首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant biomarkers, such as hydrocarbon waxes, are frequently found in various sediments and could be adopted as paleovegetation and paleoclimate indicators. Nevertheless, scarce researches have focused on leaf waxes in higher plants of alpine region.Herein, hydrocarbon leaf wax components of Salix oritrepha, which flourish in Nianbaoyeze Mountains in eastern Tibetan Plateau were fully discussed. The n-alkane distribution in leaves ranges from n-C_(21) to nC_(29) with maxima at n-C_(25), which were entirely different with Salix taxa displayed in previous surveys in non-alpine regions. The unusual even carbon nalkenes from n-C_(22:1) to n-C_(30:1), which were thought to appear only in aquatic organisms, were firstly reported in an alpine plant. Additionally, iso-(2-methyl) alkanes, ranging from i-C_(23) to i-C_(29) with maxima at i-C_(25), which have been commonly reported in microorganisms, were also identified in an alpine plant for the first time. Unusual hydrocarbon distribution detected in Salix oritrepha leaf from Nianbaoyeze Mountains is most likely due to the extreme environment in such alpine region.  相似文献   

2.
Though aboveground biomass (AGB) has an important contribution to the global carbon cycle, the information about storage and climatic effects of AGB is scare in Three-River Source Region (TRSR) shrub ecosystems. This study investigated AGB storage and its climatic controls in the TRSR alpine shrub ecosystems using data collected from 23 sites on the Tibetan Plateau from 2011 to 2013. We estimated the AGB storage (both shrub layer biomass and grass layer biomass) in the alpine shrubs as 37.49 Tg, with an average density of 1447.31 g m-2. Biomass was primarily accumulated in the shrub layer, which accounted for 92% of AGB, while the grass layer accounted for only 8%. AGB significantly increased with the mean annual temperature (P < 0.05). The effects of the mean annual precipitation on AGB were not significant. These results suggest that temperature, rather than precipitation, has significantly effects on of aboveground vegetation growth in the TRSR alpine shrub ecosystems. The actual and potential increase in AGB density was different due to global warming varies among different regions of the TRSR. We conclude that long-term monitoring of dynamic changes is necessary to improve the accuracy estimations of potential AGB carbon sequestration across the TRSR alpine shrub ecosystems.  相似文献   

3.
Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon(C), nitrogen(N) and phosphorus(P) pools between above- and belowground biomass at the community level along a precipitation gradient. We conducted a transect(approx. 1300 km long) study of Stipa purpurea community in alpine steppe on the Tibet Plateau of China to test the variation of N pool of aboveground biomass/N pool of belowground biomass(AB/BB N) and P pool of aboveground biomass/P pool of belowground biomass(AB/BB P) along a precipitation gradient. The proportion of aboveground biomass decreased significantly from mesic to drier sites. Along the belt transect, the plant N concentration was relatively stable; thus, AB/BB N increased with moisture due to the major influences by above- and belowground biomass allocation. However, P concentration of aboveground biomass decreased significantly with increasing precipitation and AB/BB P did not vary with aridity because of the offset effect of the P concentration and biomass allocation. Precipitation gradients do decouple the N and P pool of a S. purpurea community along a precipitation gradient in alpine steppe. The decreasing of N:P in aboveground biomass in drier regions may indicate much stronger N limitation in more arid area.  相似文献   

4.
Grazing exclusion is widely adopted in restoring degraded alpine grasslands on the Qinghai-Tibetan Plateau. However, its effectiveness remains poorly understood. In this study, we investigated the effects of grazing exclusion on plant productivity, species diversity and soil organic carbon (SOC) and soil total nitrogen (STN) storage along a transect spanning from east to west of alpine meadows in northern Tibet, China. After six years of grazing exclusion, plant cover, aboveground biomass (AGB), belowground biomass (BGB), SOC and STN were increased, but species diversity indices declined. The enhancement of AGB and SOC caused by grazing exclusion was correlated positively with mean annual precipitation (MAP). Grazing exclusion led to remarkable biomass increase of sedge species, especially Kobresia pygmaea, whereas decrease of biomass in forbs and no obvious change in grass, leguminous and noxious species. Root biomass was concentrated in the near surface layer (10 cm) after grazing exclusion. The effects of grazing exclusion on SOC storage were confined to shallow soil layer in sites with lower MAP. It is indicated that grazing exclusion is an effective measure to increase forage production and enhance soil carbon sequestration in the studied region. The effect is more efficient in sites with higher precipitation. However, the results revealed a tradeoff between vegetation restoration and ecological biodiversity. Therefore, carbon pools recover more quickly than plant biodiversity in the alpine meadows. We suggest that grazing exclusion should be combined with other measures to reconcile grassland restoration and biodiversitv conservation.  相似文献   

