首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
The maximum likelihood estimation method is applied to study the geographical distribution of earthquake hazard parameters and seismicity in 28 seismogenic source zones of NW Himalaya and the adjoining regions. For this purpose, we have prepared a reliable, homogeneous and complete earthquake catalogue during the period 1500–2010. The technique used here allows the data to contain either historical or instrumental era or even a combination of the both. In this study, the earthquake hazard parameters, which include maximum regional magnitude (M max), mean seismic activity rate (λ), the parameter b (or β?=?b/log e) of Gutenberg–Richter (G–R) frequency-magnitude relationship, the return periods of earthquakes with a certain threshold magnitude along with their probabilities of occurrences have been calculated using only instrumental earthquake data during the period 1900–2010. The uncertainties in magnitude have been also taken into consideration during the calculation of hazard parameters. The earthquake hazard in the whole NW Himalaya region has been calculated in 28 seismogenic source zones delineated on the basis of seismicity level, tectonics and focal mechanism. The annual probability of exceedance of earthquake (activity rate) of certain magnitude is also calculated for all seismogenic source zones. The obtained earthquake hazard parameters were geographically distributed in all 28 seismogenic source zones to analyze the spatial variation of localized seismicity parameters. It is observed that seismic hazard level is high in Quetta-Kirthar-Sulaiman region in Pakistan, Hindukush-Pamir Himalaya region and Uttarkashi-Chamoli region in Himalayan Frontal Thrust belt. The source zones that are expected to have maximum regional magnitude (M max) of more than 8.0 are Quetta, southern Pamir, Caucasus and Kashmir-Himanchal Pradesh which have experienced such magnitude of earthquakes in the past. It is observed that seismic hazard level varies spatially from one zone to another which suggests that the examined regions have high crustal heterogeneity and seismotectonic complexity.  相似文献   

2.
We applied the maximum likelihood method produced by Kijko and Sellevoll (Bull Seismol Soc Am 79:645–654, 1989; Bull Seismol Soc Am 82:120–134, 1992) to study the spatial distributions of seismicity and earthquake hazard parameters for the different regions in western Anatolia (WA). Since the historical earthquake data are very important for examining regional earthquake hazard parameters, a procedure that allows the use of either historical or instrumental data, or even a combination of the two has been applied in this study. By using this method, we estimated the earthquake hazard parameters, which include the maximum regional magnitude $ \hat{M}_{\max } , $ the activity rate of seismic events and the well-known $ \hat{b} $ value, which is the slope of the frequency-magnitude Gutenberg-Richter relationship. The whole examined area is divided into 15 different seismic regions based on their tectonic and seismotectonic regimes. The probabilities, return periods of earthquakes with a magnitude M?≥?m and the relative earthquake hazard level (defined as the index K) are also evaluated for each seismic region. Each of the computed earthquake hazard parameters is mapped on the different seismic regions to represent regional variation of these parameters. Furthermore, the investigated regions are classified into different seismic hazard level groups considering the K index. According to these maps and the classification of seismic hazard, the most seismically active regions in WA are 1, 8, 10 and 12 related to the Alia?a Fault and the Büyük Menderes Graben, Aegean Arc and Aegean Islands.  相似文献   

3.
A reliable and homogenized earthquake catalogue is essential for seismic hazard assessment in any area. This article describes the compilation and processing of an updated earthquake catalogue for Pakistan. The earthquake catalogue compiled in this study for the region (quadrangle bounded by the geographical limits 40–83° N and 20–40° E) includes 36,563 earthquake events, which are reported as 4.0–8.3 moment magnitude (MW) and span from 25 AD to 2016. Relationships are developed between the moment magnitude and body, and surface wave magnitude scales to unify the catalogue in terms of magnitude MW. The catalogue includes earthquakes from Pakistan and neighbouring countries to minimize the effects of geopolitical boundaries in seismic hazard assessment studies. Earthquakes reported by local and international agencies as well as individual catalogues are included. The proposed catalogue is further used to obtain magnitude of completeness after removal of dependent events by using four different algorithms. Finally, seismicity parameters of the seismic sources are reported, and recommendations are made for seismic hazard assessment studies in Pakistan.  相似文献   

