首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Delaware Bay contains the world’s largest population of horseshoe crabs, which constitute an ecologically significant component of this estuarine ecosystem. The North Atlantic speciesLimulus polyphemus has an extensive geographical distribution, ranging from New England to the Gulf of Mexico. Recent assessments of the Delaware Bay population based on beach spawning and trawling data have suggested a considerable decrease in the number of adult animals since 1990. Considerable debate has centered on the accuracy of these estimates and their impact on marine fisheries management planning. Compounding this problem is the lack of information concerning the genetic structure of Atlantic horseshoe crab populations. This study assessed patterns of genetic variation within and between the horseshoe crab populations of Delaware Bay and Chesapeake Bay, using both Random Amplification of Polymorphic DNA (RAPD) and DNA sequence analysis of the mitochondrial cytochrome oxidase I gene (COI). We examined 41 animals from Delaware Bay and 14 animals from the eastern shore of Chesapeake Bay. To provide high quality, uncontaminated genomic DNA for RAPD analysis, DNA was isolated from hemocytes by direct cardiac puncture, purified by spin column chromatography, and quantified by agarose gel electrophoresis. RAPD fingerprints revealed a relative paucity of polymorphic fragments, with generally homogeneous banding patterns both within and between populations. DNA sequence analysis of 515 bases of the 5′ portion of the mitochondrial COI gene showed haplotype diversity in the Chesapeake Bay sample to be significantly higher than in the Delaware Bay sample, despite the larger size of the latter. Haplotype analysis indicates minimal contemporary gene flow between Delaware Bay and Chesapeake Bay crab populations, and further suggests that the Delaware Bay population is recovering from a recent population decline.  相似文献   

2.
Observations of the Mobile Bay, Alabama, plume during a flood event in April 1991 reveal significant differences in the current field on either side of a front associated with the buoyant plume. During a strong southeasterly wind, turbid, low salinity water from Mobile Bay was pushed through an opening in the west side of the ebb-tidal delta and moved parallel to the coast. A stable front developed between the low salinity water of the buoyant plume (11‰) and the high salinity coastal water (>23‰) that was being forced landward by the prevailing winds. Despite the shallow water depth of 6 m, measurements of currents, temperature, and salinity show large shears and density gradients in both the vertical and the horizontal directions. At a station outside of the buoyant plume, currents at 0.5 m and 1.5 m below the surface were in the same direction as the wind. Inside the plume, however, currents at 0.5 m below the surface were parallel to the coast, 45°, off the direction of the wind and the magnitude was 45% larger than the magnitude of the surface currents outside the plume. Beneath the level of the plume, the currents were identical to the wind-driven currents in the ambient water south of the front. Our observations suggest that the wind-driven surface currents of the ambient water converged with the buoyant plume at the front and were subducted beneath the plume. The motion of the ambient coastal surface water was in the direction of the local wind stress, however, the motion of the plume had no northerly component of motion. The plume also did not show any flow toward the front, suggesting a balance between the northerly component of wind stress and the southerly component of buoyant spreading. In addition, the motion of the plume did not appear to affect the motion of the underlying ambient water, suggesting a lack of mixing between the two waters.  相似文献   