5.
Biomass is an important component of global carbon cycling and is vulnerable to climate change. Previous studies have mainly focused on the responses of aboveground biomass and phenology to warming, while studies of root architecture and of root biomass allocation between coarse and fine roots have been scarcely reported in grassland ecosystems. We conducted an open-top-chamber warming experiment to investigate the effect of potential warming on root biomass and root allocation in alpine steppe on the north Tibetan Plateau. The results showed that Stipa purpurea had significantly higher total root length, root surface area and tips than Carex moocroftii. However,there were no differences in total root volume, mean diameter and forks for the two species. Warming significantly increased total root biomass(27.60%), root biomass at 0–10 cm depth(27.84%) and coarse root biomass(diameter 0.20 mm, 57.68%) in the growing season(August). However, warming had no significant influence on root biomass in the non-growing season(April). Root biomass showed clear seasonalvariations: total root biomass, root biomass at 0–10 cm depth and coarse root biomass significantly increased in the growing season. The increase in total root biomass was due to the enhancement of root biomass at 0–10 cm depth, to which the increase of coarse root biomass made a great contribution. This research is of significance for understanding biomass allocation, carbon cycling and biological adaptability in alpine grassland ecosystems under future climate change.  相似文献   

6.
Artificial planting is an important measure to promote the restoration of degraded grassland and protect the ecological environment. The objectives of the current study were to investigate the allocation pattern between aboveground biomass(AGB) and belowground biomass(BGB) in different seeding types of artificially-planted pastures. We explored the variation in biomass and the relationship between above-and belowground biomass in four artificiallyplanted pastures with one species from Elymus nutans Griseb(EN, perennial), Elymus sibiricus Linn(ES, perennial), Medicago sativa Linn(MS, perennial), and Avena sativa Linn(AS, annual) and in six artificially-planted communities with mixtures of two species by seeding ratio 1:1 from the abovementioned grasses(EN + AS, MS + AS, EN + ES, MS + EN, MS + ES, AS + ES) in 2015 and 2016. The results showed that E. nutans is the most productive species with the highest biomass production among the single crops. MS + ES was the most productive group in 2015, while the group with the highest biomass production changed to AS + ES in 2016. AGB was positively correlated to BGB in the surface soil layer in the first year, but positively related to BGB in the subsoil layer in the second year. In the early stageof artificial grassland succession, plants allocated more biomass to aboveground parts, with a root to shoot(R/S) ratio of 1.98. The slope of the log-log relationship between AGB and BGB was 1.07 in 2016, which is consistent with the isometric theory. Different sowing patterns strongly affected the accumulation and allocation of biomass in artificiallyplanted grassland, E. sibiricus was the suitable plant in the alpine regions, which will be conducive to understanding vegetation restoration and plant interactions in the future.  相似文献   

7.
Variations in the fractions of biomass allocated to functional components are widely considered as plant responses to resource availability for grassland plants. Observations indicated shoots isometrically relates to roots at the community level but allometrically at the species level in Tibetan alpine grasslands. These differences may result from the specific complementarity of functional groups between functional components, such as leaf, root, stem and reproductive organ. To test the component complementary responses to regional moisture variation, we conducted a multi-site transect survey to measure plant individual size and component biomass fractions of common species belonging to the functional groups: forbs, grasses, legumes and sedges on the Northern Tibetan Plateau in peak growing season in 2010. Along the mean annual precipitation (MAP) gradient, we sampled 7o species, in which 2o are in alpine meadows, 20 in alpine steppes, 15 in alpine desert-steppes and 15 in alpine deserts, respectively. Our results showed that the size of alpine plants is small with individual biomass mostly lower than 1.0 g. Plants keep relative conservative component individual responses moisture functional fractions across alpine grasslands at the level. However, the complementary between functional components to variations specifically differ among groups. These results indicate that functional group diversity may be an effective tool for scaling biomass allocation patterns from individual up to community level. Therefore, it is necessary andvaluable to perform intensive and systematic studies on identification and differentiation the influences of compositional changes in functional groups on ecosystem primary services and processes.  相似文献   

