergent responses include channel incision and aggradation, terrace formation, channel migration and river meandering, formation of meander cutoffs, and transitions between braided and single-thread channel patterns. In the current study, the model is illustrated on a reach of the River Teifi, near Lampeter, Wales, UK.  相似文献   

10.
The Kunlun fault is one of the largest strike-slip faults in northern Tibet, China. In this paper, we focus upon the Kusai Lake–Kunlun Pass segment of the fault to understand the geomorphic development of offset streams caused by repeated large seismic events, based on tectono-geomorphic analysis of high-resolution satellite remote sensing images combined with field studies. The results indicate that systematic left-lateral stream offsets appear at various scales across the fault zone: Lateral offsets of small gullies caused by the 2001 Mw 7.8 Kunlun earthquake vary typically from 3 m to 6 m, meanwhile streams with cumulative offsets of 10 m, 25–30 m, 50–70 m, 250–300 m and 750–1400 m have resulted from repeated large seismic events during the late Quaternary. An average slip rate of 10 ± 1 mm/year has been estimated from the lateral stream offsets and 14C ages of alluvial fan surfaces incised by the streams. A three-dimensional model showing tectono-geomorphic features along a left-lateral strike-slip fault is also presented. The Kusai Lake–Kunlun Pass segment provides an opportunity to understand the relationship between geomorphic features produced by individual large seismic events and long-term geomorphic development caused by repeated large seismic events along a major strike-slip fault.  相似文献   

11.
Varnish microlamination (VML) dating is a correlative age determination technique that can be used to date and correlate various geomorphic features in deserts. In this study, we establish a generalized late Quaternary (i.e., 0–300 ka) varnish layering sequence for the drylands of western USA and tentatively correlate it with the SPECMAP oxygen isotope record. We then use this climatically correlated varnish layering sequence as a correlative dating tool to determine surface exposure ages for late Quaternary geomorphic features in the study region. VML dating of alluvial fan deposits in Death Valley of eastern California indicates that, during the mid to late Pleistocene, 5–15 ky long aggradation events occurred during either wet or dry climatic periods and that major climate shifts between glacial and interglacial conditions may be the pacemaker for alteration of major episodes of fan aggradation. During the Holocene interglacial time, however, 0.5–1 ky long brief episodes of fan deposition may be linked to short periods of relatively wet climate. VML dating of alluvial desert pavements in Death Valley and the Mojave Desert reveals that pavements can be developed rapidly (< 10 ky) during the Holocene (and probably late Pleistocene) in the arid lowlands (< 800 m msl) of these regions; but once formed, they may survive for 74–85 ky or even longer without being significantly disturbed by geomorphic processes operative at the pavement surface. Data from this study also support the currently accepted, “being born at the surface” model of desert pavement formation. VML dating of colluvial boulder deposits on the west slope of Yucca Mountain, southern Nevada, yields a minimum age of 46 ka for the emplacement of these deposits on the slope, suggesting that they were probably formed during the early phase of the last glaciation or before. These results, combined with those from our previous studies, demonstrate that VML dating has great potential to yield numerical age estimates for various late Quaternary geomorphic features in the western USA drylands.  相似文献   

12.
Longitudinal profiles of bedrock streams in central Kentucky, and of coastal plain streams in southeast Texas, were analyzed to determine the extent to which they exhibit smoothly concave profiles and to relate profile convexities to environmental controls. None of the Kentucky streams have smoothly concave profiles. Because all observed knickpoints are associated with vertical joints, if they are migrating it either occurs rapidly between vertical joints, or migrating knickpoints become stalled at structural features. These streams have been adjusting to downcutting of the Kentucky River for at least 1.3 Ma, suggesting that the time required to produce a concave profile is long compared to the typical timescale of environmental change. A graded concave longitudinal profile is not a reasonable prediction or benchmark condition for these streams. The characteristic profile forms of the Kentucky River gorge area are contingent on a particular combination of lithology, structure, hydrologic regime, and geomorphic history, and therefore do not represent any general type of equilibrium state. Few stream profiles in SE Texas conform to the ideal of the smoothly, strongly concave profile. Major convexities are caused by inherited topography, geologic controls, recent and contemporary geomorphic processes, and anthropic effects. Both the legacy of Quaternary environmental change and ongoing changes make it unlikely that consistent boundary conditions will exist for long. Further, the few exceptions within the study area–i.e., strongly and smoothly concave longitudinal profiles–suggest that ample time has occurred for strongly concave profiles to develop and that such profiles do not necessarily represent any mutual adjustments between slope, transport capacity, and sediment supply. The simplest explanation of any tendency toward concavity is related to basic constraints on channel steepness associated with geomechanical stability and minimum slopes necessary to convey flow. This constrained gradient concept (CGC) can explain the general tendency toward concavity in channels of sufficient size, with minimal lithological constraints and with sufficient time for adjustment. Unlike grade- or equilibrium-based theories, the CGC results in interpretations of convex or low-concavity profiles or reaches in terms of local environmental constraints and geomorphic histories rather than as “disequilibrium” features.  相似文献   