4.
—The maximum likelihood estimation of earthquake hazard parameters has been made in the Himalayas and its surrounding areas on the basis of a procedure which utilizes data containing complete files of the most recent earthquakes. The entire earthquake catalogue used covers the period from 1900–1990. The maximum regional magnitude M max?, the activity rate of the seismic event λ, the mean return period R of earthquakes with a certain lower magnitude M max≥ m along with their probability of occurrence, as well as the parameter b of of Gutenberg Richter magnitude-frequency relationship, have been determined for six different seismic zones of the Himalayas and its vicinity. It is shown that in general the hazard is higher in the zone NEI and BAN than the other four zones. The high difference of the b parameter and the hazard level from zone to zone reflect the high seismotectonic complexity and crustal heterogeneity.  相似文献   

5.
We assess the tsunami hazard posed to New Zealand by the Kermadec and southern New Hebrides subduction margins. Neither of these subduction zones has produced tsunami large enough to cause significant damage in New Zealand over the past 150?years of well-recorded history. However, as this time frame is short compared to the recurrence interval for major tsunamigenic earthquakes on many of the Earth’s subduction zones, it should not be assumed that what has been observed so far is representative of the long term. For each of these two subduction zones we present plate kinematic and fault-locking results from block modelling of earthquake slip vector data and GPS velocities. The results are used to estimate the current rates of strain accumulation on the plate interfaces where large tsunamigenic earthquakes typically occur. We also review data on the larger historical earthquakes that have occurred on these margins, as well as the Global CMT catalogue of events since 1976. Using this information we have developed a set of scenarios for large earthquakes which have been used as initial conditions for the COMCOT tsunami code to estimate the subsequent tsunami propagation in the southwest Pacific, and from these the potential impact on New Zealand has been evaluated. Our results demonstrate that there is a significant threat posed to the Northland and Coromandel regions of New Zealand should a large earthquake (M w ?8.5) occur on the southern or middle regions of the Kermadec Trench, and that a similarly large earthquake on the southern New Hebrides Trench has the potential to strongly impact on the far northern parts of New Zealand close to the southern end of the submarine Three Kings Ridge. We propose logic trees for the magnitude–frequency parameters of large earthquakes originating on each trench, which are intended to form the basis for future probabilistic studies.  相似文献   

6.
Ground motion prediction equations (GMPE) in terms of macroseismic intensity are a prerequisite for intensity-based shake maps and seismic hazard assessment and have the advantage of direct relation to earthquake damage and good data availability also for historical events. In this study, we derive GMPE for macroseismic intensity for the Campania region in southern Italy. This region is highly exposed to the seismic hazard related to the high seismicity with moderate- to large-magnitude earthquakes in the Appenninic belt. The relations are based on physical considerations and are easy to implement for the user. The uncertainties in earthquake source parameters are accounted for through a Monte Carlo approach and results are compared to those obtained through a standard regression scheme. One relation takes into account the finite dimensions of the fault plane and describes the site intensity as a function of Joyner–Boore distance. Additionally, a relation describing the intensity as a function of epicentral distance is derived for implementation in cases where the dimensions of the fault plane are unknown. The relations are based on an extensive dataset of macroseismic intensities for large earthquakes in the Campania region and are valid in the magnitude range M w = 6.3–7.0 for shallow crustal earthquakes. Results indicate that the uncertainties in earthquake source parameters are negligible in comparison to the spread in the intensity data. The GMPE provide a good overall fit to historical earthquakes in the region and can provide the intensities for a future earthquake within 1 intensity unit.  相似文献   

7.
The earthquakes offshore Fujian and Guangdong Provinces concentrated along the two segments near Nan’ao in the south and Quanzhou in the north of the off coast fault, which is very active since the late Pleistocene. In 1918 and 1906, two earthquakes with magnitudes 7.3 and 6.1 respectively occurred in the south and the north regions. With the instrumentally determined seismic parameters of these two earthquakes as standards, the author evaluated the parameters of the historical earthquakes by comparing their macroseismic materials with consideration of the geological background. As a result, chronological tables of historical earthquakes of the south and the north regions were compiled. The seismic activity of the two regions synchronized basically, and their strongest recorded earthquakes were both aroundM s 7.3. Seismic activity usually intensified before the occurrence of strong events. Aftershocks were frequent, but strong aftershocks usually occurred one to several years after the main shock. Two high tides of seismic activity occurred since the late 15th century. Around 1600, eight earthquakes each with magnitudes over 4.3 occurred in both of the two regions. The magnitude of the strongest shock in the south region is 6.7, that in the north region is 7.5. The second high tide occurred at the early 20th century. Among the 18 earthquakes occurred in the south region, one was of magnitude 7.3; whilst only two earthquakes with magnitudes 6.1 and 5.5 respectively occurred in the north region. Further, medium to strong earthquakes never occurred since 1942. Whether this is the “mitigation effect” of strong shocks, or a big earthquake is brewing in the north region is worth intensive study. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 505–515, 1991. This work is supported by Chinese Joint Seismological Science Foundation.  相似文献   

