首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Majority of landslides in the Indian sub-continent are triggered by rainfall. Several attempts in the global scenario have been made to establish rainfall thresholds in terms of intensity-duration and antecedent rainfall models on global, regional and local scales for the occurrence of landslides. However, in the context of the Indian Himalayas, the rainfall thresholds for landslide occurrences are not yet understood fully. Neither on regional scale nor on local scale, establishing such rainfall thresholds for landslide occurrences in Indian Himalayas has yet been attempted. This paper presents an attempt towards deriving local rainfall thresholds for landslides based on daily rainfall data in and around Chamoli-Joshimath region of the Garhwal Himalayas, India. Around 128 landslides taken place in last 4 years from 2009 to 2012 have been studied to derive rainfall thresholds. Out of 128 landslides, however, rainfall events pertaining to 81 landslides were analysed to yield an empirical intensity–duration threshold for landslide occurrences. The rainfall threshold relationship fitted to the lower boundary of the landslide triggering rainfall events is I?=?1.82 D ?0.23 (I?=?rainfall intensity in millimeters per hour and D?=?duration in hours). It is revealed that for rainfall events of shorter duration (≤24 h) with a rainfall intensity of 0.87 mm/h, the risk of landslide occurrence in this part of the terrain is expected to be high. Also, the role of antecedent rainfall in causing landslides was analysed by considering daily rainfall at failure and different period cumulative rainfall prior to failure considering all 128 landslides. It is observed that a minimum 10-day antecedent rainfall of 55 mm and a 20-day antecedent rainfall of 185 mm are required for the initiation of landslides in this area. These rainfall thresholds presented in this paper may be improved with the hourly rainfall data vis-à-vis landslide occurrences and also data of later years. However, these thresholds may be used in landslide warning systems for this particular region of the Garhwal Himalayas to guide the traffic and provide safety to the tourists travelling along this pilgrim route during monsoon seasons.  相似文献   

2.
An extreme rainfall event on August 9, 2009, which was close to setting a world record for 48-h accumulated rainfall, induced the Xiaolin deep-seated landslide, which was located in southwestern Taiwan and had volume of 27.6?×?106?m3, and caused the formation of a landslide dam. The landslide dam burst in a very short time, and little information remained afterward. We reconstructed the process of formation and failure of the Xiaolin landslide dam and also inferred the area of the impoundment and topographic changes. A 5?×?5-m digital elevation model, the recorded water stage of the Qishan River, and data from field investigation were used for analysis. The spectral magnitude of the seismic signals induced by the Xiaolin landslide and flooding due to failure of the landslide dam were analyzed to estimate the timing of the dam breach and the peak discharge of the subsequent flood. The Xiaolin landslide dam failure resulted from overtopping. We verified the longevity of the Xiaolin landslide dam at about 2 h relying on seismic signals and water level records. In addition, the inundated area, volume of the impoundment behind the Xiaolin landslide dam, and peak discharge of the flood were estimated at 92.3 ha, 19.5?×?106?m3, and 17?×?103?m3/s, respectively. The mean velocity of the flood-recession wave front due to the dam blockage was estimated at 28 km/h, and the peak flooding velocity after failure of the dam was estimated at 23 km/h. The Xiaolin landslide provides an invaluable opportunity for understanding the mechanism of deep-seated landslides and flooding processes following a landslide dam failure.  相似文献   