13.
The spatial and temporal patterns of pedogenesis on stabilized dunes at Shapotou, northwestern China, were studied on the time sequences of 0, 18, 35 and 43 years. The spatial pattern of soil formation was estimated by measuring the thickness of accumulated sand fractions on the stabilized dune surface and by analyzing the characteristics and properties of soil. The results showed that the environment of soil formation and circulation of soil material were influenced in the processes of shifting-sand fixation, and the mean soil particle size changed from >0.2 to <0.08 mm in 0–20 cm soil depth with the succession from cultivated plants to natural vegetation. The capacity of available soil water increased fivefold. Deep infiltration of water in soil no longer occurred due to the increase in soil water capacity and the change of redistribution of soil water in profiles. Soil microorganisms evolved from simple to complex. Interaction of these processes obviously brought about accumulation of soil fertility, evolution of soil profiles and development of the profiles towards aripsamments. The difference of micro-topography is closely related to redistribution of material and energy in soil formation.  相似文献   

14.
Using 28 topographic profiles, air-photo interpretation, and historical shoreline-change data, coastal processes were evaluated along the Chenier Plain to explain the occurrence, distribution, and geomorphic hierarchy of primary landforms, and existing hypotheses regarding Chenier-Plain evolution were reconsidered. The Chenier Plain of SW Louisiana, classified as a low-profile, microtidal, storm-dominated coast, is located west and downdrift of the Mississippi River deltaic plain. This Late-Holocene, marginal-deltaic environment is 200 km long and up to 30 km wide, and is composed primarily of mud deposits capped by marsh interspersed with thin sand- and shell-rich ridges (“cheniers”) that have elevations of up to 4 m.In this study, the term “ridge” is used as a morphologic term for a narrow, linear or curvilinear topographic high that consists of sand and shelly material accumulated by waves and other physical coastal processes. Thus, most ridges in the Chenier Plain represent relict open-Gulf shorelines. On the basis of past movement trends of individual shorelines, ridges may be further classified as transgressive, regressive, or laterally accreted. Geomorphic zones that contain two or more regressive, transgressive, or laterally accreted ridges are termed complexes. Consequently, we further refine the Chenier-Plain definition by Otvos and Price [Otvos, E.G. and Price, W.A., 1979. Problems of chenier genesis and terminology—an overview. Marine Geology, 31: 251–263] and define Chenier Plain as containing at least two or more chenier complexes. Based on these definitions, a geomorphic hierarchy of landforms was refined relative to dominant process for the Louisiana Chenier Plain. The Chenier Plain is defined as a first-order feature (5000 km2) composed of three second-order features (30 to 300 km2): chenier complex, beach-ridge complex, and spit complex. Individual ridges of each complex type were further separated into third-order features: chenier, beach ridge, and spit.To understand the long-term evolution of a coastal depositional system, primary process–response mechanisms and patterns found along the modern Chenier-Plain coast were first identified, especially tidal-inlet processes associated with the Sabine, Calcasieu, and Mermentau Rivers. Tidal prism (Ω) and quantity of littoral transport (Mtotal) are the most important factors controlling inlet stability. Greater discharge and/or tidal prism increase the ability of river and estuarine systems to interrupt longshore sediment transport, maintain and naturally stabilize tidal entrances, and promote updrift deposition. Thus, prior to human modification and stabilization efforts, the Mermentau River entrance would be classified as wave-dominated, Sabine Pass as tide-dominated, and Calcasieu Pass as tide-dominated to occasionally mixed.Hoyt [Hoyt, J.H., 1969. Chenier versus barrier, genetic and stratigraphic distinction. Am. Assoc. Petrol. Geol. Bull., 53: 299–306] presented the first detailed depositional model for chenier genesis and mudflat progradation, which he attributed to changes in Mississippi River flow direction (i.e., delta switching) caused by upstream channel avulsion. However, Hoyt's model oversimplifies Chenier-Plain evolution because it omits ridges created by other means. Thus, the geologic evolution of the Chenier Plain is more complicated than channel avulsions of the Mississippi River, and it involved not only chenier ridges (i.e., transgressive), but also ridges that are genetically tied to regression (beach ridges) and lateral accretion (recurved spits).A six-stage geomorphic process-response model was developed to describe Chenier-Plain evolution primarily as a function of: (i) the balance between sediment supply and energy dissipation associated with Mississippi River channel avulsions, (ii) local sediment reworking and lateral transport, (iii) tidal-entrance dynamics, and (iv) possibly higher-than-present stands of Holocene sea level. Consequently, the geneses of three different ridge types (transgressive, regressive, and laterally accreted) typically occur contemporaneously along the same shoreline at different locations.  相似文献   