8.
The M?≥?6 earthquakes occurred in the South–North Seismic Belt, Mainland China, during 1901–2008 are taken to study the possible existence of memory effect in large earthquakes. The fluctuation analysis technique is applied to analyze the sequences of earthquake magnitude and inter-event time represented in the natural time domain. Calculated results show that the exponents of scaling law of fluctuation versus window length are less than 0.5 for the sequences of earthquake magnitude and inter-event time. The migration of earthquakes in study is taken to discuss the possible correlation between events. The phase portraits of two sequent magnitudes and two sequent inter-event times are also applied to explore if large (or small) earthquakes are followed by large (or small) events. Together with all kinds of given information, we conclude that the earthquakes in study is short-term correlated and thus the short-term memory effect would be operative.  相似文献   

9.
Forecasts of future earthquake hazard in the San Francisco Bay region (SFBR) are dependent on the distribution used for the possible magnitude of future events. Based on the limited observed data, it is not possible to statistically distinguish between many distributions with very different tail behavior. These include the modified and truncated Gutenberg–Richter distributions, and a composite distribution assembled by the Working Group on California Earthquake Probabilities. There is consequent ambiguity in the estimated probability of very large, and hence damaging, events. A related question is whether the energy released in earthquakes is a small or large proportion of the stored energy in the crust, corresponding loosely to the ideas of self-organized criticality, and intermittent criticality, respectively. However, the SFBR has experienced three observed accelerating moment release (AMR) cycles, terminating in the 1868 Hayward, 1906 San Andreas and 1989 Loma Prieta events. A simple stochastic model based on elastic rebound has been shown to be capable of producing repeated AMR cycles in large synthetic catalogs. We propose that such catalogs can provide the basis of a test of a given magnitude distribution, via comparisons between the AMR properties of the real and synthetic data. Our results show that the truncated Gutenberg–Richter distribution produces AMR behavior closest to the observed AMR behavior. The proviso is that the magnitude parameters b and m max are such that a sequence of large events that suppresses activity for several centuries is unlikely to occur. Repeated simulation from the stochastic model using such distributions produces 30-year hazard estimates at various magnitudes, which are compared with the estimates from the 2003 Working Group on California Earthquake Probabilities.  相似文献   

10.
A global catalog of small- to large-sized earthquakes was systematically analyzed to identify causality and correlatives between human-made mass shifts in the upper Earth??s crust and the occurrence of earthquakes. The mass shifts, ranging between 1?kt and 1?Tt, result from large-scale geoengineering operations, including mining, water reservoirs, hydrocarbon production, fluid injection/extractions, deep geothermal energy production and coastal management. This article shows evidence that geomechanical relationships exist with statistical significance between (a) seismic moment magnitudes M of observed earthquakes, (b) lateral distances of the earthquake hypocenters to the geoengineering ??operation points?? and (c) mass removals or accumulations on the Earth??s crust. Statistical findings depend on uncertainties, in particular, of source parameter estimations of seismic events before instrumental recoding. Statistical observations, however, indicate that every second, seismic event tends to occur after a decade. The chance of an earthquake to nucleate after 2 or 20?years near an area with a significant mass shift is 25 or 75?%, respectively. Moreover, causative effects of seismic activities highly depend on the tectonic stress regime in which the operations take place (i.e., extensive, transverse or compressive). Results are summarized as follows: First, seismic moment magnitudes increase the more mass is locally shifted on the Earth??s crust. Second, seismic moment magnitudes increase the larger the area in the crust is geomechanically polluted. Third, reverse faults tend to be more trigger-sensitive than normal faults due to a stronger alteration of the minimum vertical principal stress component. Pure strike-slip faults seem to rupture randomly and independently from the magnitude of the mass changes. Finally, mainly due to high estimation uncertainties of source parameters and, in particular, of shallow seismic events (<10?km), it remains still very difficult to discriminate between induced and triggered earthquakes with respect to the data catalog of this study. However, first analyses indicate that small- to medium-sized earthquakes (<M6) seem to be induced and large-sized events (>M6) seem to be triggered. The rupture propagation of triggered events might be dominated by pre-existing tectonic stress conditions.  相似文献   