3.
This paper analyses the dominant mechanisms of slope failures and identifies potential obstacles to landslide-hazard reduction at the Iva Valley area, Enugu, Nigeria. The landscape is replete with landslide scars and gullies of varied sizes and the slope deposits comprise unconsolidated, friable sands inter-bedded with thin units of montmorillonitic claystone. Forty-three landslide events were identified in the study area with most being shallow, short run-out movements with slip-surface depth <2 m. The study found the landslides mainly occur in the beginning of rainy season characterized by short duration, high intensity rainfall. An integrated approach comprising field mapping, laboratory tests and numerical analyses reveals that the barren nature of the slopes prior to the outset of rainy season, high rainfall intensity, erosion, overgrazing, soil characteristics and the site’s unique lithologic sequence are the main causes of instability. Shearing tests under several conditions showed that the soils strongly strain-soften until low steady-state strength is achieved. A computer code, based on this strength reduction technique, used input parameters obtained from the field and laboratory studies to simulate a landslide with similar structure, travel distance and distribution area. It is noted that urbanization has gradually increased the vulnerability of the society’s poor to landslide hazards as they now erect unplanned residence (tents and blocks) on the slopes. This work is part of a regional study aimed at finding ways of protecting the vulnerable by generating data that could be used to build future landslide susceptibility map.  相似文献   

4.
Zhang  Yansong  Chen  Jianping  Zhou  Fujun  Bao  Yiding  Yan  Jianhua  Zhang  Yiwei  Li  Yongchao  Gu  Feifan  Wang  Qing 《Landslides》2022,19(4):941-962

A large paleolandslide occurred opposite the Gangda village in the upper Jinsha River, SE Tibetan Plateau. Field geological investigations and remote sensing indicated that the Gangda paleolandslide once blocked the Jinsha River. Evidence of river blocking, including landslide dam relics, upstream lacustrine sediments, and downstream outburst sediments, has been well preserved. To understand the river-blocking event including landslide, dam breach, and associated outburst flooding, optically stimulated luminescence (OSL) dating and numerical simulations were performed in this study. OSL dating results showed that the paleolandslide dam was formed at 5.4?±?0.5 ka BP and breached at 3.4?±?0.3 ka BP, indicating that the dam lasted approximately 2000 years. The discrete element method was used to simulate the dynamics of the Gangda rock landslide based on the restored topography, while a fluid–solid coupling model was performed to simulate the landslide dam breaching and flooding. The fluid–solid coupling model can simultaneously reflect the process of landslide-dam collapse and the propagation of outburst flood. The simulated results indicate that the whole landslide process lasted about 60 s with a peak velocity of 38 m/s. It is significant that the simulated morphology of the residual landslide dam and downstream outburst sediments is consistent with the field observations. The combined numerical investigation in this paper provided new insights into the research of landscape evolution and helped to understand the chain disaster of landslide, dam breach, and flooding.

  相似文献   

5.
Typhoon Morakot brought extreme rainfall and initiated numerous landslides and debris flows in southern Taiwan in August of 2009. The purpose of this study is to identify the extreme rainfall-induced landslide frequency-area distribution in the Laonong River Basin in southern Taiwan and debris flow-initiated conditions under rainfall. Results of the analysis show that debris flows were initiated under high cumulative rainfall and long rainfall duration or high rainfall intensity. The relationship of mean rainfall intensity and duration threshold could reflect debris flow initiation characteristics under high rainfall intensity in short rainfall duration conditions. The relationship of cumulative rainfall and duration threshold could reflect debris flow initiation characteristics under high cumulative rainfall in long rainfall duration. Defining rainfall events by estimating rainfall parameters with different methodologies could reveal variations among intermittent rainfall events for the benefit of issuing debris flow warnings. The exponent of landslide frequency-area distribution induced by Typhoon Morakot is lower than that induced by the Chi-Chi earthquake. The lower exponent of landslide frequency-area distribution can be attributed to the transportation and deposition areas of debris flow that are included in the landslide area. Climate change induced high rainfall intensity and long duration of precipitation, for example, Typhoon Morakot brought increased frequency of debris flow and created difficulty in issuing warnings from rainfall monitoring.  相似文献   