3.
Two-dimensional experiments investigating sediment transport and turbulence structure in sustained turbidity currents that cross breaks in slope are presented as analogue illustrations for natural flows. The results suggest that in natural flows, turbulence generation at slope breaks may account for increased sand transport into basins and that the formation of a hydraulic jump may not be necessary to explain features such as the occurrence of submarine plunge pools and the deposition of coarser-grained beds in the bottomsets of Gilbert-type fan deltas. Experimental flows were generated on 0°, 3°, 6° and 9° slopes of equal length which terminated abruptly on a horizontal bed. Two-component velocities were measured on the slope, at the slope break and downstream of the slope break. Flows were depositional and non-uniform, visibly slowing and thickening with distance downstream. One-dimensional continuous wavelet transforms of velocity time series were used to produce time-period variance maps. Peaks in variance were tested against a background red-noise spectrum at the 95% level; a significant period banding occurs in the cross-wavelet transform at the slope break, attributed to increased formation of coherent flow structures (Kelvin–Helmholtz billows). Variance becomes distributed at progressively longer periods and the shape of the bed-normal-velocity spectral energy distribution changes with distance downstream. This is attributed to a shift towards larger turbulent structures caused by wake stretching. Mean velocity, Reynolds shear stress and turbulent kinetic energy profiles illustrate the mean distribution of turbulence through the currents. A turbulent kinetic energy transfer balance shows that flow non-uniformity arises through the transfer of mean streamwise slowing to mean bed-normal motion through the action of Reynolds normal stresses. Net turbulence production through the action of normal stresses is achieved on steeper slopes as turbulence dissipation due to mean bed-normal motion is limited. At the slope break, an imbalance between the production and dissipation of turbulence occurs because of the contrasting nature of the wall and free-shear boundaries at the bottom and top of the flows, respectively. A rapid reduction in mean streamwise velocity predominately affects the base of the flows and steeper proximal slope flows have to slow more at the break in slope. The increased turbulent kinetic energy, limited bed-normal motion and strong mixing imposed by steep proximal slopes means rapid slowing enhances turbulence production at the break in slope by focusing energy into coherent flow structures at a characteristic period. Thus, mean streamwise slowing is transferred into turbulence production at the slope break that causes increased transport of sediment and a decrease in deposit mass downstream of the slope break. The internal effects of flow non-uniformity therefore can be separated from the external influence of the slope break.  相似文献   

4.
Long records of monthly salinity observations along the axis of Chesapeake Bay, Delaware Bay, and Long Island Sound are used to test a simple advection–dispersion model of the salt distribution in linearly tapered estuaries developed in a previous paper. We subdivide each estuary into three to five segments, each with linear taper allowing a distributed input of fresh water, and evaluate the dispersion in each segment. While Delaware Bay has weak dispersion and a classical sigmoidal salinity structure, Long Island Sound and Chesapeake Bay are more dispersive and have relatively small gradients in the central stretches. Long Island Sound is distinguished by having a net volume and salt flux out of its low-salinity end resulting in a smaller range of salinity and increasing axial gradients at its head rather than the usual asymptotic approach to zero salinity. Estimates of residence times based on model transport coefficients show that Long Island Sound has the most rapid response to fresh-water flux variations. It also has the largest amplitude cycle in river discharge fluctuation. In combination, these cause the large seasonal variation in the salinity structure relative to interannual variability in Long Island Sound as compared with Chesapeake Bay and Delaware Bay.  相似文献   

5.
6.
M. Felix 《Sedimentology》2002,49(3):397-419
A two‐dimensional numerical model is used to describe the flow structure of turbidity currents in a vertical plane. To test the accuracy of the model, it is applied to historical flows in Bute Inlet and the Grand Banks flow. The two‐dimensional spatial and temporal distributions of velocity and sediment concentration and non‐dimensionalized vertical profiles of velocity, turbulent kinetic energy and sediment concentration are discussed for several simple computational currents. The flows show a clear interaction between velocity, turbulence and sediment distribution. The results of the numerical tests show that flows with fine‐grained sediment have low vertical and high horizontal gradients of velocity and sediment concentration, show little increase in flow thickness and decelerate slowly. Steadiness and uniformity in these flows are comparable for velocity and concentration. In contrast, flows with coarse‐grained sediment have high vertical and low horizontal velocity gradients and high horizontal concentration gradients. These flows grow considerably in thickness and decelerate rapidly. Steadiness and uniformity in flows with coarse‐grained sediment are different for velocity and concentration. The results show the influence of spatial and temporal flow structure on flow duration and sediment transport.  相似文献   

