首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Organic Geochemistry》1986,9(6):285-292
Potentiometric titrations were used to measure conditional stability constants of UO22+-fulvic acid and UO22+-humic acid complexes. Both 2:1 and 1:1 COO-:UO22+ binding were observed. With decreasing metal concentration (2.5·10−4-6.25·10−5 M) increasing amounts of UO22+ were in the form of 1:1 humate complexes and 2:1 fulvate complexes. Despite the high nitrogen content and the low acidic OH group content, the successive stability constant values were similar to those determined for divalent cations associated with fulvic and humic compounds isolated from soils. Stability constant values increase simultaneously with increasing ionization of the humic (or fulvic) acid polyelectrolytes and with decreasing metal concentration.  相似文献   

2.
《Applied Geochemistry》2000,15(7):953-973
The enhancement of mobility of radionuclides in the geosphere through complexation by humic substances is a source of uncertainty in performance assessment of radioactive waste repositories. Only very few data sets are available which are relevant for performance assessment of an underground repository for radioactive waste. Using the equilibrium dialysis-ligand exchange method developed at the Paul Scherrer Institut, conditional stability constants for the formation of complexes of Aldrich humic acid with Ca2+, NpO2+, Co2+, Ni2+, UO22+ and Eu3+ and complexes of Laurentian soil- and Suwannee River fulvic acid with Co2+, UO22+ and Eu3+ were measured. pH was varied between 5 and 10 and ionic strength between 0.02 and 0.2 M. The data are presented as equilibrium coefficients that are free from any model assumptions. The equilibrium coefficients increased in the order Ca2+≅NpO2+<Co2+< Ni2+<UO22+< Eu3+. The quality of the data is assessed in an extended discussion of statistical and systematical errors, and by a critical ‘rereview’ of the auxiliary stability constants used for the calculation of the equilibrium coefficients. An approximate overall uncertainty of 0.5 log-units is estimated for the stability data reported. The conditional stability constants were found to increase markedly with increasing pH in the case of Co2+, UO22+ and Eu3+. For Ni2+, Ca2+ and NpO2+ this effect was less pronounced. For all metal ions tested, the influence of ionic strength was of less importance, and the conditional stability constants did not show a significant dependence on the type of humic substances investigated.  相似文献   

3.
《Applied Geochemistry》2000,15(2):133-139
The sorption of Yb3+, UO2+2, Zn2+, I and SeO2−3 onto Al2O3, Fe2O3 and SiO2 were determined by a batch technique in the presence and absence of fulvic acids. The effects of fulvic acid on sorption were compared. The existing general consensus, that humic substances tend to enhance metal cation sorption at low pH, reduce metal cation sorption at high pH and reduce inorganic anion sorption between pH values 3 to 10, was generally shown to be true. However, in this work many exceptions to the general consensus were found. The study indicated that the effect of humic substances on sorption of inorganic cations or anions depends not only on pH, but also on the nature of the oxide, the nature of humic substance, fractionation of the humic substance by sorption, the relative strength of complexes of both soluble and sorbed humic substances, the extent of surface coverage by humic substance, the initial concentration of humic substance and the inorganic electrolyte composition.  相似文献   

4.
为探讨不同碳氮源对培养基中铀酰离子的络合形态及荧光假单胞菌对铀吸附和还原作用的影响,本文以查氏培养基为基础,将蔗糖替换为葡萄糖或将硝酸钠替代为氯化铵,采用Visual MINTEQ分析研究铀酰离子络合形态。研究结果表明,碳氮源的种类对微生物生长无影响。U(Ⅵ)浓度为10 mg/L时,3种培养基中铀酰离子的主要络合形态均为UO2PO-4。U(Ⅵ)浓度为50~200 mg/L,查氏和葡萄糖碳源培养基中铀酰离子主要络合形态均为UO2(SO4)2-2。氯化铵氮源培养基中,U(Ⅵ)浓度为50 mg/L时铀酰离子的主要络合形态为UO2HPO4(aq),浓度为100~200 mg/L时主要是UO2Cl2(aq)。荧光假单胞菌对U(Ⅵ)耐受浓度高达100 mg/L,当U(Ⅵ)浓度达到200 mg/L时,菌体失活。荧光假单胞菌为活体时,对U(Ⅵ)的吸附率为84.02%~92.59%,还原率为3.32%~10.94%,不同碳氮源对铀吸附和还原的影响较小。荧光假单胞菌为死体时,对铀的吸附率为24.33%~39.05%;非葡萄糖碳源培养基中,对铀的还原率为37.50%~44.58%,含还原性葡萄糖的培养基条件下U(Ⅵ)的还原率为53.12%。还原性葡萄糖与荧光假单胞菌对铀的还原为协同作用。荧光假单胞菌为活体时,培养基成分被微生物充分利用,两者协同作用不明显。  相似文献   

