首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the current study is to produce landslide susceptibility maps using different data mining models. Four modeling techniques, namely random forest (RF), boosted regression tree (BRT), classification and regression tree (CART), and general linear (GLM) are used, and their results are compared for landslides susceptibility mapping at the Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslide locations were identified and mapped from the interpretation of different data types, including high-resolution satellite images, topographic maps, historical records, and extensive field surveys. In total, 125 landslide locations were mapped using ArcGIS 10.2, and the locations were divided into two groups; training (70 %) and validating (25 %), respectively. Eleven layers of landslide-conditioning factors were prepared, including slope aspect, altitude, distance from faults, lithology, plan curvature, profile curvature, rainfall, distance from streams, distance from roads, slope angle, and land use. The relationships between the landslide-conditioning factors and the landslide inventory map were calculated using the mentioned 32 models (RF, BRT, CART, and generalized additive (GAM)). The models’ results were compared with landslide locations, which were not used during the models’ training. The receiver operating characteristics (ROC), including the area under the curve (AUC), was used to assess the accuracy of the models. The success (training data) and prediction (validation data) rate curves were calculated. The results showed that the AUC for success rates are 0.783 (78.3 %), 0.958 (95.8 %), 0.816 (81.6 %), and 0.821 (82.1 %) for RF, BRT, CART, and GLM models, respectively. The prediction rates are 0.812 (81.2 %), 0.856 (85.6 %), 0.862 (86.2 %), and 0.769 (76.9 %) for RF, BRT, CART, and GLM models, respectively. Subsequently, landslide susceptibility maps were divided into four classes, including low, moderate, high, and very high susceptibility. The results revealed that the RF, BRT, CART, and GLM models produced reasonable accuracy in landslide susceptibility mapping. The outcome maps would be useful for general planned development activities in the future, such as choosing new urban areas and infrastructural activities, as well as for environmental protection.  相似文献   

2.
The current research presents a detailed landslide susceptibility mapping study by binary logistic regression, analytical hierarchy process, and statistical index models and an assessment of their performances. The study area covers the north of Tehran metropolitan, Iran. When conducting the study, in the first stage, a landslide inventory map with a total of 528 landslide locations was compiled from various sources such as aerial photographs, satellite images, and field surveys. Then, the landslide inventory was randomly split into a testing dataset 70 % (370 landslide locations) for training the models, and the remaining 30 % (158 landslides locations) was used for validation purpose. Twelve landslide conditioning factors such as slope degree, slope aspect, altitude, plan curvature, normalized difference vegetation index, land use, lithology, distance from rivers, distance from roads, distance from faults, stream power index, and slope-length were considered during the present study. Subsequently, landslide susceptibility maps were produced using binary logistic regression (BLR), analytical hierarchy process (AHP), and statistical index (SI) models in ArcGIS. The validation dataset, which was not used in the modeling process, was considered to validate the landslide susceptibility maps using the receiver operating characteristic curves and frequency ratio plot. The validation results showed that the area under the curve (AUC) for three mentioned models vary from 0.7570 to 0.8520 $ ({\text{AUC}}_{\text{AHP}} = 75.70\;\% ,\;{\text{AUC}}_{\text{SI}} = 80.37\;\% ,\;{\text{and}}\;{\text{AUC}}_{\text{BLR}} = 85.20\;\% ) $ ( AUC AHP = 75.70 % , AUC SI = 80.37 % , and AUC BLR = 85.20 % ) . Also, plot of the frequency ratio for the four landslide susceptibility classes of the three landslide susceptibility models was validated our results. Hence, it is concluded that the binary logistic regression model employed in this study showed reasonably good accuracy in predicting the landslide susceptibility of study area. Meanwhile, the results obtained in this study also showed that the statistical index model can be used as a simple tool in the assessment of landslide susceptibility when a sufficient number of data are obtained.  相似文献   