11.
In regions that undergo low deformation rates, as is the case for metropolitan France (i.e. the part of France in Europe), the use of historical seismicity, in addition to instrumental data, is necessary when dealing with seismic hazard assessment. This paper presents the strategy adopted to develop a parametric earthquake catalogue using moment magnitude Mw, as the reference magnitude scale to cover both instrumental and historical periods for metropolitan France. Work performed within the framework of the SiHex (SIsmicité de l’HEXagone) (Cara et al. Bull Soc Géol Fr 186:3–19, 2015. doi: 10.2113/qssqfbull.186.1.3) and SIGMA (SeIsmic Ground Motion Assessment; EDF-CEA-AREVA-ENEL) projects, respectively on instrumental and historical earthquakes, have been combined to produce the French seismic CATalogue, version 2017 (FCAT-17). The SiHex catalogue is composed of ~40,000 natural earthquakes, for which the hypocentral location and Mw magnitude are given. In the frame of the SIGMA research program, an integrated study has been realized on historical seismicity from intensity prediction equations (IPE) calibration in Mw detailed in Baumont et al. (submitted) companion paper to their application to earthquakes of the SISFRANCE macroseismic database (BRGM, EDF, IRSN), through a dedicated strategy developed by Traversa et al. (Bull Earthq Eng, 2017. doi: 10.1007/s10518-017-0178-7) companion paper, to compute their Mw magnitude and depth. Macroseismic data and epicentral location and intensity used both in IPE calibration and inversion process, are those of SISFRANCE without any revision. The inversion process allows the main macroseismic field specificities reported by SISFRANCE to be taken into account with an exploration tree approach. It also allows capturing the epistemic uncertainties associated with macroseismic data and to IPEs selection. For events that exhibit a poorly constrained macroseismic field (mainly old, cross border or off-shore earthquakes), joint inversion of Mw and depth is not possible, and depth needs to be fixed to calculate Mw. Regional a priori depths have been defined for this purpose based on analysis of earthquakes with a well constrained macroseismic field where joint inversion of Mw and depth is possible. As a result, 27% of SISFRANCE earthquake seismological parameters have been jointly inverted and for the other 73% Mw has been calculated assuming a priori depths. The FCAT-17 catalogue is composed of the SIGMA historical parametric catalogue (magnitude range between 3.5 up to 7.0), covering from AD463 to 1965, and of the SiHex instrumental one, extending from 1965 to 2009. Historical part of the catalogue results from an automatic inversion of SISFRANCE data. A quality index is estimated for each historical earthquake according to the way the events are processed. All magnitudes are given in Mw which makes this catalogue directly usable as an input for probabilistic or deterministic seismic hazard studies. Uncertainties on magnitudes and depths are provided for historical earthquakes following calculation scheme presented in Traversa et al. (2017). Uncertainties on magnitudes for instrumental events are from Cara et al. (J Seismol 21:551–565, 2017. doi: 10.1007/s10950-016-9617-1).  相似文献   

12.
The historical earthquake catalogue of China has lasted more than 3000 years,and most of its data are inferred from historical records.The earthquake catalogue in earlier times is not complete owing to various reasons,so some events are lost.This paper estimates the loss rate of earthquakes with various magnitudes in the historical earthquake catalogue for different time intervals quantitatively by using the Gutenberg-Richter formula and modern instrumental records,which will provide the references for statistic research in seismicity.  相似文献   

13.
青藏高原东北隅地区位于青藏高原、鄂尔多斯和阿拉善三大块体交汇部位,发育一组以逆走滑活动为主的弧形断裂系,其新活动性强,历史及现代强震频发,是探讨现代中小地震密集区与历史强震关联性的理想地区,也是检验和发展小震密集区值方法及其适用条件的有利地区.本文采用甘肃省地震局对该区1970年以来1~5级地震仪器监测目录,利用网格点...  相似文献   

