首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对东秦岭地区洛南盆地的上白川、刘湾和丹江上游的二龙山黄土剖面进行了岩石磁学研究。结果表明,大部分黄土和古土壤样品的磁性矿物以磁铁矿和磁赤铁矿为主,古土壤中亚铁磁性矿物的含量比黄土的多,极少数黄土样品以反铁磁性矿物为主。亚铁磁性矿物和反铁磁性矿物的含量随成土作用增强而增加,成土作用形成的细粒亚铁磁性矿物包括超顺磁性和单畴(似单畴)颗粒,但以单畴和(或)似单畴为主。古土壤磁化率增强与这些土壤成因的细粒亚铁磁性矿物含量有关,显示出受气候变化控制的特点。东秦岭地区黄土岩石磁学性质与黄土高原地区的相似,但也存在一定差异,而且三个剖面之间磁化率值整体差别较大。温湿的气候和复杂的山区地形可能是导致这种差异的原因。  相似文献   

2.
The anisotropy of magnetic susceptibility has been proven to be an excellent indicator for mineral fabrics and therefore deformation in a rock or sediment. Low-field anisotropy is relatively rapid to measure so that a sufficient number of samples can be measured to obtain a good statistical representation of the magnetic fabric. The physical properties of individual minerals that contribute to the observed magnetic fabric include bulk susceptibility and intrinsic anisotropy of the mineral phase, its volume concentration, and its degree of alignment. Several techniques have been developed to separate magnetic subfabrics arising from magnetization types, i.e., ferrimagnetism, antiferromagnetism, paramagnetism, and diamagnetism. Susceptibility anisotropy can be measured in low or high fields and at different temperatures in order to isolate a particular subfabric. Measuring the anisotropy of a remanent magnetization can also isolate ferrimagnetic fabrics. A series of case studies are presented that exemplify the value of isolating magnetic subfabrics in a geological context. It is particularly useful in rocks that carry a paramagnetic and diamagnetic subfabric of similar magnitude, such that they negate one another. Further examples are provided for purely paramagnetic subfabrics and cases where a ferrimagnetic subfabric is also identified.  相似文献   

3.
长江中下游第四纪沉积物发育土壤磁性增强的环境磁学机制   总被引:25,自引:2,他引:23  
对长江中下游第四纪沉积物 (Q3 黄土,Q2 红土和Q3 红土 )发育土壤的磁性增强现象及其物理机制进行了讨论。结果表明 :(1)铁磁性矿物是土壤磁性的主要载体,它们是成土过程中形成的稳定单畴 (SSD)和超顺磁性 (SP)态的次生磁性矿物,没有显示重要的反铁磁性矿物的贡献;(2 )土壤磁化率 (χ)的高低与成土过程产生的稳定单畴和超顺磁性颗粒呈极显著正相关,指示了风化成土作用的强度,磁化率可作为反映成土环境变化的代用指标;(3)频率磁化率 (χfd) 5 %可作为土壤中的超顺磁性颗粒存在与否的临界值,土壤 χfd值的高低同样反映了风化成土作用的强度,可用作研究第四纪环境变化的有用工具之一。  相似文献   

4.
张蕾  李海兵  孙知明  曹勇 《地球学报》2019,40(1):157-172
断裂岩的岩石磁学研究可以揭示地震断裂作用的物理和化学环境,对于探讨地震断裂作用机制具有重要作用。本文在断裂岩岩石磁学最新文献的基础上,结合笔者及所在研究团队在龙门山断裂带获得的研究成果,综述了断裂岩的岩石磁学研究进展。大量研究发现断层泥和假玄武玻璃通常具有磁化率值或剩磁强度异常特征。顺磁性矿物在摩擦热或流体作用下形成新的铁磁性矿物是断层泥和假玄武玻璃高磁化率值或高剩磁强度的主要原因;地震断裂摩擦熔融作用中形成的单质铁是假玄武玻璃中高磁化率值或高剩磁强度异常的另一个重要原因。蠕滑断裂和出露于浅地表的断裂带中可见一些具有低磁化率值异常的断层泥,原因可能是流体作用或断裂带未经历高温摩擦热。断裂岩的岩石磁学研究为地震断裂带的应力应变、形成温度、摩擦热效应、流体作用、形成深度和氧化还原特征等提供了重要信息,可用于分析地震断裂的孕震和发震环境。综合岩石磁学测试和微米至纳米尺度的超显微学研究,并辅助地震断裂岩的摩擦实验、高温热模拟实验等研究可以更好地获得断裂岩的岩石磁学信息。  相似文献   