3.
In this study, we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models. We created a geographic information system database, and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth, aerial photographs, and other validated sources. A support vector regression (SVR) machine-learning model was used to divide the landslide inventory into training (70%) and testing (30%) datasets. The landslide susceptibility map was produced using 14 causative factors. We applied the established gray wolf optimization (GWO) algorithm, bat algorithm (BA), and cuckoo optimization algorithm (COA) to fine-tune the parameters of the SVR model to improve its predictive accuracy. The resultant hybrid models, SVR-GWO, SVR-BA, and SVR-COA, were validated in terms of the area under curve (AUC) and root mean square error (RMSE). The AUC values for the SVR-GWO (0.733), SVR-BA (0.724), and SVR-COA (0.738) models indicate their good prediction rates for landslide susceptibility modeling. SVR-COA had the greatest accuracy, with an RMSE of 0.21687, and SVR-BA had the least accuracy, with an RMSE of 0.23046. The three optimized hybrid models outperformed the SVR model (AUC = 0.704, RMSE = 0.26689), confirming the ability of metaheuristic algorithms to improve model performance.  相似文献   

4.
The main objective of this study is to investigate potential application of frequency ratio (FR), weights of evidence (WoE), and statistical index (SI) models for landslide susceptibility mapping in a part of Mazandaran Province, Iran. First, a landslide inventory map was constructed from various sources. The landslide inventory map was then randomly divided in a ratio of 70/30 for training and validation of the models, respectively. Second, 13 landslide conditioning factors including slope degree, slope aspect, altitude, plan curvature, stream power index, topographic wetness index, sediment transport index, topographic roughness index, lithology, distance from streams, faults, roads, and land use type were prepared, and the relationships between these factors and the landslide inventory map were extracted by using the mentioned models. Subsequently, the multi-class weighted factors were used to generate landslide susceptibility maps. Finally, the susceptibility maps were verified and compared using several methods including receiver operating characteristic curve with the areas under the curve (AUC), landslide density, and spatially agreed area analyses. The success rate curve showed that the AUC for FR, WoE, and SI models was 81.51, 79.43, and 81.27, respectively. The prediction rate curve demonstrated that the AUC achieved by the three models was 80.44, 77.94, and 79.55, respectively. Although the sensitivity analysis using the FR model revealed that the modeling process was sensitive to input factors, the accuracy results suggest that the three models used in this study can be effective approaches for landslide susceptibility mapping in Mazandaran Province, and the resultant susceptibility maps are trustworthy for hazard mitigation strategies.  相似文献   

5.
The current study aimed at evaluating the capabilities of seven advanced machine learning techniques(MLTs),including,Support Vector Machine(SVM),Random Forest(RF),Multivariate Adaptive Regression Spline(MARS),Artificial Neural Network(ANN),Quadratic Discriminant Analysis(QDA),Linear Discriminant Analysis(LDA),and Naive Bayes(NB),for landslide susceptibility modeling and comparison of their performances.Coupling machine learning algorithms with spatial data types for landslide susceptibility mapping is a vitally important issue.This study was carried out using GIS and R open source software at Abha Basin,Asir Region,Saudi Arabia.First,a total of 243 landslide locations were identified at Abha Basin to prepare the landslide inventory map using different data sources.All the landslide areas were randomly separated into two groups with a ratio of 70%for training and 30%for validating purposes.Twelve landslide-variables were generated for landslide susceptibility modeling,which include altitude,lithology,distance to faults,normalized difference vegetation index(NDVI),landuse/landcover(LULC),distance to roads,slope angle,distance to streams,profile curvature,plan curvature,slope length(LS),and slope-aspect.The area under curve(AUC-ROC)approach has been applied to evaluate,validate,and compare the MLTs performance.The results indicated that AUC values for seven MLTs range from 89.0%for QDA to 95.1%for RF.Our findings showed that the RF(AUC=95.1%)and LDA(AUC=941.7%)have produced the best performances in comparison to other MLTs.The outcome of this study and the landslide susceptibility maps would be useful for environmental protection.  相似文献   