6.
Since the impoundment of the Three Gorges Reservoir in June 2003, numerous preexisting landslides have been reactivated. This paper seeks to find the factors influencing landslide deformation and the relationship between displacement and fluctuation of the reservoir water level, while the displacement and the intensity of rainfall based on monitoring data; 6 years of monitoring were carried out on the Shiliushubao landslide, a old landslide, consisting of a deep-seated main block and two shallow blocks, with a volume of 1,180 × 104 m3 and located on the left bank of the Yangtze River, 66 km upstream of the Three Gorges dam. This landslide was reactivated by the impoundment and since then the landslide body has been experiencing persistent deformation with an observed maximum cumulative displacement of 8,598.5 mm up to December 2009. Based on the monitoring data, we analyzed the relationship between the fluctuation of the reservoir water level and displacement, rainfall and displacement, and found that the rainfall is the major factor influencing deformation for two shallow blocks and the displacement has a positive correlation with the variation of rainfall intensity. The fluctuation of the reservoir water level is the primary factor for main block, and the deformation rate has a negative correlation with the variation of reservoir water level, declined with the rise of the water level and increased with the drawdown of the water level.  相似文献   

7.
In Taiwan, the hillside is about 70 % of total area. These areas also have steep topography and geological vulnerability. When an event of torrential rain comes during a typhoon, the landslide disasters usually occur at these areas due to the long duration and high intensity of rainfall. Therefore, a design which considers the potential landslide has become an important issue in Taiwan. In this study, a temporal characteristic of landslide fragility curve (LFC) was developed, based on the geomorphological and vegetation factors using landslides at the Chen-Yu-Lan watershed in Taiwan, during Typhoon Sinlaku (September 2008) and Typhoon Morakot (August 2009). This study addressed an effective landslide hazard assessment process, linking together the post-landslide damage and post-rainfall data for LFC model. The Kriging method was used to interpolate the rainfall indices (R 0, R, I) for numerical analysis. Remote sensing data from SPOT images were applied to analyze the landslide ratio and vegetation conditions. The 40-m digital elevation model was used for slope variation analysis in the watershed, and the maximum likelihood estimate was conducted to determine the mean and standard deviation parameters of the proposed empirical LFC model. This empirical model can express the probability of exceeding a damage state for a certain classification (or conditions) of landslides by considering a specific hazard index for a given event. Finally, the vulnerability functions can be used to assess the loss from landslides, and, in the future, to manage the risk of debris flow in the watershed.  相似文献   

8.
Critical rainfall thresholds for landslides are powerful tools for preventing landslide hazard. The thresholds are commonly estimated empirically starting from rainfall events that triggered landslides in the past. The creation of the appropriate rainfall–landslide database is one of the main efforts in this approach. In fact, an accurate agreement between the landslide and rainfall information, in terms of location and timing, is essential in order to correctly estimate the rainfall–landslide relationships. A further issue is taking into account the average moisture conditions prior the triggering event, which reasonably may be crucial in determining the sufficient amount of precipitation. In this context, the aim of this paper is exploiting historical landslide and rainfall data in a spatial database for the derivation of critical rainfall thresholds for landslide occurrence in Sicily, southern Italy. The hourly rainfall events that caused landslides occurred in the twentieth century were specifically identified and reconstructed. A procedure was proposed to automatically convert rain guages charts recorded on paper tape into digital format and then to provide the cumulative rainfall hyetograph in digital format. This procedure is based on a segmentation followed by signal recognition techniques which allow to digitalize and to recognize the hyetograph automatically. The role of rainfall prior to the landslide events was taken into account by including in the analysis the rainfall occurred 5, 15 and 30 days before each landslide. Finally, cumulated rainfall duration thresholds for different exceedance probability levels were determined. The obtained thresholds resulted in agreement with the regional curves proposed by other authors for the same area; antecedent rainfall turned out to be particularly important in triggering landslides.  相似文献   