5.
The 36Cl dating method is increasingly being used to determine the surface-exposure history of Quaternary landforms. Production rates for the 36Cl isotopic system, a critical component of the dating method, have now been refined using the well-constrained radiocarbon-based deglaciation history of Whidbey and Fidalgo Islands, Washington. The calculated total production rates due to calcium and potassium are 91±5 atoms 36Cl (g Ca)−1 yr−1 and are 228±18 atoms 36Cl (g K)−1 yr−1, respectively. The calculated ground-level secondary neutron production rate in air, Pf(0), inferred from thermal neutron absorption by 35Cl is 762±28 neutrons (g air)−1 yr−1 for samples with low water content (1–2 wt.%). Neutron absorption by serpentinized harzburgite samples of the same exposure age, having higher water content (8–12 wt.%), is 40% greater relative to that for dry samples. These data suggest that existing models do not adequately describe thermalization and capture of neutrons for hydrous rock samples. Calculated 36Cl ages of samples collected from the surfaces of a well-dated dacite flow (10,600–12,800 cal yr B.P.) and three disparate deglaciated localities are consistent with close limiting calibrated 14C ages, thereby supporting the validity of our 36Cl production rates integrated over the last 15,500 cal yr between latitudes of 46.5° and 51°N. Although our production rates are internally consistent and yield reasonable exposure ages for other localities, there nevertheless are significant differences between these production rates and those of other investigators.  相似文献   

6.
Experiments have been performed on the system MgO-SiO2-Cr-O at 0-2.88 GPa and 1100-1450℃,focusing on the stability of Cr^2 in olivine(O1),orthopyroxene(Opx) and spinel(Sp) and its partitioning between these phases.Analytical reagent grade chemicals,MgO,SiO2,Cr2O3.and Cr were used to make starting mixtures.Excess Cr(50%) was then added in these mixtures to ensure that the resultant phases were in equilibrium with the metal Cr.Flux of BaO B2O3(%) was added for facilitating experimental equilibrium and crystal growth.Cr was used as capsule material.All phases in the product were identified by X-ray and analyzed by electron microprobe,The contents of CrO in the different phases(O1,Opx and Sp)were calculated according to stoichiometry.The obtained results of calculation indicate that Cr^3 in Ol and Opx is negligible.The experimental results show;(a) with increasing temperature and decreasing pressure,Cr^2 solubility in Ol,Opx and Sp increases;(b) with in creasing temperature,the partitioning coefficient of Mg and Cr^2 between Ol and Opx decreases,that between Opx and Sp increases,and that between Ol and Sp remains almost unchanged;(c) the effect of pressure on all partitioning coefficients is negligible.  相似文献   

7.
The influence on the structure of Fe2+ Mg substitution was studied in synthetic single crystals belonging to the MgCr2O4–FeCr2O4 series produced by flux growth at 900–1200 °C in controlled atmosphere. Samples were analyzed by single-crystal X-ray diffraction, electron microprobe analyses, optical absorption-, infrared- and Mössbauer spectroscopy. The Mössbauer data show that iron occurs almost exclusively as IVFe2+. Only minor Fe3+ (<0.005 apfu) was observed in samples with very low total Fe. Optical absorption spectra show that chromium with few exceptions is present as a trivalent cation at the octahedral site. Additional absorption bands attributable to Cr2+ and Cr3+ at the tetrahedral site are evident in spectra of end-member magnesiochromite and solid-solution crystals with low ferrous contents. Structural parameters a0, u and T–O increase with chromite content, while the M–O bond distance remains nearly constant, with an average value equal to 1.995(1) Å corresponding to the Cr3+ octahedral bond distance. The ideal trend between cell parameter, T–O bond length and Fe2+ content (apfu) is described by the following linear relations: a0=8.3325(5) + 0.0443(8)Fe2+ (Å) and T–O=1.9645(6) + 0.033(1)Fe2+ (Å) Consequently, Fe2+ and Mg tetrahedral bond lengths are equal to 1.998(1) Å and 1.965(1) Å, respectively.  相似文献   