8.
Elevation is one of key factors to affect changes in the environment, particularly changes in conditions of light, water and heat. Studying the soil physicochemical properties and vegetation structure along an elevation gradient is important for understanding the responses of alpine plants andtheir growing environment to climate change. In this study, we studied plant coverage, plant height, species richness, soil water-holding capacity, soil organic carbon(SOC) and total nitrogen(N) on the northern slopes of the Qilian Mountains at elevations from2124 to 3665 m. The following conclusions were drawn:(1) With the increase of elevation, plant coverage and species richness first increased and then decreased, with the maximum values being at 3177 m.Plant height was significantly and negatively correlated with elevation(r=–0.97, P0.01), and the ratio of decrease with elevation was 0.82 cm·100 m-1.(2) Both soil water-holding capacity and soil porosity increased on the northern slopes of the Qilian Mountains with the increase of elevation. The soil saturated water content at the 0-40 cm depth first increased and then stabilized with a further increase of elevation, and the average ratio of increase was2.44 mm·100 m-1. With the increase of elevation, the average bulk density at the 0-40 cm depth first decreased and then stabilized at 0.89 g/cm3.(3) With the increase of elevation, the average SOC content at the 0-40 cm depths first increased and then decreased,and the average total N content at the 0-40 cm depth first increased and then stabilized. The correlation between average SOC content and average total N content reached significant level. According to the results of this study, the distribution of plants showed a mono-peak curve with increasing elevation on the northern slopes of the Qilian Mountains. The limiting factor for plant growth at the high elevation areas was not soil physicochemical properties, and therefore,global warming will likely facilitate the development of plant at high elevation areas in the Qilian Mountains.  相似文献   

9.
Ecosystem multifunctionality(EMF), the simultaneous provision of multiple ecosystem functions, is often affected by biodiversity and environmental factors. We know little about how the interactions between biodiversity and environmental factors affect EMF. In this case study, a structural equation model was used to clarify climatic and geographic pathways that affect EMF by varying biodiversity in the Tibetan alpine grasslands. In addition to services related to carbon, nitrogen, and water cycling, forage supply, which is related to plantproductivity and palatability, was included in the EMF index. The results showed that 72% of the variation in EMF could be explained by biodiversity and other environmental factors. The ratio of palatable richness to all species richness explained 8.3% of the EMF variation. We found that air temperature, elevation, and latitude all affected EMF, but in different ways. Air temperature and elevation impacted the aboveground parts of the ecosystem, which included plant height, aboveground biomass, richness of palatable species, and ratio of palatable richness to all species richness. Latitude affected EMF by varying both aboveground and belowground parts of the ecosystem, which included palatable speciesrichness and belowground biomass. Our results indicated that there are still uncertainties in the biodiversity–EMF relationships related to the variable components of EMF, and climatic and geographic factors. Clarification of pathways that affect EMF using structural equation modeling techniques could elucidate the mechanisms by which environmental changes affect EMF.  相似文献   

10.
The mountainous areas of Central Asia provide substantial water resources, and studying change in water storage and the impacts of precipitation and snow cover in the mountain ranges of Central Asia is of the greatest importance for understanding regional water shortages and the main factors. Data from the GRACE(Gravity Recovery and Climate Experiment) satellites, precipitation products and snow-covered area data were used to analyze the spatio-temporal characteristics of water storage changes and the effects of precipitation and snow cover from April 2002 to December 2013. The results were computed for each mountain ranges, and the following conclusions were drawn. The water storage in the mountainous areas of Central Asia as a whole increases in summer and winter, whereas it decreases in autumn. The water storage is affected by precipitation to some extent and some areas exhibit hysteresis. The area of positive water storage changes moves from west to east over the course of the year. The water storage declined during the period 2002–2004. It then returned to a higher level in 2005–2006 and featured lower levels in 2007–2009 Subsequently, the water storage increased gradually from 2010 to 2013. The Eastern Tianshan Mountains and Western Tianshan Mountain subzones examined in this study display similar tendencies, and the trends observed in the Karakorum Mountains and the Kunlun Mountains are also similar. However, the Eastern Tianshan Mountains and Western Tianshan Mountains were influenced by precipitation to a greater degree than the latter two ranges. The water storage in Qilian Mountains showed a pronounced increasing trend, and this range is the most strongly affected by precipitation. Based on an analysis of all investigated subzones, precipitation has the greatest influence on total water storage relative to the snow covered area in some areas of Central Asia. The results obtained from this study will be of value for scientists studying the mechanisms that influence changes in water storage in Central Asia.  相似文献   