9.
This paper presents a case study of the Taipingshan landslide, which was triggered by Typhoon Saola in 2012. Taipingshan villa is one of the most famous scenic locations within the Taipingshan National Forest Recreation Area in northern Taiwan. Since the early 1990s, evidence of recent landslide activity appeared throughout the Taipingshan villa and included features such as tension cracks, ground settlement, and cracking in manmade structures. In response, a series of geological investigations and in-site/laboratory tests were conducted in 2010 to estimate slope stability and predict critical rainfall thresholds (event accumulated rainfall) for landslide activity. Results revealed that the critical rainfall threshold for the Taipingshan National Forest Recreation Area is 1765 mm. In 2012, that threshold was tested when Typhoon Saola brought tremendous rainfall to northern and eastern Taiwan and triggered activity along the main scarp of sliding mass B located near the History Exhibition Hall. According to in situ extensometer readings and on-site precipitation data, the extensometer was severed at an accumulated rainfall 1694 mm. Field monitoring data during the typhoon event are in good agreement with the rainfall threshold. These preliminary results suggest that the threshold may be useful for assessing the rainfall threshold of other landslides and a good reference for establishing early warning systems for landslides.  相似文献   

10.
Rainfall patterns for shallow landsliding in perialpine Slovenia   总被引:2,自引:0,他引:2  
This paper presents two types of analysis: an antecedent rainfall analysis based on daily rainfall and an intensity-duration analysis of rainfall events based on hourly data in perialpine Slovenia in the ?kofjelo?ko Cerkljansko hills. For this purpose, eight rainfall events that are known to have caused landslides in the period from 1990 to 2010 were studied. Over the observed period, approximately 400 records of landslides were collected. Rainfall data were obtained from three rain gauges. The daily rainfall from the 30 days before landslide events was investigated based on the type of landslides and their geo-environmental setting, the dates of confirmed landslide activity and different consecutive rainfall periods. The analysis revealed that the rainfall events triggering slope failure can be divided into two groups according to the different antecedent periods. The first group of landslides typically occurred after short-duration rainstorms with high intensity, when the daily rainfall exceeded the antecedent rainfall. The second group comprises the rainfall events with a longer antecedent period of at least 7 days. A comparison of the plotted peak and mean intensities indicates that the rainfall patterns that govern slope failure are similar but do not necessarily reflect the rainfall intensity at the time of shallow landslides in the Dav?a or Poljane areas, where the majority of the landslides occurred. Because of several limitations, the suggested threshold cannot be compared and evaluated with other thresholds.  相似文献   

11.
Landslide deposits dam Lake Oeschinen (Oeschinensee), located above Kandersteg, Switzerland. However, past confusion differentiating deposits of multiple landslide events has confounded efforts to quantify the volume, age, and failure dynamics of the Oeschinensee rock avalanche. Here we combine field and remote mapping, topographic reconstruction, cosmogenic surface exposure dating, and numerical runout modeling to quantify salient parameters of the event. Differences in boulder lithology and deposit morphology reveal that the landslide body damming Oeschinensee consists of debris from both an older rock avalanche, possibly Kandertal, as well as the Oeschinensee rock avalanche. We distinguish a source volume for the Oeschinensee event of 37 Mm3, resulting in an estimated deposit volume of 46 Mm3, smaller than previous estimates that included portions of the Kandertal mass. Runout modeling revealed peak and average rock avalanche velocities of 65 and 45 m/s, respectively, and support a single-event failure scenario. 36Cl surface exposure dating of deposited boulders indicates a mean age for the rock avalanche of 2.3 ± 0.2 kyr. This age coincides with the timing of a paleo-seismic event identified from lacustrine sediments in Swiss lakes, suggesting an earthquake trigger. Our results help clarify the hazard and geomorphic effects of rare, large rock avalanches in alpine settings.  相似文献   

12.
The active Ruinon rockslide is located on the left bank of the Frodolfo River valley (Valfurva, Italian Alps) and is developed on the Confinale deep-seated gravitational slope deformation. Ruinon landslide is a major hazard for valley inhabitants in that rapid movement might dam the stream and create a debris flow. The landslide is strongly controlled by preexisting structural features and is believed to have been triggered by postglacial debuttressing. Ground-based radar interferometry has been used to map surface deformation over time of the entire unstable zone of Ruinon landslide with high spatial resolution and at a very high temporal acquisition rate (about five images per hour). The activity of the landslide shows strong periodicity, with summer and autumn accelerations and winter deceleration. From a correlation between the landslide acceleration and a class of rainfall event, we deduce the specific rainfall conditions that accelerate the instability of the landslide area. The study results suggest an improved tool for early warning of events of potentially catastrophic landslide instability.  相似文献   