14.
A straightforward Bayesian statistic is applied in five broad seismogenic source zones of the northwest frontier of the Himalayas to estimate the earthquake hazard parameters (maximum regional magnitude M max, β value of G–R relationship and seismic activity rate or intensity λ). For this purpose, a reliable earthquake catalogue which is homogeneous for M W ≥ 5.0 and complete during the period 1900 to 2010 is compiled. The Hindukush–Pamir Himalaya zone has been further divided into two seismic zones of shallow (h ≤ 70 km) and intermediate depth (h > 70 km) according to the variation of seismicity with depth in the subduction zone. The estimated earthquake hazard parameters by Bayesian approach are more stable and reliable with low standard deviations than other approaches, but the technique is more time consuming. In this study, quantiles of functions of distributions of true and apparent magnitudes for future time intervals of 5, 10, 20, 50 and 100 years are calculated with confidence limits for probability levels of 50, 70 and 90 % in all seismogenic source zones. The zones of estimated M max greater than 8.0 are related to the Sulaiman–Kirthar ranges, Hindukush–Pamir Himalaya and Himalayan Frontal Thrusts belt; suggesting more seismically hazardous regions in the examined area. The lowest value of M max (6.44) has been calculated in Northern-Pakistan and Hazara syntaxis zone which have estimated lowest activity rate 0.0023 events/day as compared to other zones. The Himalayan Frontal Thrusts belt exhibits higher earthquake magnitude (8.01) in next 100-years with 90 % probability level as compared to other zones, which reveals that this zone is more vulnerable to occurrence of a great earthquake. The obtained results in this study are directly useful for the probabilistic seismic hazard assessment in the examined region of Himalaya.  相似文献   

15.
As large destructive seismic events are not frequent in Algeria, anexhaustive knowledge of the historical seismicity is required to have arealistic view of seismic hazard in this part of the world. This research workpresents a critical reappraisal of seismicity in the north-eastern Algeria forseismotectonic and seismic hazard purposes. This part of work focuses onthe seismicity of pre-1900 period for the area under consideration[33°N-38°N, 4°E-9.5°E]. By going back tothe available documentary sources and evaluating and analysing the eventsin geographical, cultural and historical context, it has been possible toidentify 111 events, from 1850–1899, which are not reported in therecent Algerian catalogue. Several spurious events, reported in standardlistings, have been deleted and nine unknown events have been discovered.It is quite clear that macroseismic information derived from press reportsand published documents in Algeria, under certain conditions, is veryincomplete, even for destructive earthquakes, located in the countrysideaway from communication centres. One of the reasons for this iscensorship, noticeable during the colonisation period. Critical analysis ofnewly collected information has allowed the determination and/or theimprovement of the macroseismic parameters of each event, such aslocation, maximum epicentral intensity and magnitude to produce anearthquake catalogue as homogeneous and complete as the available data,for the zone under study. The criteria used in this research are explainedand eight historical earthquakes have been the subject of retrospectivemacroseismic field construction.The investigation of historical earthquakes is one of the most important taskin studying seismotectonic for seismic hazard evaluation purposes.  相似文献   

16.
This study seeks to construct a hazard function for earthquake probabilities based on potential foreshocks. Earthquakes of magnitude 6.5 and larger that occurred between 1976 and 2000 in an offshore area of the Tohoku region of northeast Japan were selected as events for estimating probabilities. Later occurrences of multiple events and aftershocks were omitted from targets. As a result, a total of 14 earthquakes were employed in the assessment of models. The study volume spans 300 km (East-West) × 660 km (North-South) × 60 km in depth. The probability of a target earthquake occurring at a certain point in time-space depends on the number of small earthquakes that occurred per unit volume in that vicinity. In this study, we assume that the hazard function increases geometrically with the number of potential foreshocks within a constrained space-time window. The parameters for defining potential foreshocks are magnitude, spatial extent and lead time to the point of assessment. The time parameter is studied in ranges of 1 to 5 days (1-day steps), and spatial parameters in 20 to 100 km (20-km steps). The model parameters of the hazard function are determined by the maximum likelihood method. The most effective hazard function examined was the following case: When an earthquake of magnitude 4.5 to 6.5 occurs, the hazard for a large event is increased significantly for one day within a 20 km radius surrounding the earthquake. If two or more such earthquakes are observed, the model expects a 20,000 times greater probability of an earthquake of magnitude 6.5 or greater than in the absence of such events.  相似文献   

17.
A uniform catalog of earthquakes for seismic hazard asesment in Iran   总被引:6,自引:0,他引:6  
AuniformcatalogofearthquakesforseismichazardasesmentinIranNoorbakhshMirzaei1,2)MENG-TANGAO1)(高孟谭)YUN-TAICHEN1)(陈运泰)JIANWANG1...  相似文献   