5.
随着经济的快速发展,工程领域面对坚硬岩石的情况越来越多,传统机械开挖方式的效率和经济性难以保障,而微波辅助破岩具有较好的工程应用前景。岩石是由不同矿物组成的,不同矿物对微波的敏感程度不同,其敏感程度与矿物的族类、晶型和铁元素含量有关。当岩石处于微波场中时,不同敏感性矿物间的差异性膨胀能够在矿物边界和内部产生热应力,从而有效弱化岩石。影响岩石弱化效果的主要因素可分为微波条件和岩石条件两大类。一般而言,岩石强度随着微波功率与照射时间的增加而降低;相同能量条件下,高功率短时间的微波照射能够产生更好的弱化效果。岩石所含矿物的微波敏感性越高,敏感矿物的颗粒尺寸越大,及含量适当时,微波照射岩石的弱化效果越好;含水状态的岩石受到微波照射后,能够比干燥状态产生更大的损伤。微波的热效应有时还会使岩石中的矿物发生较大的物理或化学变化,进而对其升温特性及弱化效果产生影响。面照射试验表明微波能使大尺寸岩样在照射区域产生放射状裂纹,从而有效降低岩石强度,提高破岩效率。  相似文献   

6.
岩石组构记录了地壳形成与演化的关键信息,提取这些信息对分析和恢复地球动力学过程具有重要意义.磁化率各向异性(AMS)是一种重要的岩石组构方法,可以有效地揭示岩石的应变特征,分析其地球动力学过程,是研究构造变形性质以及应力作用方式的有效手段.本文在梳理AMS的研究历史、主要成果和最新进展的基础上,系统阐述了AMS的基本原...  相似文献   

7.
汶川地震断裂带多次地震活动新证据   总被引:4,自引:0,他引:4       下载免费PDF全文
虹口乡八角庙出露完整的映秀—北川断裂带剖面断层岩,高分辨率磁化率测试揭示出多个具有高磁化率特征的断层岩带。系统的岩石磁学分析证明一层褐色断层岩相对围岩具有最大的磁化率值,存在新生成的磁铁矿和拥有相似的天然剩磁(NRM)和非磁滞剩磁(ARM)强度衰减过程。高磁化率特征是含铁顺磁性矿物受到断层滑移过程产生摩擦生热作用生成磁铁矿所致。同时断层岩还获得了热剩磁,记录了地震活动磁学信息。结合汶川地震科学钻探项目1号孔(WFSD-1)磁化率和岩石磁学研究结果,说明映秀—北川断裂带包含多层具有高磁化率特征的断层岩,暗示了多次强震的发生。具有高磁化率特征的断层岩可以作为判定地震活动的标志之一。  相似文献   

8.
Abstract

The fabric and the anisotropy of magnetic susceptibility of the Cabo Ortegal eclogite (NW Spain) are studied. These mafic rocks were metamorphosed and deformed under high pressures and temperatures between 390 and 370 Ma in a subduction/collision tectonic setting. Massive eclogite slices and deformed eclogite in shear zones have bulk magnetic susceptibilities of 31 to 82·10?5 S.I. and 28 to 75·10?5 S.I., respectively. The paramagnetic mineral fraction is the principal magnetic susceptibility carrier. This fraction includes notably garnet and clinopyroxene as matrix minerals, and ilmenite and rutile as accessory constituents. Though magnetic anisotropy degree varies between 3.1 % and 6.6 %, variations of this parameter in each rock type are marked. In the deformed eclogite, magnetic lineation (Kmax) and the pole to the magnetic foliation (Kmin) are coaxial and coincident with macroscopic petrofabric elements (foliation and lineation). In the massive eclogite, the magnetic fabric is dispersed along the principal structural planes and inversions are associated with samples with small degrees of anisotropy. The anisotropy of magnetic susceptibility is interpreted as being due to the crystallographic preferred orientation and spatial organisation of the polymineralic aggregate. Relating the evolution of the symmetry of magnetic fabric to the symmetry of petrofabric or deformation is rather precluded since susceptibility has multiple origins and bulk magnetic fabric is due to minerals of different symmetry. © Elsevier, Paris  相似文献   