7.
We examined the temporal and spatial variability of urea concentrations and urea uptake and regeneration rates collected on cruises along the longitudinal axis of the Chesapeake Bay between 1972 and 1998. Interannually, mean Bay-wide surface urea concentrations ranged between 0.49 and 0.91 μg-at N l?1 with a nearly 50% decrease in surface concentrations observed between 1988 and 1998. Concentrations of urea from samples collected within ~1 m of the bottom were generally higher and much more varable than surface samples. Seasonally, two different patterns were observed in mean Bay-wide surface urea concentrations. Urea concentrations from near surface waters exhibited a clear summer peak for 1988 through 1994, while for 1973 and 1996 to 1998 a distinct winter-spring peak in concentration was observed. Urea concentrations from deeper waters showed a similar seasonal trend each year with peak concentrations measured in spring. Spatially, urea concentrations in the surface waters decreased in a conservative-type pattern from 0.91 μg-at N I?1 at the freshwater end member to 0.46 μg-at N I?1 at the ocean end member. Mean Bay-wide surface urea uptake rates displayed a seasonal pattern throughout the data set with maximum uptake rates (up to 0.33 μg-at N I?1 h?1) consistently observed during summer. Mean Bay-wide surface regeneration rates were highest but most variable during fall (1.63±0.82 μg-at N I?1 h?1). Mean urea uptake and regeneration rates displayed opposing spatial trends along the axis of the Bay with uptake rates being lowest in the North Bay where regeneration rates were highest. The average temporal and spatial patterns of urea concentration in Chesapeake Bay appear to reflect a balance between external inputs and internal biological recycling.  相似文献   

8.
合肥至武汉铁路防洪评价淠河总干渠特大桥输水影响分析   总被引:1,自引:0,他引:1  
胡余忠 《水文》2007,27(1):62-65
铁路桥梁工程建设对河道堤防安全、河势稳定、输水安全、通航以及渠道治理规划等产生一定的影响。根据《中华人民共和国防洪法》、《中华人民共和国河道管理务例》和国家计委、水利部《河道管理范围内建设项目管理的有关规定》等法规,对河道管理范围内建设项目应进行防洪评价。本文概括介绍了合肥至武汉铁路跨越淠河总干渠特大桥基本情况,就桥梁建设对河道输水能力的影响作了分析评价。结果表明,铁路建设对河道输水能力影响较大,建议采取相应的补偿措施。  相似文献   

9.
波生流是海岸工程和海岸演变非常重要的动力因素之一,水深平均的平面二维波生流目前已有大量的研究成果,且广泛应用于工程实践中,其垂向变化往往对建筑物的稳定和海岸地貌的变化造成显著影响,例如堤前冲刷和岸滩蚀退.回顾了国内外对波生流垂向结构的研究与进展,从实验室与现场观测、理论分析以及数值模拟3个方面概述了该领域的研究现状与发展趋势,总结了已有研究存在的不足,提出需要进一步研究的课题.  相似文献   

10.
The objective of this study was to gain baseline population data on the genetic diversity and differentiation of eelgrass (Zostera marïna L.) populations in the Chesapeake and Chincoteague bays. Natural and transplanted eelgrass beds were compared using starch gel electrophoresis of allozymes. Transplanted eelgrass beds were not reduced in genetic diversity compared with natural beds. Inbreeding coefficients (FIS) indicated that transplanted eelgrass beds had theoretically higher levels of outcrossing than natural beds, suggesting the significance of use of seeds as donor material and of seedling recruitment following transplantation diebacks. Natural populations exhibited very great genetic structure (FST=0.335), but transplanted beds were genetically similar to the donor bed and each other. Genetic diversity was lowest in Chincoteague Bay, reflecting recent restoration history since the 1930s wasting disease and geographical isolation from other east coast populations. These data provide a basis for developing a management plan for conserving eelgrass genetic diversity in the Chesapeake Bay and for guiding estuary-wide restoration efforts. It will be important to recognize that the natural genetic diversity of eelgrass in the estuary is distributed among various populations and is not well represented by single populations.  相似文献   