18.
2016年12月—2018年4月间布设于汶川、芦山地震之间地震空段的密集监测台阵(LmsSGA)提供了密集的观测数据.通过拾取地震走时、初始定位,计算地方震级,得到了完备性震级为0级的地震目录.更加完备的地震目录为地震空段及周围地震活动的时空分布特征和孕震风险性评估提供了丰富的信息.重定位结果显示地震主要集中于龙门山断裂带深度为5~20km的孕震层内.地震活动频繁的汶川、芦山主震区,震源的空间分布模式与其早期余震相似,说明两次大地震的区域仍处于缓慢的应力调整阶段.青藏高原物质东向挤出受宝兴、彭灌杂岩阻挡,在两个杂岩体西北侧地震活动频繁.地震活动性分布显示汶川—茂县、映秀—北川断裂上存在一个清晰的长约30km,宽约20km的地震活动"空白"区域,与其下方因部分熔融而产生的低速体分布一致,我们推测熔融体的加温作用是导致空段内极低的地震活动性的主要原因.监测时段内仍观测到降雨变化率和地震数量呈反相关关系,再次证实了汶川—芦山地震间地震空段及邻区内季节性降雨对地震活动性存在一定调节作用.综合分析S波速度模型、历史强震活动及b值,我们推断地震空段东部的彭灌断裂中段及周围部分隐伏断层存在发生强震的风险.  相似文献   

19.
We apply the Bakun and Wentworth (Bull Seism Soc Am 87:1502–1521, 1997) method to determine the location and magnitude of earthquakes occurred in Central Asia using MSK-64 intensity assignments. The attenuation model previously derived and validated by Bindi et al. (Geophys J Int, 2013) is used to analyse 21 earthquakes that occurred over the period 1885–1964, and the estimated locations and magnitudes are compared to values available in literature. Bootstrap analyses are performed to estimate the confidence intervals of the intensity magnitudes, as well as to quantify the location uncertainty. The analyses of seven significant earthquakes for the hazard assessment are presented in detail, including three large historical earthquakes that struck the northern Tien-Shan between the end of the nineteenth and the beginning of the twentieth centuries: the 1887, M 7.3 Verny, the 1889, M 8.3 Chilik and the 1911, M 8.2 Kemin earthquakes. Regarding the 1911, Kemin earthquake the magnitude values estimated from intensity data are lower (i.e. MILH?=?7.8 and MIW?=?7.6 considering surface wave and moment magnitude, respectively) than the value M?=?8.2 listed in the considered catalog. These values are more in agreement with the value M S?=?7.8 revised by Abe and Noguchi (Phys Earth Planet In, 33:1–11, 1983b) for the surface wave magnitude. For the Kemin earthquake, the distribution of the bootstrap solutions for the intensity centre reveal two minima, indicating that the distribution of intensity assignments do not constrain a unique solution. This is in agreement with the complex source rupture history of the Kemin earthquake, which involved several fault segments with different strike orientations, dipping angles and focal mechanisms (e.g. Delvaux et al. in Russ Geol Geophys 42:1167–1177, 2001; Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). Two possible locations for the intensity centre are obtained. The first is located on the easternmost sub-faults (i.e. the Aksu and Chon-Aksu segments), where most of the seismic moment was released (Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). The second location is located on the westernmost sub-faults (i.e. the Dzhil'-Aryk segment), close to the intensity centre location obtained for the 1938, M 6.9 Chu-Kemin earthquake (MILH?=?6.9 and MIW?=?6.8).  相似文献   

20.
论发震构造特性在潜在震源区参数确定中的应用   总被引:6,自引:0,他引:6       下载免费PDF全文
周本刚 《地震地质》2004,26(4):750-760
发震构造特性是潜在震源区划分及其地震年发生率确定的重要依据。潜在震源区除了反映“未来具有发生破坏性地震的地区”的内涵外,还应反映高震级档地震具有相似复发特征的涵义。由于在地震活动性参数统计单元内,有一些具有不同本底地震的活动构造块体,为更好地反映地震活动的空间不均匀性,考虑潜在震源区的三级划分是有必要的。通过分析潜在震源区内高震级档地震的复发特征,计算预测时段内潜在震源区的高震级档地震的发震概率,采用预测时段内概率等效转换获得地震年平均发生率的方法,有助于在中国地震危险性分析框架内考虑潜在震源区的强震复发特性。另外,文中还对潜在震源区内特征地震次级震级档频度不足的特性和发震构造上强震非均匀性在地震危险性分析中的应用问题进行了探讨  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号