9.
《Geodinamica Acta》1998,11(6):271-283
The fabric and the anisotropy of magnetic susceptibility of the Cabo Ortegal eclogite (NW Spain) are studied. These mafic rocks were metamorphosed and deformed under high pressures and temperatures between 390 and 370 Ma in a subduction/collision tectonic setting. Massive eclogite slices and deformed eclogite in shear zones have bulk magnetic susceptibilities of 31 to 82 · 10−5 S.I. and 28 to 75 · 10−5 S.I., respectively. The paramagnetic mineral fraction is the principal magnetic susceptibility carrier. This fraction includes notably garnet and clinopyroxene as matrix minerals, and ilmenite and rutile as accessory constituents. Though magnetic anisotropy degree varies between 3.1 % and 6.6%, variations of this parameter in each rock type are marked. In the deformed eclogite, magnetic lineation (Kmax) and the pole to the magnetic foliation (Kmin) are coaxial and coincident with macroscopic petrofabric elements (foliation and lineation). In the massive eclogite, the magnetic fabric is dispersed along the principal structural planes and inversions are associated with samples with small degrees of anisotropy. The anisotropy of magnetic susceptibility is interpreted as being due to the crystallographic preferred orientation and spatial organisation of the polymineralic aggregate. Relating the evolution of the symmetry of magnetic fabric to the symmetry of petrofabric or deformation is rather precluded since susceptibility has multiple origins and bulk magnetic fabric is due to minerals of different symmetry.  相似文献   

10.
磁组构是由岩石中磁性矿物定向分布而产生的组构特征,因此磁组构分析是研究岩石组构常用的技术手段,它具有 见效快、灵敏度高、无损样品等特点,近年来得到广泛应用。然而在磁组构研究工作中钻取定向样品或定向手标本时,常 常会遇到天然样品含有裂缝且裂缝中充填大量近地表沉积物和自生矿物。本文针对辉绿岩裂缝充填物对其磁组构结果的影 响程度做了详细研究,选用160个含裂缝的辉绿岩岩芯定向样品,通过对比去除裂缝充填物前后的磁组构变化,发现实验 前后所有样品磁化率大小变化率平均值<1%,磁组构方向变化平均值<1°,因此认为辉绿岩裂缝物质对其磁组构影响甚微。 矿物学和岩石磁学分析表明裂隙充填物主要为石英、长石,以及少量赤铁矿、黄铁矿和绿泥石等表生矿物。而辉绿岩的携 磁矿物主要是亚铁磁性的磁铁矿,其磁化率强度约为同等质量裂缝填充物的30倍,致使辉绿岩中的裂隙充填物对磁组构的 影响很小。  相似文献   

11.
灵台红粘土—黄土—古土壤序列频率磁化率的古气候意义   总被引:10,自引:0,他引:10  
通过对甘肃灵台晚新生代红粘土-黄土-古土壤序列的磁化率测量和频率磁化率分析,发现红粘土及黄土-古土壤的磁化率和频率磁化率化率存有良好的正相关关系,表明两套沉积在成壤过程中由生物作用或化学作用而形成的超顺磁性矿物含量,对磁化率和频率磁化率增大有重要的贡献。相比化率而言,受影响因素较少的频率磁化率变化,反映了不同气候条件下形成的超顺磁粒级铁磁矿物的相对含量,能更真实、敏感地记录不同时间尺度的古气候波动。灵台红粘土-黄土-古土壤序列的频率磁化等在2.6MaBP前后不同的变率特征,揭示了大冰期来临前后黄土高原的冷暖、干湿反差产生了显著变化,而与此相关的冬、夏季风变迁则表现出不同的组合特征。  相似文献   