6.
Landslide susceptibility assessment using GIS has been done for part of Uttarakhand region of Himalaya (India) with the objective of comparing the predictive capability of three different machine learning methods, namely sequential minimal optimization-based support vector machines (SMOSVM), vote feature intervals (VFI), and logistic regression (LR) for spatial prediction of landslide occurrence. Out of these three methods, the SMOSVM and VFI are state-of-the-art methods for binary classification problems but have not been applied for landslide prediction, whereas the LR is known as a popular method for landslide susceptibility assessment. In the study, a total of 430 historical landslide polygons and 11 landslide affecting factors such as slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to rivers, distance to lineaments, and rainfall were selected for landslide analysis. For validation and comparison, statistical index-based methods and the receiver operating characteristic curve have been used. Analysis results show that all these models have good performance for landslide spatial prediction but the SMOSVM model has the highest predictive capability, followed by the VFI model, and the LR model, respectively. Thus, SMOSVM is a better model for landslide prediction and can be used for landslide susceptibility mapping of landslide-prone areas.  相似文献   

7.
Identification of landslides and production of landslide susceptibility maps are crucial steps that can help planners, local administrations, and decision makers in disaster planning. Accuracy of the landslide susceptibility maps is important for reducing the losses of life and property. Models used for landslide susceptibility mapping require a combination of various factors describing features of the terrain and meteorological conditions. Many algorithms have been developed and applied in the literature to increase the accuracy of landslide susceptibility maps. In recent years, geographic information system-based multi-criteria decision analyses (MCDA) and support vector regression (SVR) have been successfully applied in the production of landslide susceptibility maps. In this study, the MCDA and SVR methods were employed to assess the shallow landslide susceptibility of Trabzon province (NE Turkey) using lithology, slope, land cover, aspect, topographic wetness index, drainage density, slope length, elevation, and distance to road as input data. Performances of the methods were compared with that of widely used logistic regression model using ROC and success rate curves. Results showed that the MCDA and SVR outperformed the conventional logistic regression method in the mapping of shallow landslides. Therefore, multi-criteria decision method and support vector regression were employed to determine potential landslide zones in the study area.  相似文献   

8.
The purpose of this study is to evaluate and compare the results of applying the statistical index and the logistic regression methods for estimating landslide susceptibility in the Hoa Binh province of Vietnam. In order to do this, first, a landslide inventory map was constructed mainly based on investigated landslide locations from three projects conducted over the last 10 years. In addition, some recent landslide locations were identified from SPOT satellite images, fieldwork, and literature. Secondly, ten influencing factors for landslide occurrence were utilized. The slope gradient map, the slope curvature map, and the slope aspect map were derived from a digital elevation model (DEM) with resolution 20 × 20 m. The DEM was generated from topographic maps at a scale of 1:25,000. The lithology map and the distance to faults map were extracted from Geological and Mineral Resources maps. The soil type and the land use maps were extracted from National Pedology maps and National Land Use Status maps, respectively. Distance to rivers and distance to roads were computed based on river and road networks from topographic maps. In addition, a rainfall map was included in the models. Actual landslide locations were used to verify and to compare the results of landslide susceptibility maps. The accuracy of the results was evaluated by ROC analysis. The area under the curve (AUC) for the statistical index model was 0.946 and for the logistic regression model, 0.950, indicating an almost equal predicting capacity.  相似文献   