13.
The Kualiangzi landslide was triggered by heavy rainfalls in the “red beds” area of Sichuan Basin in southwestern China. Differing from other bedrock landslides, the movement of the Kualiangzi landslide was controlled by the subvertical cracks and a subhorizontal bedding plane (dip angle < 10°). The ingress of rainwater in the cracks formed a unique groundwater environment in the slope. Field measurement for rainfall, groundwater movement, and slope displacement has been made for the Kualiangzi landslide since 2013. The field monitoring system consists of two rainfall gauges, seven piezometers, five water-level gauges, and two GPS data loggers. The equipments are embedded near a longitudinal section of the landslide, where severe deformation has been observed in the past 3 years. The groundwater responses to four heavy rainfall events were analyzed between June 16 and July 24 in 2013 coincided with the flood season in Sichuan. Results showed that both of the water level and the pore-water pressure increased after each rainfall event with delay in the response time with respect to the precipitation. The maximum time lag reached 35 h occurred in a heavy rainfall event with cumulative precipitation of 127 mm; such lag effect was significantly weakened in the subsequent heavy rainfall events. In each presented rainfall event, longer infiltration period in the bedrock in the upper slope increased the response time of groundwater, compared to that of in the gravels in the lower slope. A translational landslide conceptual model was built for the Kualiangzi landslide, and the time lag was attributed to the gradual formation of the uplift pressure on the slip surface and the softening of soils at the slip surface. Another important observation is the effect on the slope movement which was caused by the water level (H w) in the transverse tension trough developed at the rear edge of the landslide. Significant negative correlation was found for H w and the slope stability factor (F s), in particular for the last two heavy rainfall events, of which the drastic increase of water level caused significant deterioration in the slope stability. The rapid drop (Δ?=?22.5 kPa) of pore-water pressure in the deep bedrock within 1 h and the large increase (Δ?=?87.3 mm) of surficial displacement were both monitored in the same period. In the end, a four-level early warning system is established through utilizing H w and the displacement rate D r as the warning indicators. When the large deformation occurred in flood season, the habitants at the leading edge of the landslide can be evacuated in time.  相似文献   

14.
以湖南省张家界市桑植县为研究区,在全面分析近30年降雨及滑坡数据的基础上,对滑坡及滑坡数量与降雨因子的关系开展了统计分析研究。首先确定了区域最佳有效降雨衰减系数,同时分别按滑坡规模、坡度、厚度大小统计了降雨与历史滑坡信息,得出有效降雨强度(I)与持续时间(D)散点图,由此确定各不同概率下诱发滑坡的区域有效降雨强度阈值,并进行了滑坡灾害危险性等级划分。进而,利用部分样本数据进行逻辑回归分析,得到了该研究区的滑坡发生概率预测方程,并给出了降雨强度临界值定量表达式,最后选用实际降雨诱发滑坡事件与未诱发滑坡事件进行对比验证。结果表明,文章所建立的滑坡预测模型准确性较高,预测情况与实际情况比较吻合。  相似文献   