15.
In the Solway Firth — Morecambe Bay region of Great Britain there is evidence for heightened hillslope instability during the late Holocene (after 3000 cal. BP). Little or no hillslope geomorphic activity has been identified occurring during the early Holocene, but there is abundant evidence for late Holocene hillslope erosion (gullying) and associated alluvial fan and valley floor deposition. Interpretation of the regional radiocarbon chronology available from organic matter buried beneath alluvial fan units suggests much of this geomorphic activity can be attributed to four phases of more extensive gullying identified after 2500–2200, 1300–1000, 1000–800 and 500 cal. BP. Both climate and human impact models can be evoked to explain the crossing of geomorphic thresholds: and palaeoecological data on climatic change (bog surface wetness) and human impact (pollen), together with archaeological and documentary evidence of landscape history, provide a context for addressing the causes of late Holocene geomorphic instability. High magnitude storm events are the primary agent responsible for gully incision, but neither such events nor cooler/wetter climatic episodes appear to have produced gully systems in the region before 3000 cal. BP. Increased gullying after 2500–2200 cal. BP coincides with population expansion during Iron Age and Romano-British times. The widespread and extensive gullying after 1300–1000 cal. BP and after 1000–800 cal. BP coincides with periods of population expansion and a growing rural economy identified during Norse times, 9–10th centuries AD, and during the Medieval Period, 12–13th centuries AD. These periods were separated by a downturn associated with the ‘harrying of the north’ AD 1069 to 1070. The gullying episode after 500 cal. BP also coincides with increased anthropogenic pressure on the uplands, with population growth and agricultural expansion after AD 1500 following 150 years of malaise caused by livestock and human (the Black Death) plagues, poor harvests and conflicts on the Scottish/English border. The increased susceptibility to erosion of gullies is a response to increased anthropogenic pressure on upland hillslopes during the late Holocene, and the role of this pressure appears crucial in priming hillslopes before subsequent major storm events. In particular, the cycles of expansion and contraction in both population and agriculture appear to have affected the susceptibility of the upland landscape to erosion, and the hillslope gullying record in the region, therefore, contributes to understanding of the timing and spatial pattern of human exploitation of the upland landscape.  相似文献   

16.
Woody vegetation affects channel morphogenesis in Ozark streams of Missouri and Arkansas by increasing local roughness, increasing bank strength, providing sedimentation sites, and creating obstructions to flow. Variations in physiographic controls on channel morphology result in systematic changes in vegetation patterns and geomorphic functions with increasing drainage basin area. In upstream reaches, streams have abundant bedrock control and bank heights that typically are less than or equal to the rooting depth of trees. In downstream reaches where valleys are wider and alluvial banks are higher vegetation has different geomorphic functions. At drainage areas of greater than 100–200 kM2, Ozarks streams are characterized by longitudinally juxtaposed reaches of high and low lateral channel migration rates, referred to as disturbance reaches and stable reaches, respectively. Whereas stable reaches can develop stable forested floodplains (if they are not farmed), disturbance reaches are characterized by dynamic vegetation communities that interact with erosion and deposition processes.Disturbance reaches can be subdivided into low-gradient and high-gradient longitudinal zones. Low-energy zones are characterized by incremental, unidirectional lateral channel migration and deposition of gravel and sand bars. The bars are characterized by prominent bands of woody vegetation and ridge and swale topography. Channel monitoring data indicate that densely vegetated bands of woody vegetation formed depositional sites during bedload-transporting events. The same floods caused up to 20 m of erosion of adjacent cutbanks, scoured non-vegetated areas between vegetation bands, and increased thalweg depth and definition. In high-energy (or riffle) zones, channel movement is dominantly by avulsion. In these zones, vegetation creates areas of erosional resistance that become temporary islands as the channel avulses around or through them. Woody vegetation on islands creates steep, root-defended banks that contribute to narrow channels with high velocities.Calculation of hydraulic roughness from density and average diameter of woody vegetation groups of different ages indicates that flow resistance provided by vegetation decreases systematically with group age, mainly through decreasing stem density. If all other factors remain constant, the stabilizing effect of a group of woody vegetation on a gravel bar decreases with vegetation age.  相似文献   