9.
Landslide susceptibility mapping (LSM) is important for catastrophe management in the mountainous regions. They focus on generating susceptibility maps beginning from landslide inventories and considering the main predisposing parameters. The aim of this study was to assess the susceptibility of the occurrence of debris flows in the Zêzere River basin and its surrounding area using logistic regression (LR) and frequency ratio (FR) models. To achieve this, a landslide inventory map was created using historical information, satellite imagery, and extensive field works. One hundred landslides were mapped, of which 75% were randomly selected as training data, while the remaining 25% were used for validating the models. The landslide influence factors considered for this study were lithology, elevation, slope gradient, slope aspect, plan curvature, profile curvature, normalized difference vegetation index (NDVI), distance to roads, topographic wetness index (TWI), and stream power index (SPI). The relationships between landslide occurrence and these factors were established, and the results were then evaluated and validated. Validation results show that both methods give acceptable results [the area under curve (AUC) of success rates is 83.71 and 76.38 for LR and FR, respectively]. Furthermore, the AUC results for prediction accuracy revealed that LR model has the highest predictive performance (AUC of predicted rate?=?80.26). Hence, it is concluded that the two models showed reasonably good accuracy in predicting the landslide susceptibility in the study area. These two models have the potential to aid planners in development and land-use planning and to offer tools for hazard mitigation measures.  相似文献   

10.
Hazards and disasters have always negative impacts on the way of life.Landslide is an overwhelming natural as well as man-made disaster that causes loss of natural resources and human properties throughout theworld.The present study aimed to assess and compare the prediction efficiency of different models in landslide susceptibility in the Kysuca river basin,Slovakia.In this regard,the fuzzy decision-making trial and evaluation laboratory combining with the analytic network process(FDEMATEL-ANP),Na?ve Bayes(NB)classifier,and random forest(RF)classifier were considered.Initially,a landslide inventory map was produced with 2000 landslide and nonlandslide points by randomly dividedwith a ratio of 70%:30%for training and testing,respectively.The geospatial database for assessing the landslide susceptibility was generated with the help of 16 landslide conditioning factors by allowing for topographical,hydrological,lithological,and land cover factors.The ReliefF methodwas considered for determining the significance of selected conditioning factors and inclusion in the model building.Consequently,the landslide susceptibility maps(LSMs)were generated using the FDEMATEL-ANP,Na?ve Bayes(NB)classifier,and random forest(RF)classifier models.Finally,the area under curve(AUC)and different arithmetic evaluation were used for validating and comparing the results and models.The results revealed that random forest(RF)classifier is a promising and optimum model for landslide susceptibility in the study area with a very high value of area under curve(AUC=0.954),lower value of mean absolute error(MAE=0.1238)and root mean square error(RMSE=0.2555),and higher value of Kappa index(K=0.8435)and overall accuracy(OAC=92.2%).  相似文献   

11.
Mehrabi  Mohammad 《Natural Hazards》2022,111(1):901-937

This study deals with landslide susceptibility mapping in the northern part of Lecco Province, Lombardy Region, Italy. In so doing, a valid landslide inventory map and thirteen predisposing factors (including elevation, slope aspect, slope degree, plan curvature, profile curvature, distance to waterway, distance to road, distance to fault, soil type, land use, lithology, stream power index, and topographic wetness index) form the spatial database within geographic information system. The used predictive models comprise a bivariate statistical approach called frequency ratio (FR) and two machine learning tools, namely multilayer perceptron neural network (MLPNN) and adaptive neuro-fuzzy inference system (ANFIS). These models first use landslide and non-landslide records for comprehending the relationship between the landslide occurrence and predisposing factors. Then, landslide susceptibility values are predicted for the whole area. The accuracy of the produced susceptibility maps is measured using area under the curve (AUC) index, according to which, the MLPNN (AUC?=?0.916) presented the most accurate map, followed by the ANFIS (AUC?=?0.889) and FR (AUC?=?0.888). Visual interpretation of the susceptibility maps, FR-based correlation analysis, as well as the importance assessment of predisposing factors, all indicated the significant contribution of the road networks to the crucial susceptibility of landslide. Lastly, an explicit predictive formula is extracted from the implemented MLPNN model for a convenient approximation of landslide susceptibility value.