11.
Understanding the factors that drive variation in species distribution is a central theme of ecological research. Although several studies focused on alpine vegetation, few efforts have been made to identify the environmental factors that are responsible for the variations in species composition and richness of alpine shrublands using numericalmethods. In the present study, we investigated vegetation and associated environmental variables from 45 sample plots in the middle Qilian Mountains of the northwestern China to classify different community types and to elucidate the speciesenvironment relationships. We also estimated the relative contributions of topography and site conditions to spatial distribution patterns of the shrub communities using the variation partitioning. The results showed that four shrub community types were identified and striking differences in floristic composition were found among them. Species composition greatly depended on elevation, slope,shrub cover, soil p H and organic carbon. The important determinants of species richness were soil bulk density and slope. No significant differences in species richness were detected among the community types. Topography and site conditions had almost equal effects on compositional variation. Nonetheless,a large amount of the variation in species composition remained unexplained.  相似文献   

12.
Under conditions of a warmer climate, the advance of the alpine treeline into alpine tundra has implications for carbon dynamics in mountain ecosystems. However, the above- and below-ground live biomass allocations among different vegetation types within the treeline ecotones are not well investigated. To determine the altitudinal patterns of above-/below-ground carbon allocation, we measured the root biomass and estimated the above-ground biomass (AGB) in a subalpine forest, treeline forest, alpine shrub, and alpine grassland along two elevational transects towards the alpine tundra in southeast Tibet. The AGB strongly declined with increasing elevation, which was associated with a decrease in the leaf area index and a consequent reduction in carbon gain. The fine root biomass (FRB) increased significantly more in the alpine shrub and grassland than in the treeline forest, whereas the coarse root biomass changed little with increasing altitudes, which led to a stable below-ground biomass (BGB) value across altitudes. Warm and infertile soil conditions might explain the large amount of FRB in alpine shrub and grassland. Consequently, the root to shoot biomass ratio increased sharply with altitude, which suggested a remarkable shift of biomass allocation to root systems near the alpine tundra. Our findings demonstrate contrasting changes in AGB and BGB allocations across treeline ecotones, which should be considered when estimating carbon dynamics with shifting treelines.  相似文献   

13.
Due to the Tibetan Plateau's unique high altitude and low temperature climate conditions,the region's alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe.  相似文献   

14.
This study addressed the floral component traits and biomass allocation patterns of Gentiana hexaphylla as well as the relationships of these parameters along an elevation gradient(approximately 3700 m, 3800 m, 3900 m, and 4000 m) on the eastern Qinghai-Tibet Plateau. The plant height, floral characteristics, and biomass allocation of G. hexaphylla were measured at different altitudes after field sampling, sorting, and drying. Plant height was significantly greater at 3700 m than that at other elevations. Flower length was significantly greater at 4000 m than that at other elevations, whereas the flower length at low elevations showed no significant differences. Corolla diameter increased with altitude, although the difference was not significant between 3800 m and 3900 m. Variations in biomass accumulation, including the aboveground, photosynthetic organ, flower and belowground biomasses, showed non-linear responses to changes in altitude. The aboveground and photosynthetic organ biomasses reached their lowest values at 4000 m, whereas the belowground and flower biomassreached minimum values at 3700 m. The sexual reproductive allocation of G. hexaphylla also increased with altitude, with a maximum observed at 4000 m. These results suggest that external environmental factors and altitudinal gradients as well as the biomass accumulation and allocation of G. hexaphylla play crucial roles in plant traits and significantly affect the ability of this species to adapt to harsh environments. The decreased number of flowers observed at higher altitudes may indicate a compensatory response for the lack of pollinators at high elevations, which is also suggested by the deformed flower shapes at high altitudes. In addition, the individual plant biomass(i.e., plant size) had significantly effect on flower length and corolla diameter. Based on the organ biomass results, the optimal altitude for G. hexaphylla in the eastern Qinghai-Tibet Plateau is 3800 m, where the plant exhibits minimum propagule biomass and asexual reproductive allocation.  相似文献   