15.
Global climate change has increased the frequency of abnormally high rainfall; such high rainfall events in recent years have occurred in the mountainous areas of Taiwan. This study identifies historical earthquake- and typhoon-induced landslide dam formations in Taiwan along with the geomorphic characteristics of the landslides. Two separate groups of landslides are examined which are classified as those that were dammed by river water and those that were not. Our methodology applies spatial analysis using geographic information system (GIS) and models the geomorphic features with 20?×?20 m digital terrain mapping. The Spot 6 satellite images after Typhoon Morakot were used for an interpretation of the landslide areas. The multivariate statistical analysis is also used to find which major factors contribute to the formation of a landslide dam. The objective is to identify the possible locations of landslide dams by the geomorphic features of landslide-prone slopes. The selected nine geomorphic features include landslide area, slope, aspect, length, width, elevation change, runout distance, average landslide elevation, and river width. Our four geomorphic indexes include stream power, form factor, topographic wetness, and elevation–relief ratio. The features of the 28 river-damming landslides and of the 59 non-damming landslides are used for multivariate statistical analysis by Fisher discriminant analysis and logistic regression analysis. The principal component analysis screened out eleven major geomorphic features for landslide area, slope, aspect, elevation change, length, width, runout distance, average elevation, form factor, river width, stream power, and topography wetness. Results show that the correctness by Fisher discriminant analysis was 68.0 % and was 70.8 % by logistic regression analysis. This study suggests that using logistic regression analysis as the assessment model for identifying the potential location of a landslide dam is beneficial. Landslide threshold equations applying the geomorphic features of slope angle, angle of landslide elevation change, and river width (H L/W R) to identify the potential formation of natural dams are proposed for analysis. Disaster prevention and mitigation measures are enhanced when the locations of potential landslide dams are identified; further, in order to benefit such measures, dam volume estimates responsible for breaches are key.  相似文献   

16.
The moraine dam of the Tam Pokhari glacial lake breached on 3 September 1998 and caused a catastrophic flood in the downstream areas. To learn from the event, a field survey was conducted. The survey team found that a landslide, which is considered to be responsible for the outburst flood, occurred in the northeast-facing slope of the moraine dam. The dam internal structure played a crucial role in forming a landslide that triggered the excess overflow and finally the breach of the dam. The internal structure of the dam was made of alternating layers of finer and coarser sediments inclining at 30° downstream and layers are truncated in the upslope direction by a huge pile of unconsolidated and structureless moraine materials. Since the upstream slope angle of the dam i.e., 40° is larger than the angle of repose i.e. 35° of sediments, the increased pore water pressure in the dam triggered a landslide. The rainfall and seismological activities of that particular day, which hit the record high, were crucial in triggering the failure. It is estimated that the dam’s north and northeast-facing slopes completely slid involving about 30,000 m3 of sediment mass of unconsolidated moraine materials above the shear plane. A slope stability analysis was also performed. The calculated safety factor was 0.85, and the calculated slip circle agreed with the shear plane marked in the dam. About 18 million cubic metres of water was swiftly released due to the sudden breach of the moraine dam.  相似文献   

17.
Rainfall-induced landslides (RILs) have been a source of social and economic disruption in the mountainous Baguio area in northern Philippines. Prolonged heavy rainfall usually happens during tropical cyclone and southwest monsoon activity. A pragmatic approach to RIL mitigation is to develop rainfall-based early warning. We implemented a modified regression method to derive the empirical minimum intensity (I)–duration (D) threshold I = 6.46 D ?0.28 and a normalized ID threshold NI = 0.002 D ?0.28 for rainfall duration ranging between 24 and 264 h. Using a separate data set to evaluate the applicability of the threshold, 93% of the landslide-triggering rainfall events fell above the derived threshold. RILs also occurred when 24-h rainfall was 0.02–28% of the mean annual precipitation or after accumulating at least 500 mm of rainfall from the onset of the rainy season. The thresholds may be further refined as more landslide data become available in the future.  相似文献   