11.
The buoyant discharge from Delaware Bay forms two separate branches of residual outflow near the bay mouth, one along each shore. Upon exiting the bay, the branch along the Delaware shore turns right to form the southward flowing Delaware coastal current along the inner continental shelf off the Delaware, Maryland, and Virginia coasts. CTD and thermosalinograph, data collected at the mouth of Delaware Bay over two semidiurnal tidal cycles are used to examine the hydrographic distribution at the source region of the Delaware coastal current. In this region the buoyant source water of the coastal current, is largely detached from the shoreline and confined to the top 15 m of the water column over much of the tidal cycles. The core of the coastal current's source water, as defined by the point of salinity minimum, is located over the deep channel well offshore of the Delaware coast. The separation between this buoyant water and the more saline waters right along the Delaware coast and that in the central part of the bay mouth are marked by regions of high horizontal salinity gradients. The horizontal salinity gradients around the inshore and offshore boundaries of the source water of the coastal current are intensified during the flood tide, and clearly defined fronts (with a change of 3‰ over a distance of 150 m) are present at the offshore boundary near the end of the flood tide. The structure of the mean flow and the distribution of the brackish coastal current on the inner continental shelf contribute to the persistence of stratification in the source region off the Delaware shore throughout the ebb and flood tides. In contrast, the ebb-induced stratification in the region off the New Jersey shore is quickly destroyed with the onset of the flood current.  相似文献   

12.
This paper adopts a positivist approach to social geography, which is viewed as a study of the two-way relationship between spatial structure and social structure. This relationship is examined in cities in contemporary Britain and the United States. The concept of social structure is discussed in the first section. It is suggested, after Blau, that social structure may be delineated by parameters which demarcate the lines of differentiation among people, created in their social interaction. Area of residence may be considered such a parameter. Social structure comprises a complex configuration of these parameters. In general, coinciding parameters limit social mobility and lead to an atomised society. The processes by which social structure takes on spatial expression are discussed in the second section. The salience of various parameters of social structure in a spatial setting is assessed first. Behaviouralist, managerialist and structuralist approaches to residential differentiation are reviewed. It is argued that most insight will come from studies of the interaction between groups of households and the major institutions of the housing market in the context of characteristics of the housing supply. The impact of neighbourhood on social structure is examined in the third section. The role of propinquity in social interaction is discussed along with the role of neighbourhood as a status symbol. Individuals may change their position along structural parameters as a consequence of their residential location. Residential segregation is also a means, through its role in circumscribing contacts, by which the continuation of the stratification system is ensured in the next generation. In conclusion, it is noted that the isolation of racial minorities in the disadvantaged parts of the city poses a danger to social stability.  相似文献   

13.
Emms 《Sedimentology》1999,46(6):1049-1063
Two models of a geostrophically rotating turbidity current are examined to compare predictions for ignition with the catastrophic state. Both models describe the current as a tube of sediment-laden water traversing along and down a uniform slope. The first (four-equation) model neglects the energy required to lift the sediment from the seabed into suspension. The second (five-equation) model rectifies this shortcoming by introducing a turbulent kinetic energy equation and coupling the bottom stress to turbulence in the plume. These models can be used to predict the ignition, path and sediment deposition of a geostrophically rotating turbidity current. The criteria for ignition in the four-equation model can be described by a surface in three-dimensional phase space (for a non-entraining current). This surface lies near the geostrophic equilibrium state. For a turbidity current occurring in the Greenland Sea, velocities above 0·053 m s–1 or volumetric concentrations of sediment above 2·7 × 10–5 lead to ignition. In general, if the tube is started pointing downslope, then ignition is more likely than if it is initially directed alongslope. However, there exists a set of initial conditions in which the current ignites if started along or downslope, but deposits if started at an intermediate angle. The five-equation model requires a larger initial velocity (greater than 1·6 m s–1) to ignite than does the four-equation model. Ignition is determined qualitatively by the geostrophic state and the initial normal Froude number. Solutions show a tendency to travel further alongslope during ignition, reflecting the restriction that the energy budget places on the sediment load. A qualitative difference to phase space in the five-equation model is the existence of a region in which the tube has insufficient energy to support the sediment. Turbulence dies rapidly in this region, and so the sediment is deposited almost immediately.  相似文献   