15.
This study addressed the floral component traits and biomass allocation patterns of Gentiana hexaphylla as well as the relationships of these parameters along an elevation gradient (approximately 3700 m, 3800 m, 3900 m, and 4000 m) on the eastern Qinghai-Tibet Plateau. The plant height, floral characteristics, and biomass allocation of G. hexaphylla were measured at different altitudes after field sampling, sorting, and drying. Plant height was significantly greater at 3700 m than that at other elevations. Flower length was significantly greater at 4000 m than that at other elevations, whereas the flower length at low elevations showed no significant differences. Corolla diameter increased with altitude, although the difference was not significant between 3800 m and 3900 m. Variations in biomass accumulation, including the aboveground, photosynthetic organ, flower and belowground biomasses, showed non-linear responses to changes in altitude. The aboveground and photosynthetic organ biomasses reached their lowest values at 4000 m, whereas the belowground and flower biomass reached minimum values at 3700 m. The sexual reproductive allocation of G. hexaphylla also increased with altitude, with a maximum observed at 4000 m. These results suggest that external environmental factors and altitudinal gradients as well as the biomass accumulation and allocation of G. hexaphylla play crucial roles in plant traits and significantly affect the ability of this species to adapt to harsh environments. The decreased number of flowers observed at higher altitudes may indicate a compensatory response for the lack of pollinators at high elevations, which is also suggested by the deformed flower shapes at high altitudes. In addition, the individual plant biomass (i.e., plant size) had significantly effect on flower length and corolla diameter. Based on the organ biomass results, the optimal altitude for G. hexaphylla in the eastern Qinghai-Tibet Plateau is 3800 m, where the plant exhibits minimum propagule biomass and asexual reproductive allocation.  相似文献   

16.
Controlled grazing is considered a good management strategy to maintain or increase the live weight of livestock and to reduce vegetation degradation of rangelands. The present study investigated soil characteristics, aboveground vegetation biomass dynamics and controlled grazinginduced changes in the live weight of local ewes in the semi-arid rangeland of Ahmadun, Ziarat, Balochistan province of Pakistan. An area of 115 ha was protected from livestock grazing in April 2014. In June 2015, soil characteristics within 0-30 cm depth i.e. soil organic matter (SOM), mineral nitrogen, pH and texture in controlled and uncontrolled grazing sites were assessed. Aboveground vegetation biomass measured in early (June) and late summer (August) in 2015 and 2016. The nutritional value i.e. crude protein, phosphorus (P), neutral detergent fiber (NDF), acid detergent fiber (ADF), calcium (Ca), magnesium (Mg) and potassium (K) of dominant plant species were assessed at the beginning of experiment in 2015. Vegetation cover of controlled and uncontrolled grazing sites was also measured during the two years of the study period using the VegMeasure software. From June to November in 2015 and 2016, controlled and uncontrolled livestock grazing sites were grazed on a daily basis by local ewes with a stocking rate of 2 and 1 head ha-1 respectively. Results reveal that the organic matter contents of coarse-textured, slightly alkaline soil of the study site were in the range of 9.4 - 17.6 g kg-1 soil and showed a strong positive correlation with aboveground vegetation biomass. The biomass of plants was 56.5% and 33% greater at controlled than uncontrolled grazing site in 2015 and 2016 respectively and plant cover was also higher at controlled than uncontrolled grazing site in both years. The nutrient contents were significantly (P<0.05) lower in grasses than shrubs. In both years, the controlled grazing increased the weight gain of ewes about two folds compared to the uncontrolled grazing. The results indicate that controlled grazing improved the vegetation biomass production and small ruminant productivity.  相似文献   