18.
Rainfall-induced landslides in Hulu Kelang area, Malaysia   总被引:5,自引:2,他引:3  
Hulu Kelang is known as one of the most landslide-prone areas in Malaysia. The area has been constantly hit by landslide hazards since 1990s. This paper provides an insight into the mechanism of rainfall-induced landslide in the Hulu Kelang area. Rainfall patterns prior to the occurrences of five selected case studies were first analyzed. The results showed that daily rainfall information is insufficient for predicting landslides in the area. Rainfalls of longer durations, i.e., 3–30 days prior to the landslides should be incorporated into the prediction model. Numerical simulations on a selected case study demonstrated that both matric suction and factor of safety decreased steadily over time until they reached the lowest values on the day of landslide occurrence. Redistribution of infiltrated rainwater in the soil mass could be a reason for the slow response of failure mechanism to rainfall. Based on 21 rainfall-induced landslides that had occurred in the area, three rainfall thresholds were developed as attempts to predict the occurrence of rainfall-induced landslide. The rainfall intensity–duration threshold developed based on the local rainfall conditions provided a reasonably good prediction to the landslide occurrence. The cumulative 3- versus 30-day antecedent precipitation index threshold chart was capable of giving the most reliable prediction with the limiting threshold line for major landslide yielded a reliability of 97.6 %.  相似文献   

19.
《Engineering Geology》2004,73(3-4):193
In two events, on November 15 and 17, 2000, near the Mangart Mountain (2679 m a.s.l.), NW Slovenia, two translational landslides (debris flow slides) with a total volume of more than 1.5 million m3 occurred on the Sto e slope composed of morainic material filled with silt fraction. The first landslide was associated with a dry and the second landslide with a wet debris-flow, respectively. The rain gauging station in the village of Log pod Mangartom recorded 1638.4 mm of rainfall (more than 60% of the average annual precipitation) in the 48 days before the events (rainfall intensity of 1.42 mm/h in 1152 h). The recorded rainfall depth has a recurrence interval of more than 100 years. Other recorded rainfall depths of shorter duration (481.6 mm in 7 days, 174.0 mm in 24 h, 70 mm in 1 h) have recurrence intervals of much less than 100 years. A hydrological analysis of the event showed that the increase in runoff coefficients during the wet period in autumn 2000 before the landslide was as high as two- to threefold. An analysis using natural isotopes of δ18O and tritium of water samples from the Sto e landslide area has shown permanent but slow exfiltration of underground waters from a reservoir in the slope. In the case of low-intensity and long-duration rainfall in autumn 2000, relatively low permeable (10−7 m/s) morainic material was nearly saturated but remained stable (average porosity 21%, water content 20%, liquid limit 25%) until high artesian pressures up to 100 m developed in the slope by slow exfiltration from the relatively high permeable (10−5 m/s) massive dolomite. The Sto e landslide (two debris flow slides) was triggered by high artesian pressures built in the slope after long-duration rainfall. The devastating debris-flows formed from the landslide masses by infiltration of rainfall and surface runoff into the landslide masses and by their liquefaction.  相似文献   

20.
Extreme and/or prolonged rainfall events frequently cause landslides in many parts of the world. In this study, infiltration of rainfall into an unsaturated soil slope and triggering of landslides is studied through laboratory model (flume) tests, with the goal of obtaining the triggering rainfall intensity–duration (I–D) threshold. Flume tests with fine sand at two different relative densities (34 and 48%) and at slope angle of 56.5° are prepared, and rainfall (intensity in the range of 18 to 64 mm/h) is applied via a mist sprinkler system to trigger landslides. Soil water characteristic curve and hydraulic conductivity function of the fine sand are also presented. In flume tests, suction in the soil is measured with tensiometers, the progress of wetting front with time and deformations in the soil are also measured. Some of the findings of this study are: for the fine sand used in this study (a) the failure mechanism is infinite-slope type (mostly translational), and the failure surface is generally coincident with the wetting front or is in its vicinity, (b) the deformations leading to a landslide occurred abruptly, (c) both relatively high-intensity–short-duration rainfalls and relatively low-intensity–long duration rainfalls triggered landslides, (d) the shape of the I–D threshold is demonstrated to be a bilinear relation in log intensity–log duration plot, (e) below a certain rainfall intensity landslides are not triggered, (f) the effect of relative density of the soil on the I–D threshold is demonstrated by physical laboratory tests (as the relative density of the soil increases, the triggering rainfall intensity–duration threshold moves to larger rainfall events). The results of this study could be useful for accurate numerical modeling of rainfall-triggered landslides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号