8.
Humic Ion-Binding Model V, which focuses on metal complexation with humic and fulvic acids, was modified to assess the role of dissolved natural organic matter in the speciation of rare earth elements (REEs) in natural terrestrial waters. Intrinsic equilibrium constants for cation-proton exchange with humic substances (i.e., pKMHA for type A sites, consisting mainly of carboxylic acids), required by the model for each REE, were initially estimated using linear free-energy relationships between the first hydrolysis constants and stability constants for REE metal complexation with lactic and acetic acid. pKMHA values were further refined by comparison of calculated Model V “fits” to published data sets describing complexation of Eu, Tb, and Dy with humic substances. A subroutine that allows for the simultaneous evaluation of REE complexation with inorganic ligands (e.g., Cl, F, OH, SO42−, CO32−, PO43−), incorporating recently determined stability constants for REE complexes with these ligands, was also linked to Model V. Humic Ion-Binding Model V’s ability to predict REE speciation with natural organic matter in natural waters was evaluated by comparing model results to “speciation” data determined previously with ultrafiltration techniques (i.e., organic acid-rich waters of the Nsimi-Zoetele catchment, Cameroon; dilute, circumneutral-pH waters of the Tamagawa River, Japan, and the Kalix River, northern Sweden). The model predictions compare well with the ultrafiltration studies, especially for the heavy REEs in circumneutral-pH river waters. Subsequent application of the model to world average river water predicts that organic matter complexes are the dominant form of dissolved REEs in bulk river waters draining the continents. Holding major solute, minor solute, and REE concentrations of world average river water constant while varying pH, the model suggests that organic matter complexes would dominate La, Eu, and Lu speciation within the pH ranges of 5.4 to 7.9, 4.8 to 7.3, and 4.9 to 6.9, respectively. For acidic waters, the model predicts that the free metal ion (Ln3+) and sulfate complexes (LnSO4+) dominate, whereas in alkaline waters, carbonate complexes (LnCO3+ + Ln[CO3]2) are predicted to out-compete humic substances for dissolved REEs. Application of the modified Model V to a “model” groundwater suggests that natural organic matter complexes of REEs are insignificant. However, groundwaters with higher dissolved organic carbon concentrations than the “model” groundwater (i.e., >0.7 mg/L) would exhibit greater fractions of each REE complexed with organic matter. Sensitively analysis indicates that increasing ionic strength can weaken humate-REE interactions, and increasing the concentration of competitive cations such as Fe(III) and Al can lead to a decrease in the amount of REEs bound to dissolved organic matter.  相似文献   

9.
Torsion experiments were performed on the Al2SiO5 polymorphs in the sillimanite stability field to determine basic rheological characteristics and the effect of deformation on polymorphic transformation. The experiments resulted in extensive transformation of andalusite and kyanite to sillimanite. No transformation occurred during the hot-press (no deformation) stage of sample preparation, which was carried out at similar PT conditions and duration as the torsion experiments. Experiments were conducted on fine-grained (< 15 µm) aggregates of natural andalusite, kyanite and sillimanite at 1250 °C, 300 MPa, and a constant shear strain rate of 2 × 10− 4/s to a maximum shear strain of 400%. Electron back-scattered diffraction (EBSD) analysis of the experiments revealed development of lattice-preferred orientations, with alignment of sillimanite and andalusite [001] slightly oblique to the shear plane. The kyanite experiment could not be analyzed using EBSD because of near complete transformation to sillimanite. Very little strain ( 30%) is required to produce widespread transformation in kyanite and andalusite. Polymorphic transformation in andalusite and kyanite experiments occurred primarily along 500 µm wide shear bands oriented slightly oblique and antithetic to the shear plane and dominated by sub-µm (100–150 nm) fibrolitic sillimanite. Shear bands are observed across the entire strain field preserved in the torsion samples. Scanning transmission electron microscope imaging shows evidence for transformation away from shear bands; e.g. fibrolitic rims on relict andalusite or kyanite. Relict grains typically have an asymmetry that is consistent with shear direction. These experimental results show that sillimanite is by far the weakest of the polymorphs, but no distinction can yet be made on the relative strengths of kyanite and andalusite. These observations also suggest that attaining high bulk strain energy in strong materials such as the Al2SiO5 polymorphs is not necessary for triggering transformation. Strain energy is concentrated along grain boundaries, and transformation occurs by a dynamic recrystallization type process. These experiments also illustrate the importance of grain-size sensitive creep at high strains in a system with simultaneous reaction and deformation.  相似文献   