17.
The present paper gives an insight into the distribution and use pattern of medicinal shrubs in Uttaranchal State. A total of 222 medicinal and aromatic shrub species have been appended based on secondary information. Euphorbiaceae, Rosaceae, Verbenaceae, and Fabaceae have the highest repre- sentatives of medicinal shrubs. Twenty one families had one species each in medicinal use. Verbenaceae and Euphorbiaceae in the sub-tropical region, Rosaceae in the temperate region, and Ericaceae and Rosaceae in the sub-alpine and alpine regions, respectively, had the highest representatives of medicinal shrubs. The distribution of medicinal shrubs was 42 % in sub-tropical, 29 % in warm temperate, 13 % in cool temperate, 9 % in sub-alpine and 7 % in the alpine region. Of the total species, 70 medicinal shrubs were native to the Himalayas and 22 native to Himalayan region including other Hima- layan countries. The most frequently used plant parts for various ailments were leaves (31 %) and roots (23 %). Most shrubs are being used for the diseases, viz. skin diseases, dysentery, cough, fever, wounds, and rheumatism. The present paper will help in the execution of strategies for promotion and cultivation of medicinal shrubs in Uttaranchal State.  相似文献   

18.
Understanding of treeline ecotone ecophysiological adaptation to climate warming is still very limited. Furthermore, it is difficult to predict which plant species could dominate in the future. For this reason, a study was conducted in the treeline ecotone, East Tibetan Plateau to detect the adaptation of the dwarf willow(Salix eriostachya) to experimental warming. Compared to ambient conditions, the experimental warming advanced the bud break by 12 days, delayed the leaf abscission by20 days, and prolonged the growing period by 28 days.It also increased photosynthesis(47%), number of leaves(333%), leaf area(310%), and carbon sequestration of the dwarf willow. Experimental warming did not affect carbon use efficiency, but decreased water use efficiency significantly.Experimental warming enhanced the clonal ramets of Salix eriostachya(+ 3.7 shrubs m-2). The frequent air temperature fluctuations had minor effect on Salix eriostachya. Based on these findings, we highlighted that Salix eriostachya could dominate in the community treeline ecotone of east Tibetan Plateau in the future climate warming scenario.  相似文献   

19.
To better understand the process of precipitation and water cycle, the composition of stable isotope in precipitation and its influences by different vapor sources in the eastern of Qilian Mountains were conducted from June 2013 to May 2014. The total of 100 precipitation samples were collected in Wushaoling national meteorological station located in the eastern of Qilian Mountains. The analysis indicates that the slope of Local Meteoric Water Line is lower than that of Global Meteoric Water Line. The average values of δ18 O and δD in precipitation are higher in summer but lower in winter. Except for negative correlation with relative humidity, the stable isotope values in precipitation are positive correlations with temperature, precipitation and water vapor pressure. Influenced by water vapor source, the values of d-excess are lower for the Westerly wind and the South Asia Monsoon onJuly and the Westerly wind and the East Asia Monsoon on August, but they are higher for the Westerly wind on other months, that they are also influenced by the weather conditions in rainfall process. The variation of stable isotope in precipitation exhibited significant temperature effect, and there is also some precipitation amount effect in spring and summer.  相似文献   

20.
The investigation of distribution patterns of species diversity is significant for successful biodiversity conservation. The spatial patterns of vegetation and different life-forms species diversity along an elevation gradient in the middle section of the southern slope of the Tianshan Mountains in Xinjiang, China were explored, using the detrended canonical correspondence analysis(DCCA) and the generalized additive model(GAM) methods based on a field survey of 53 sampling plots. In this work 158 species of seed plants were recorded, including 141 herbaceous, 14 shrub, and 2 tree species, in which the woody plants are very limited. 53 sampling plots were classified into 9 major plant communities. The results indicate that the herb communities were the most sensitive to changes in elevation gradient. The diversity indices of the community as a whole presented bimodal patterns. The peak values for the species diversities were found in the transition region between mountain steppe desert and mountain desert steppe(2,200–2,300m), and in the alpine grassland region(2,900–3,100m), while maximum species diversities were in the areas of intermediate environmental gradient. The main environmental factors on the distribution patterns in plant diversity were the elevation, soil water, total nitrogen, available nitrogen, organic matter, and total salt. The response tendency of the four diversity indices for the whole community to the soil environment was the same as that of the herb layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号