  相似文献   

12.
The logistic regression and statistical index models are applied and verified for landslide susceptibility mapping in Daguan County, Yunnan Province, China, by means of the geographic information system (GIS). A detailed landslide inventory map was prepared by literatures, aerial photographs, and supported by field works. Fifteen landslide-conditioning factors were considered: slope angle, slope aspect, curvature, plan curvature, profile curvature, altitude, STI, SPI, and TWI were derived from digital elevation model; NDVI was extracted from Landsat ETM7; rainfall was obtained from local rainfall data; distance to faults, distance to roads, and distance to rivers were created from a 1:25,000 scale topographic map; the lithology was extracted from geological map. Using these factors, the landslide susceptibility maps were prepared by LR and SI models. The accuracy of the results was verified by using existing landslide locations. The statistical index model had a predictive rate of 81.02%, which is more accurate prediction in comparison with logistic regression model (80.29%). The models can be used to land-use planning in the study area.  相似文献   

13.
Landslides are natural disasters often activated by interaction of different controlling environmental factors, especially in mountainous terrains. In this research, the landslide susceptibility map was developed for the Sarkhoun catchment using Index of Entropy (IoE) and Dempster–Shafer (DS) models. For this purpose, 344 landslides were mapped in GIS environment. 241 (70%) out of the landslides were selected for the modeling and the remaining (30%) were employed for validation of the models. Afterward, 10 landslide conditioning factor layers were prepared including land use, distance to drainage, slope gradient, altitude, lithology, distance to roads, distance to faults, slope aspect, Topography Wetness Index, and Stream Power Index. The relationship between the landslide conditioning factors and landslide inventory maps was determined using the IoE and DS models. In order to verify the models, the results were compared with validation landslide data not employed in training process of the models. Accordingly, Receiver Operating Characteristic (ROC) curves were applied, and Area Under the Curve (AUC) was calculated for the obtained susceptibility maps using the success (training data) and prediction (validation data) rate curves. The land use was found to be the most important factor in the study area. The AUC are 0.82, and 0.81 for success rates of the IoE, and DS models, respectively, while the prediction rates are 0.76 and 0.75. Therefore, the results of the IoE model are more accurate than the DS model. Furthermore, a satisfactory agreement is observed between the generated susceptibility maps by the models and true location of the landslides.  相似文献   

14.
栗泽桐  王涛  周杨  刘甲美  辛鹏 《现代地质》2019,33(1):235-245
滑坡易发性定量评估是预测滑坡发生空间概率的重要手段,基于统计分析原理的评估方法目前在国内外应用最为广泛,且不同评估方法的对比研究逐渐成为热点。以青海沙塘川流域黄土梁峁区为例,剖析了信息量模型和逻辑回归模型在滑坡易发性评估中的优越性和局限性,并探索提出基于二者的耦合模型。考虑坡度、坡向、起伏度、岩性、与干流距离、与支流距离和植被指数等7个影响因素,对比分析了基于信息量、逻辑回归及二者耦合模型的滑坡易发性评估的技术流程及结果。3种模型的成功率分别为:耦合模型成功率(78. 9%)>信息量模型成功率(71. 8%)>逻辑回归模型成功率(70. 8%)。在沙塘川流域黄土滑坡的易发性评估中,信息量和逻辑回归模型的表现基本相当,但信息量-逻辑回归耦合模型的成功率明显提升。该研究结果可为黄土高原区滑坡易发性定量评估提供借鉴。  相似文献   

15.
This study proposed a hybrid modeling approach using two methods, support vector machines and random subspace, to create a novel model named random subspace-based support vector machines (RSSVM) for assessing landslide susceptibility. The newly developed model was then tested in the Wuning area, China, to produce a landslide susceptibility map. With the purpose of achieving the objective of the study, a spatial dataset was initially constructed that includes a landslide inventory map consisting of 445 landslide regions. Then, various landslide-influencing factors were defined, including slope angle, aspect, altitude, topographic wetness index, stream power index, sediment transport index, soil, lithology, normalized difference vegetation index, land use, rainfall, distance to roads, distance to rivers, and distance to faults. Next, the result of the RSSVM model was validated using statistical index-based evaluations and the receiver operating characteristic curve approach. Then, to evaluate the performance of the suggested RSSVM model, a comparison analysis was performed to other existing approaches such as artificial neural network, Naïve Bayes (NB) and support vector machine (SVM). In general, the performance of the RSSVM model was better than the other models for spatial prediction of landslide susceptibility. The AUC results of the applied models are as follows: RSSVM (AUC = 0.857), followed by MLP (AUC = 0.823), SVM (AUC = 0.814) and NB (AUC = 0.783). The present study indicates that RSSVM can be used for landslide susceptibility evaluation, and the results are very useful for local governments and people living in the Wuning area.  相似文献   