10.
设施农业中土壤重金属污染问题日趋严重.由于土壤中矿物、腐植酸、微生物等多相组分之间存在交互作用,重金属与土壤单组分体系中所获得的结合机制并不能真实有效地评价其在自然条件下的转化与归趋.本研究以蒙脱石(Mont)和高岭石(Kao)为辽宁蔬菜大棚及农田土壤层状硅酸盐代表矿物,选取胡敏酸(HA)为有机质代表,土著微生物革兰氏...  相似文献   

11.
The local and geometrical structure around gold (III) e.g., Au3+ ions in aqueous solution with different OH/Cl molar ratios, has been investigated by X-ray absorption spectroscopy (XAS). X-ray absorption near-edge structure (XANES) spectra of [AuCln(OH)4−n] solutions have been calculated and the multiple-scattering spectral features have been attributed to Cl d-states, axial water molecules and the replacement of Cl ligands by OH ligands. A square–planar geometry for [AuCln(OH)4−n] with two axial water molecules has been identified. Moreover, a spectral correlation between XANES features and the type of planar atoms has been identified. By extended X-ray absorption fine structure spectra (EXAFS), the planar Au bond distances in the solutions have also been determined, e.g., 2.28 Å for Au–Cl and 1.98 Å for Au–O, respectively. The same EXAFS analysis provides evidence that the peak at about 4.0 Å in solutions with the lowest OH/Cl molar ratio arises from collinear Cl–Au–Cl multiple-scattering contributions. For the first time, a complete detailed reconstruction of the hydration structure of an Au ion at different pH values has been achieved.  相似文献   

12.
Two fractions of soil fulvic acid (FA) were separated by gel filtration chromatography. An observed increase in volume of the heavier fraction (FA I) with increasing pH was attributed to aggregation, intramolecular negative charge repulsions and the rupture of hydrogen bonds, which control molecular conformation. Optical absorption properties and elemental analyses of both fractions were determined. The stability constants and stoichiometries of FA complexes with vanadyl, VO2+, at pH 5.0 and ionic strength of 0.04 M were measured by electron paramagnetic resonance (EPR) spectroscopy. EPR spectra of model VO2+ complexes with phthalic and salicylic acids, which are the probable functional groups present in FA, are identical to those of the VO2+-FA complexes. Aggregation of FA I occurs in the presence of VO2+ to form a complex that can be approximated as ‘(VO)2(FA I)6’. The average site distance between vanadyl ions in this complex is shown to be greater than 1.2 nm. EPR parameters for FA I suggest binding by carboxylate groups. These parameters are compared with those of other vanadyl complexes with fulvic and humic acids reported by others. Reduction of VO3? to VO2+ by these materials is discussed.  相似文献   

13.
New field, petrological, geochemical, and geochronological data (U–Pb and Sm–Nd) for Ordovician rock units in the southeastern Puna, NW Argentina, indicate two lithostratigraphic units at the eastern–northeastern border of salar Centenario: (1) a bimodal volcanosedimentary sequence affected by low- to medium-grade metamorphism, comprising metasediments associated with basic and felsic metavolcanic rocks, dated 485 ± 5 Ma, and (2) a plutonic unit composed of syenogranites to quartz-rich leucogranites with U–Pb zircon ages between 462 ± 7 and 475 ± 5 Ma. Felsic metavolcanic and plutonic rocks are peraluminous and show similar geochemical differentiation trends. They also have similar Sm–Nd isotopic compositions (TDM model ages of 1.54–1.78 Ga; εNd(T) values ranging from −3.2 to −7.5) that suggest a common origin and derivation of the original magmas from older (Meso-Paleoproterozoic?) continental crust. Mafic rocks show εNd(T) ranging from +2.3 to +2.5, indicating a depleted mantle source. The data presented here, combined with those in the literature, suggest Ordovician magmatism mainly recycles preexisting crust with minor additions of juvenile mantle-derived material.  相似文献   