17.
Water is well established as a major driver of the geomorphic change that eventually reduces mountains to lower relief landscapes. Nonetheless, within the altitudinal limits of continuous vegetation in humid climates, water is also an essential factor in slope stability. In this paper, we present results from field experiments to determine infiltration rates at forested sites in the Andes Mountains (Ecuador), the southern Appalachian Mountains (USA), and the Luquillo Mountains (Puerto Rico). Using a portable rainfall simulator–infiltrometer (all three areas), and a single ring infiltrometer (Andes), we determined infiltration rates, even on steep slopes. Based on these results, we examine the spatial variability of infiltration, the relationship of rainfall runoff and infiltration to landscape position, the influence of vegetation on infiltration rates on slopes, and the implications of this research for better understanding erosional processes and landscape change.Infiltration rates ranged from 6 to 206 mm/h on lower slopes of the Andes, 16 to 117 mm/h in the southern Appalachians, and 0 to 106 mm/h in the Luquillo Mountains. These rates exceed those of most natural rain events, confirming that surface runoff is rare in montane forests with deep soil/regolith mantles. On well-drained forested slopes and ridges, apparent steady-state infiltration may be controlled by the near-surface downslope movement of infiltrated water rather than by characteristics of the full vertical soil profile. With only two exceptions, the local variability of infiltration rates at the scale of 10° m overpowered other expected spatial relationships between infiltration, vegetation type, slope position, and soil factors. One exception was the significant difference between infiltration rates on alluvial versus upland soils in the Andean study area. The other exception was the significant difference between infiltration rates in topographic coves compared to other slope positions in the tabonuco forest of one watershed in the Luquillo Mountains. Our research provides additional evidence of the ability of forests and forest soils to preserve geomorphic features from denudation by surface erosion, documents the importance of subsurface flow in mountain forests, and supports the need for caution in extrapolating infiltration rates.  相似文献   

18.
Understanding the relationship between vegetation and climate is essential for predicting the impact of climate change on broad-scale landscape processes. Utilizing vegetation indicators derived from remotely sensed imagery, we present an approach to forecast shifts in the future distribution of vegetation. Remotely sensed metrics representing cumulative greenness, seasonality, and minimum cover have successfully been linked to species distributions over broad spatial scales. In this paper we developed models between a historical time series of Advanced Very High Resolution Radiometer (AVHRR) satellite imagery from 1987 to 2007 at 1 km spatial resolution with corresponding climate data using regression tree modeling approaches. We then applied these models to three climate change scenarios produced by the Canadian Centre for Climate Modeling and Analysis (CCCma) to predict and map productivity indices in 2065. Our results indicated that warming may lead to increased cumulative greenness in northern British Columbia and seasonality in vegetation is expected to decrease for higher elevations, while levels of minimum cover increase. The Coast Mountains of the Pacific Maritime region and high elevation edge habitats across British Columbia were forecasted to experience the greatest amount of change. Our approach provides resource managers with information to mitigate and adapt to future habitat dynamics. Forecasting vegetation productivity levels presents a novel approach for understanding the future implications of climate change on broad scale spatial patterns of vegetation.  相似文献   

19.
Small-scale vegetation dynamics were followed for ecotones and in uniform stands inArtemisia-dominated steppe vegetation under grazing and when recovering from heavy grazing. Species composition was followed annually for 5 years in 1 m2and 0·25 m2plots for (1) presence–absence; (2) density; and (3) biomass.More rapid vegetation dynamics, in terms of change of type of vegetation and distance moved in DCA species space between sampling occasions, were observed in smaller plots and in early seral stages, where species were few and alpha diversity low. Only the plots recently protected from grazing showed a directional vegetation change; those protected for more than 3 years and those under continued grazing showed, at this scale, non-directional dynamics.  相似文献   

20.
The study examines the changes in sub-Saharan's natural land cover resources for a 25 year period. We assess these changes in four broad land cover classes – forests, natural non-forest vegetation, agriculture and barren – by using high spatial resolution Earth observing satellites. Two sets of sample images, one ‘historical’ targeted at 1975 and a second ‘recent’ targeted at the year 2000, have been selected through a stratified random sampling technique over the study area, targeting a sampling rate of 1% in each of the strata. The results, presented at eco-region level and aggregated at sub-Saharan level, show a 57% increase in agriculture area at the expense of natural vegetation which has itself decreased by 21% over the period, with nearly 5 million hectares forest and non-forest natural vegetation lost per year. The impacts of these changes on the environment on one site and on the socio-economy on the other site are discussed and possible pressures on human well being are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号