12.
Rock-magnetic techniques have become a useful tool in environmental issues; in particular, magnetic studies constitute an alternative way to study pollution in different media. The present contribution focuses on magnetic parameters as pollution indicators, especially from their relationship with contents of heavy metals. The work was carried out in two Indian rivers located in Tamil Nadu, southern India. Several sediment samples were collected and studied in the laboratory using magnetic techniques, magnetic susceptibility, anhysteric remanent magnetization, isothermal remanent magnetization, and chemical techniques to determine contents of heavy metals. Magnetic mineralogy indicates the predominance of ferrimagnetic minerals; although magnetite-like minerals are the main magnetic carriers, antiferromagnetic minerals can be present as subordinate carriers. Concentration-dependent magnetic parameters revealed noticeable differences between both rivers, e.g. magnetic susceptibility is four times higher in Cauvery than in Palaru River. Moreover, such increase can be interpreted as “magnetic enhancement” and therefore related to the pollution status. This magnetic enhancement indicated a different pollutant contribution in both rivers, and also, a different spatial distribution along these rivers, where critical (or more polluted) sites were identified. On the other hand, univariate and multivariate statistical analyses—e.g. PCoordA, Multifactorial Analysis of distance, PCA and RDA—were examined, revealing a link between magnetic and chemical variables. Among magnetic parameters, the concentration-dependent magnetic parameters (e.g. magnetic susceptibility) seem to be the most relevant for this study.  相似文献   

13.
Ferrimagnetic minerals in red paleosols of Pleistocene Epoch, eastern China   总被引:1,自引:1,他引:0  
The type,grain size and origin of ferimagnetic minerals separated from red paleosols of pleistocene Epoch(Q2)in eastern China ,were studied by using mineral magnetic measurement,X-ray powder diffraction and electron microscopy.Results showed that the iron oxider in red paleosols were composed of hematite(α-Fe2O3),maghemite(γ-Fe2O3) and goethite(α-FeOOH),Mineral magnetic parameters and X-ray diffraction patterns indicated that maghemite was the dominant remanence carrier in red paleosols,which is characterized by superparamagnetic(SP) and stable single domain(SSD) grains,The variations of magnetic susceptibility(χ) ,anhysteretic magnetic susceptibility(χRAM)and saturation isothermal remanent magnetization(SIRM) for red paleosols following heating to various temperatures showed two peak values at 700℃ and 900℃.The spherulitic magnetic particles measuring 250-1000μm in diameter in red paleosols were separated by the magnetic separation method,indicating that these magnetic particles were an assemblage of superparamagnetic and stable single domain ferrimagnetic grains,It is suggested that the ferrimagnetic minerals of red paleosols be a pedogenic ferrimagnetic component under high temperature and high humid conditions in the Pleistocene Fpoch(Q2).It is concluded that the magnetism characteristics of red paleosols can be used to evaluate the environmental changes of Quaternary in eastern China.  相似文献   

14.
冯金良  朱立平 《中国岩溶》2005,24(4):270-275
通过与粉尘堆积,以及玄武岩和片麻杂岩风化剖面磁组构的对比,探讨了以贵州平坝白云岩之上红色粘土剖面磁组构特征及其成因指示意义。红色粘土的各向异性较弱,并且不具有明显的沉积磁组构;母岩的组构特征对红色粘土磁化率各向异性没有明显的控制“痕迹” ;红色粘土与粉尘堆积物之间磁组构特征的明显差异,表明它们在物源和形成机制方面是不同的;红色粘土磁化率及磁组构特征反映出红色粘土中磁性矿物的物质来源和成因具有一定的特殊性。   相似文献   

15.
The progressive development of mylonitic fabrics in a series of Torridonian sandstones and shales has been studied along traverses across the Kishorn Nappe. The fabrics developed have been investigated using the following techniques.
1. 1. Optical examination of thin sections.
2. 2. Measurements of the anisotropy of magnetic susceptibility.
3. 3. X-ray texture goniometry.
The results are used in support of a proposed deformation history of the area and the relative advantages of the techniques used are discussed.The early deformation was well lubricated with layer-parallel sliding and little internal deformation of the rocks, except for development, in the east, of a layer-parallel penetrative fabric with an extension direction to the ESE. This deformation produced a westward facing isoclinal anticline and a recumbent syncline in the Torridonian rocks which became at least partly decoupled from the basement.The important phases of fabric development post date this folding. In the west the sandstones developed a spaced, pressure solution cleavage, but in the east the grain shape fabric has been produced by both dislocation and diffusion processes. The shales reveal more details of the deformation episodes than do the sandstones and thus show different fabric intensities and orientations when measured by magnetic and X-ray techniques.The magnetic anisotropy technique of fabric analysis gives a rapid method of mapping the deformation domains formed by different deformation mechanisms and intensities. However, the rocks carry several magnetic components and these have different anisotropy tensors and different responses to deformation, also, measurements made at high fields (5 kOe) give magnitudes and orientations of the magnetic anisotropy tensor which are different from those made at low fields. It is concluded that it is not possible to relate variations in the magnitude and shape of the magnetic anisotropy ellipsoid quantitatively to the deformation.Chlorite and muscovite fabrics measured by X-ray techniques show variations in intensity and orientation similar to those of the magnetic anisotropy ellipsoid due to paramagnetic minerals. However, the data demonstrate the difficulty of correlating this fabric intensity with deformation intensity where there has been a change in deformation mechanisms with time and space.  相似文献   