14.
15.
József Tóth 《GeoJournal》1994,32(4):343-350
The last four decades have brought fundamental changes in Hungarian urbanization. The number of towns has increased from 54 to 166 and the number of settlements with a population over 100 000 has grown from 3 to 8, and the number of small towns with a population just over 30 000 has increased four times compared to the situation at the beginning of the century. While urban concentration has been growing, there has been a degradation of rural settlements, especially in the category of less than 500 inhabitants. This study deals with the spatial structure of Hungarian settlements, categorizing the towns according to their regional roles, population and dynamics of growth. The changes of their social and economic spheres influence their internal structures. The study attempts to summarize all the territorial, regional consequences of the recent social and economic changes that have been defining or modifying the urban development in Hungarian settlements.  相似文献   

16.
Experimental results are reported concerning the nature of reflected flows generated when density currents are incident upon ramp-type flow obstructions. The reflected flows are bores (moving hydraulic jumps that transport mass) with flow characteristics in common with either a group of solitary waves (weak Type A bores) or the original density current (strong Type C bores). Alternatively, the bore may have attributes in common with both of these end-member forms (intermediate Type B bores). Bore strength is positively correlated with the ratio of reverse flow thickness to that of the residual tail of the forward flow. The largest values of this ratio occur when ‘proximal’reflections arrive at the steeper ramps. Measured particle paths in the bores indicate that natural examples will have the potential to transport and deposit sediment. Strong bores have velocity characteristics very similar to the original current and thus in nature the generated sequence of sedimentary structures will resemble those of the original depositing current. The train of solitary waves that make up a weak bore sequence exhibits a pulsating velocity profile at a point. Such flows may thus generate repeated sequences of structures separated by fine ‘drapes’that are distinguishable from the deposits of the original turbidity current. These conclusions are applied to examples of reflected turbidites described from the Palaeozoic to Quaternary sedimentary record.  相似文献   

17.
Soil pH plays an important role in biogeochemical processes in soils. The spatial distribution of soil pH provides basic and useful information relevant to soil management and agricultural production. To obtain an accurate distribution map of soil pH on the Loess Plateau of China, 382 sampling sites were investigated throughout the region and four interpolation methods, i.e., inverse distance weighting (IDW), splines, ordinary kriging, and cokriging, were applied to produce a continuous soil pH surface. In the study region, soil pH values ranged from 6.06 to 10.76, with a mean of 8.49 and a median of 8.48. Land use type had a significant effect (p < 0.01) on soil pH; grassland soils had higher pHs than cropland and forestland soils. From a regional perspective, soil pH showed weak variation and strong spatial dependence, indicated by the low values of the coefficient of variation (0.05) and the nugget-to-sill ratios (<0.25). Indices of cross-validation, i.e., average error, mean absolute error, root mean square error, and model efficiency coefficient were used to compare the performance of the four different interpolation methods. Kriging methods interpolated more accurately than IDW and splines. Cokriging performed better than ordinary kriging and the accuracy was improved using soil organic carbon as an auxiliary variable. Regional distribution maps of soil pH were produced. The southeastern part of the region had relatively low soil pH values, probably due to higher precipitation, leaching, and higher soil organic matter contents. Areas of high soil pH were located in the north of the central part of the region, possibly associated with the salinization of sandy soils under inappropriate irrigation practices in an arid climate. Map accuracy could be further improved using new methods and incorporating other auxiliary variables, such as precipitation, elevation, terrain attributes, and vegetation types.  相似文献   