14.
Homogeneous 129I / 127I ratios from 6.51 ± 1.36 × 10− 14 to 12.6 ± 1.49 × 10− 14 were measured in formation brine at the Pol-Chuc, Abkatún, Taratunich–Batab off-shore oil reservoirs, Bay of Campeche in S-Mexico. Cosmogenic production could account for a homogeneous, Late Cretaceous/Paleocene time period (71.3 ± 5.3 to 56.3 ± 2.9 Ma) for the sedimentation and burial of organic material in the source formation. As the actual reservoir column is formed by Paleocene to Kimmeridgian sediments, the lower part of the lithological column must have received hydrocarbons that migrated downward from an initial source rock (Upper Cretaceous?) during a post-Paleocene event, probably during Miocene. Cosmogenic production from Tithonian shales can be excluded, as 129I would have been decayed. As an alternative or complementary process, the subsurface, radiogenic production of 129I / 127I by 238U-fission in Uranium-enriched sediments should also be considered to explain the present, low 129I / 127I ratios.  相似文献   

15.
Multi-equilibrium thermobarometry shows that low-grade metapelites (Cubito-Moura schists) from the Ossa–Morena Zone underwent HP–LT metamorphism from 340–370 °C at 1.0–0.9 GPa to 400–450 °C at 0.8–0.7 GPa. These HP–LT equilibriums were reached by parageneses including white K mica, chlorite and chloritoid, which define the earliest schistosity (S1) in these rocks. The main foliation in the schists is a crenulation cleavage (S2), which developed during decompression from 0.8–0.7 to 0.4–0.3 GPa at increasing temperatures from 400–450 °C to 440–465 °C. Fe3+ in chlorite decreased greatly during prograde metamorphism from molar fractions of 0.4 determined in syn-S1 chlorites down to 0.1 in syn-S2 chlorites. These new data add to previous findings of eclogites in the Moura schists indicating that a pile of allochtonous rocks situated next to the Beja-Acebuches oceanic amphibolites underwent HP–LT metamorphism during the Variscan orogeny. To cite this article: G. Booth-Rea et al., C. R. Geoscience 338 (2006).  相似文献   

16.
Literature data on the thermodynamics of complexation of Zr with inorganic species, at 25°C, have been critically reviewed. The preponderance of published complexation constants deal with F and OH ions. Stability constants for the complexation reactions are relatively independent of ionic strength and thus recomended values for each ligand type are averages of the most reliable data. Complexation constants under elevated conditions (T 250°C andPv = PH2O) have been predicted for various Zr complexes (F, Cl, SO42 and OH) using Helgeson's electrostatic approach. Predominance diagrams (calculated for simple systems with these constants) suggest that, over a wide range of pH conditions, Zr(OH)4(aq) will dominate the aqueous geochemistry of Zr except under very high activities of competing ligands (e.g., F, SO42).The solubilities of vlasovite [Na2ZrSi4O11] and weloganite [Sr3Na2Zr(CO3)6·3H2O have been measured in KCI solutions (0.5–1.0 M) at 50°C. Weloganite dissolution is complicated by the predictable precipitation of strontianite (SrCO3) whereas vlasovite dissolves incongruently. Solubility products for the dissolution of welonganite and vlasovite are determined to be −28.96±0.14 and −20.40±1.18, respectively. Concentrations of Zr up to 10−3 m were present in the experimental solutions; the presence of large amounts of Zr in aqueous solutions support the possibility of extensive remobilization of Zr during hydrothermal mineralization.  相似文献   

17.
We have studied the paleomagnetism of the middle Cretaceous Iritono granite of the Abukuma massif in northeast Japan together with 40Ar–39Ar dating. Paleomagnetic samples were collected from ten sites of the Iritono granite (102 Ma 40Ar–39Ar age) and two sites of its associated gabbroic dikes. The samples were carefully subjected to alternating field and thermal demagnetizations and to rock magnetic analyses. Most of natural remanent magnetizations show mixtures of two components: (1) H component, high coercivity (Bc > 50–90 mT) or high blocking temperature (Tb > 350–560 °C) component and (2) L component, relatively low Bc or low Tb component. H component was obtained from all the 12 sites to give a mean direction of shallow inclination and northwesterly declination (I = 29.9°, D = 311.0°, α95 = 2.7°, N = 12). This direction is different from the geocentric axial dipole field at the present latitude (I = 56.5°) and the typical direction of the Cenozoic remagnetization in northeast Japan. Since rock magnetic properties indicate that the H component of the Iritono granite is carried mainly by magnetite inclusions in plagioclase, this component probably retains a primary one. Thus the shallow inclination indicates that the Abukuma massif was located at a low latitude (16.1 ± 1.6°N) about 100 Ma and then drifted northward by about 20° in latitude. The northwesterly deflection is attributed mostly to the counterclockwise rotation of northeast Japan due to Miocene opening of the Japan Sea. According to this model, the low-pressure and high-temperature (low-P/high-T) metamorphism of the Abukuma massif, which has been well known as a typical location, would have not occurred in the present location. On the other hand, the L component is carried mainly by pyrrhotite and its mean direction shows a moderate inclination and a northwesterly declination (I = 42.8°, D = 311.5°, α95 = 3.3°, N = 9). Since this direction is intermediate between the H component and early Cenozoic remagnetization in northeast Japan, some thermal event would have occurred at lower temperature than pyrrhotite Curie point ( 320 °C) during the middle Cretaceous to early Cenozoic time to have resulted in partial remagnetization.  相似文献   