16.
A magnetic investigation of a loess/paleosol sequences record in Ili area   总被引:1,自引:0,他引:1  
The pedogenic ferrimagnetic minerals have been considered to be the cause of magnetic susceptibility enhancement in loess deposits distributing in the Chinese Loess Plateau and Central Europe, while “wind intensity” mechanism is proposed to be responsible for the magnetic susceptibility enhancement of loess in Alaska and Siberia. However, the magnetic enhancement mechanism is still open for loess in Ili valley, Xinjiang Uygur Autonomous Region, China. To understand this, we conducted a rock magnetic investigation on Axike section that is located in Ili valley. Results show that transitional stage from magnetic (χlf) trough to magnetic (χlf) peak corresponds to soil units. The PSD and MD-grained magnetite dominate the magnetic properties of AXK sequences, and the main factor affecting magnetic properties is the concentration of ferrimagnetic fraction. For the “pedogenesis enhancement” and “wind intensity” model, it seems hard to explain the magnetic susceptibility enhancement in this area. For the concentration of fine-grained magnetite in magnetic mineral shows positive relationship with the intensity of pedogenesis, the magnetic parameters of loess deposit in Ili valley can be used to recover paleoclimatic variations.  相似文献   

17.
The Ardara pluton as part of the Donegal batholith was intruded into Neoproterozoic metasediments and metadolerites at mid-crustal levels. The emplacement mechanism of the Ardara granite is very controversial, and mechanisms ranging from diapirism, ballooning and stoping followed by nested diapirism have been proposed. Magnetic fabrics, rock fabrics and K/Ar dating of micas are used here to constrain the emplacement history. The compositional zoning of the Ardara pluton is clearly reflected in the different bulk magnetic susceptibilities between the outer quartz monzodiorite and the central granodiorite, whereas the intervening tonalite is of intermediate nature. The magnetic carriers are characterized by the anisotropy of the magnetic susceptibility (AMS), thermomagnetic measurements and through high field analyses (HFA). The separation of the ferrimagnetic and paramagnetic contributions revealed that biotite and magnetite control the AMS in the quartz monzodiorite. Both minerals are oriented in such a way that their summed contribution is constructive and originates from the shape fabric of magnetite and the texture of biotite. Biotite is responsible mainly for the AMS in the tonalite and granodiorite. The magnetic foliation can be directly related to the macroscopic foliation and also to the D4 structures in the country rocks. The foliation is consistent with the geometry of the roughly circular shape and has a mostly steep to vertical dip. Towards the central granodiorite the magnetic foliation dies out, although plagioclase texture measurements indicate a weak magmatic shape fabric. With the exception of the tail, the Kmax axes (magnetic lineation) vary from steeply to gently plunging. The so-called lineation factor is approximately 1.01 and therefore points to a less significant axial symmetry. These observations coincide with strain estimates on mafic enclaves that show a very consistent pattern of K ∼0 flattening strain. Texture analyses of biotite and quartz additionally support the observations made by the strain analyses and the magnetic fabric data. Microstructural investigations give evidence that the fabrics are associated with the emplacement over a range of temperatures from truly magmatic to high-temperature solid-state conditions. The age of the intrusion is still under discussion, but a new cooling age was determined by K/Ar dating of biotite at 403.7±8 Ma corresponding to a temperature range between 450 and 300°C. For a mylonite along the southern contact between the Ardara pluton and the country rock a K/Ar muscovite age of 378.8±7 Ma indicates a minimum age for the shear zone when the Ardara pluton must have already been cooled down below 350±50°C. Received: 28 January 1999 / Accepted: 28 December 1999  相似文献   