18.
To determine the genetic structure of the bay anchovy (Anchoa mitchilli) within Chesapeake Bay, 16 isozyme systems encoding 21 loci for 20 population were examined using horizontal starch gel electrophoresis. Contingency Chisquare analysis revealed significant allelic frequency differences at nine loci (AAT-1, AAT-2, ALD-1, CPK-2, GAP-1, GLY-1, LDH-1, MDH-1, and MDH-2). Two loci, ALD-1 and MDH-1, were responsible for nine of 14 tests not conforming to Hardy-Weinberg expectations, with some of these deviations attributed to possible scoring and/or sampling error. Estimates for mean average heterozygosity were relatively high, ranging from 0.40 to 0.096, with 33–57% of the loci polymorphic. A low Fst value (0.041) along with high genetic identity estimates (I=0.997) indicated little substructuring of bay anchovy populations within Chesapeake Bay.  相似文献   

19.
《Earth》2009,96(3-4):158-188
We review the nature and importance of soil factors implicated in the formation of secondary ferrimagnetic minerals in soils and palaeosols worldwide. The findings are examined with respect to temperate regions through a comprehensive analysis of over 5000 samples of surface soil from England and Wales taken from a 5 × 5 km grid. Over 30 soil and environmental attributes are considered for each sample as proxies for soil forming factors. Measurements of low field magnetic susceptibility (mass specific) and frequency dependent susceptibility (mass specific and percentage) on each sample provide estimates of the concentration and grain size of ferrimagnetic minerals.Maps of soil magnetism across England and Wales show non-random distributions and clusters. One subset of data is clearly linked to contamination from atmospheric pollution, and excluded from subsequent analyses. The concentration of ferrimagnetic minerals in the non-polluted set is broadly proportional to the concentration of minerals falling into the viscous superparamagnetic domain size range (~ 15–25 nm). This set shows clusters of high magnetic concentrations particularly over specific parent materials such as schists and slates, mudstones and limestones.Bivariate analyses and linear multiple regression models show that the main controlling factors are parent material and drainage, the latter represented by soil drainage classes and particle size. Together these two factors account for ~ 30% of the magnetic variability in the complete dataset. A second group of factors, including climate (mean annual rainfall), relief (slope and altitude), and organisms (land use, organic carbon and pH) have subordinate control. Climate, as represented by mean annual temperature, and also pedogenic time are deemed not relevant at these spatio-temporal scales.The findings are consistent with a largely abiotic system where the role of iron-reducing bacteria appears minor. At coarse spatial and temporal scales, secondary ferrimagnetic mineral formation is controlled by the weathering capacity to supply Fe to the surface soil. At finer scales, soluble Fe precipitates as ferrihydrite before transformation in response to periodically anaerobic conditions into other minerals including nanoscale magnetite.  相似文献   

20.
We analyze the properties of the electric-current distribution over the cross sections of fairly dense coronal magnetic flux tubes in which the plasma pressure exceeds the magnetic pressure, so that the equilibrium is maintained by the ambient magnetic field. If the plasma is fully ionized, the distributions of the longitudinal and azimuthal currents over the cross section of the loop have the same spatial scale as the pressure distribution. However, even a small number of neutral atoms in the corona (with a mass fraction of the order of 10?5, taking into account the partial ionization of helium) substantially modifies the current distribution over the tube cross section: in this case, a considerable fraction of the full current flowing along the tube is concentrated in a thin region near the axis with a radius of the order of (10?2–10?3)r 0 (where r 0 is the characteristic scale of the plasma-pressure distribution over the tube), thus forming a sort of a jet current. This comes about because the pattern of the conductivity anisotropy is substantially modified in the presence of ion-atom collisions in the magnetoactive plasma of the tube, and the Cowling conductivity dominates over the Hall and Pedersen conductivities. The high current density near the axis of the tube can ensure heating of the plasma to coronal temperatures via Joule dissipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号