18.
A unified physico-chemical model, based on a modified Henderson-Hasselbalch equation, for the analysis of ion complexation reactions involving charged polymeric systems is presented and verified. In this model pH = pKa+p(ΔKa) + log(α/1 − α) where Ka is the intrinsic acid dissociation constant of the ionizable functional groups on the polymer, ΔKa is the deviation of the intrinsic constant due to electrostatic interaction between the hydrogen ion and the polyanion, and alpha (α) is the polyacid degree of ionization. Using this approach pKa values for repeating acidic units of polyacrylic (PAA) and polymethacrylic (PMA) acids were found to be 4.25 ± 0.03 and 4.8 ± 0.1, respectively. The polyion electrostatic deviation term derived from the potentiometric titration data (i.e. p(ΔKa)) is used to calculate metal ion concentration at the complexation site on the surface of the polyanion. Intrinsic cobalt-polycarboxylate binding constants (7.5 for PAA and 5.6 for PMA), obtained using this procedure, are consistent with the range of published binding constants for cobalt-monomer carboxylate complexes. In two phase systems incorporation of a Donnan membrane potential term allows determination of the intrinsic pKa of a cross-linked PMA gel, pKa = 4.83, in excellent agreement with the value obtained for the linear polyelectrolyte and the monomer. Similarly, the intrinsic stability constant for cobalt ion binding to a PMA-gel (βCoPMA+ = 11) was found to be in agreement with the linear polyelectrolyte analogue and the published data for cobalt-carboxylate monodentate complexes.  相似文献   

19.
A variety of fungal melanins with natural 15N abundance are characterized by solid-state 13C and 15N NMR spectroscopy and are compared to solid-state 13C and 15N NMR spectra of organic matter from representative soils. In all solid-state 15N NMR spectra the peptide/amide region (−220 to −285 ppm) dominates with more than 70% of the total intensity. The region between −285 and −375 ppm, assigned to amino and ammonium groups, always contains more than half of the remaining intensity. The area in the region from −30 to −220 ppm, where aromatic heterocycles would show signals, makes up less than 10% of the total intensity. These findings call into question common structural models for melanins. The solid-state 13C NMR spectra, on the other hand, reveal large differences when the melanins are compared to each other, and to composts and soils. The concentration of the aromatic carbon varies from 5 to 40% in the melanin series. The ratio Caro/Ntot and Cali/Ntot were calculated, and confirm that nitrogen in these samples is bound in Ca-groups rather than in aromatic heterocyclic structures.  相似文献   

20.
Stress dependence of recrystallized-grain and subgrain size in olivine   总被引:1,自引:0,他引:1  
New experiments on Mt. Burnet dunite have been carried out to evaluate the effects of important physical parameters on recrystallized-grain size and subgrain size in olivine deforming under steady-state conditions. The experiments, done under both wet and dry conditions in a Griggs solid-pressure-medium apparatus, were conducted in constant strain rate, constant stress and stress relaxation modes at 10 kbar confining pressure, temperatures from 1000°C to 1300°C, strain rates from 10−4 to 10−8/sec and stress differences of from 0.5 to 10 kbar. For dunite deformed under wet conditions, recrystallized-grain size is slightly temperature-dependent but under dry conditions it is only stress-dependent with D = 137 σ−1.27 for D in μm and σ in kbar. Subgrain sizes also depend only on stress; for the dry experiments d = 28 σ−0.62 and for the wet ones d = 15 σ−0.69. Subgrain sizes decrease with increasing stress but do not increase with decreasing stress and hence record only maximum stress levels. Recrystallized-grain sizes adjust to both increasing and decreasing stress levels, at minimal strains and times, and thus record the stress history. Because of this and of the inherent stability of recrystallized grains, this technique is regarded as more reliable than the subgrain size and free dislocation density and curvature methods for estimating stress magnitudes in tectonites having deformed in the steadystate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号