18.
Using a combination of particle size analysis, magnetic measurements, scanning electron microscopy and transmission electron microscopy imaging, this study shows that in a wide range of depositional environments, there is a strong link between particle size classes and magnetic response, especially below the upper limit of stable single domain magnetic behaviour. Ferrimagnetic grain assemblages dominated by stable single domain magnetosomes regularly have peak susceptibility and remanence values in coarser grades than do those containing finer‐grained, viscous and superparamagnetic secondary magnetic minerals formed during pedogenesis. This effect is despite the fact that there is a one to two orders of magnitude size difference between the particle size boundaries (at 1 or 2 μm) and key domain state transitions (mostly below 0·05 μm). The implications of these results are explored using samples spanning 22 Myr of loess accumulation on the Chinese Loess Plateau. The results from the loess sections, complemented by data from low‐temperature magnetic experiments, show that there are subtle distinctions in mean ferrimagnetic grain‐size between the Pleistocene and Miocene parts of the record, thus allowing more refined rock magnetic interpretations of the fine‐grained ferrimagnetic mineral assemblages arising from the effects of weathering, pedogenesis and possibly diagenesis in the sections studied.  相似文献   

19.
Microstructural and magnetic investigations (anisotropy of magnetic susceptibility, AMS) on sections across basement–cover interfaces (BCI) revealed a complex evolution in the crystalline basement rocks beneath and in the basal units of the Caledonian fold-and-thrust belt: (1) Pre-Caledonian mylonitic fabrics in basement granite relate to steep shear zones. (2) Palaeoweathering formed smectite and illite at the expense of feldspar and mica. Secondary Fe-bearing clay minerals and the intensity of the chemical weathering control the bulk susceptibility. Changing susceptibility and AMS relate to a (time) sequence from primary magnetite to secondary paramagnetic clay to pyrite and ferrimagnetic pyrrhotite. (3) Burial compaction with BCI-parallel fabrics. (4) Caledonian cleavage, overprinted by décollement zones with S–C–C′ fabrics. Décollement cataclasis overprinted pre-existing magnetic fabrics and produced horizontal magnetic lineations and subhorizontal foliations defined by the S–C–C′ fabrics. Clay mineral enrichment, together with subsequent, BCI-parallel compaction fabrics, decreased the shear strength in the basement rocks beneath the BCI. Detachments initiated at such low-strength zones and produced allochthonous units with their footwall within crystalline basement rocks, an observation of general importance for orogenic fold-and-thrust belts.  相似文献   

20.
A 28-m-long section situated on the coast of the Arctic Ocean, Russia (74°N, 113°E) was extensively sampled primarily for the purpose of magnetostratigraphic investigations across the Jurassic/Cretaceous boundary. The section consists predominantly of marine black shales with abundant siderite concretions and several distinct siderite cemented layers. Low-field magnetic susceptibility (k) ranges from 8 × 10− 5 to 2 × 10− 3 SI and is predominantly controlled by the paramagnetic minerals, i.e. iron-bearing chlorites, micas, and siderite. The siderite-bearing samples possess the highest magnetic susceptibility, usually one order of magnitude higher than the neighboring rock. The intensity of the natural remanent magnetization (M0) varies between 1 × 10− 5 and 6 × 10− 3 A/m. Several samples possessing extremely high values of M0 were found. There is no apparent correlation between the high k and high M0 values; on the contrary, the samples with relatively high M0 values possess average magnetic susceptibility and vice versa. According to the low-field anisotropy of magnetic susceptibility (AMS), three different groups of samples can be distinguished. In the siderite-bearing samples (i), an inverse magnetic fabric is observed, i.e., the maximum and minimum principal susceptibility directions are interchanged and the magnetic fabric has a distinctly prolate shape. Triaxial-fabric samples (ii), showing an intermediate magnetic fabric, are always characterized by high M0 values. It seems probable that the magnetic fabric is controlled by the preferred orientation of paramagnetic phyllosilicates, e.g., chlorite and mica, and by some ferromagnetic mineral with anomalous orientation in relation to the bedding plane. Oblate-fabric samples (iii) are characterized by a bedding-controlled magnetic fabric, and by moderate magnetic susceptibility and M0 values. The magnetic fabric is controlled by the preferred orientation of phyllosilicate minerals and, to a minor extent, by a ferrimagnetic fraction, most probably detrital magnetite. Considering the magnetic fabric together with paleomagnetic component analyses, the siderite-bearing, and the high-NRM samples (about 15% of samples) were excluded from further magnetostratigraphic research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号