16.
浙西梅雨滑坡易发性评价模型对比   总被引:1,自引:0,他引:1       下载免费PDF全文
我国目前滑坡易发性评价研究主要集中在西南地区,对东南部降雨引发特别是梅雨引发的滑坡研究较少.选取浙江省西北部梅雨控制区淳安县为研究区,通过遥感解译结合野外详细调查,共确定滑坡596处,并建立滑坡编录数据库.选取高程、坡向、坡度、曲率、工程岩组、断层、道路、建设用地、植被等9个滑坡影响因子,基于GIS栅格分析方法,采用人工神经网络(ANN)、logistic回归和信息量3种评价模型,分别对32种不同影响因子组合进行滑坡易发性对比评价,得到滑坡易发性指数图.应用评价曲线下面积AUC(area under curve)对评价结果进行检验,ANN、logistic回归和信息量3种模型的正确率分别是93.75%、89.76%和90.06%;采用淳安县2014年梅汛期发生的13处滑坡作为预测样本,3种模型预测率分别是94.75%、94.33%和77.21%.上述分析结果表明:ANN模型优于其他两者.以ANN模型评价结果指数图为基础进行易发性分区,采用滑坡强度指标进行分区结果检验,滑坡强度值由易发性低、较低、中和高依次递增,说明分区结果合理.研究成果可以为浙西降雨型滑坡特别是由梅雨引发滑坡的易发性评价提供参考.   相似文献   

17.
China is one of the countries where landslides caused the most fatalities in the last decades.The threat that landslide disasters pose to people might even be greater in the future,due to climate change and the increasing urbanization of mountainous areas.A reliable national-scale rainfall induced landslide suscep-tibility model is therefore of great relevance in order to identify regions more and less prone to landslid-ing as well as to develop suitable risk mitigating strategies.However,relying on imperfect landslide data is inevitable when modelling landslide susceptibility for such a large research area.The purpose of this study is to investigate the influence of incomplete landslide data on national scale statistical landslide susceptibility modeling for China.In this context,it is aimed to explore the benefit of mixed effects mod-elling to counterbalance associated bias propagations.Six influencing factors including lithology,slope,soil moisture index,mean annual precipitation,land use and geological environment regions were selected based on an initial exploratory data analysis.Three sets of influencing variables were designed to represent different solutions to deal with spatially incomplete landslide information:Set 1(disregards the presence of incomplete landslide information),Set 2(excludes factors related to the incompleteness of landslide data),Set 3(accounts for factors related to the incompleteness via random effects).The vari-able sets were then introduced in a generalized additive model(GAM:Set 1 and Set 2)and a generalized additive mixed effect model(GAMM:Set 3)to establish three national-scale statistical landslide suscep-tibility models:models 1,2 and 3.The models were evaluated using the area under the receiver operating characteristics curve(AUROC)given by spatially explicit and non-spatial cross-validation.The spatial pre-diction pattern produced by the models were also investigated.The results show that the landslide inven-tory incompleteness had a substantial impact on the outcomes of the statistical landslide susceptibility models.The cross-validation results provided evidence that the three established models performed well to predict model-independent landslide information with median AUROCs ranging from 0.8 to 0.9.However,although Model 1 reached the highest AUROCs within non-spatial cross-validation(median of 0.9),it was not associated with the most plausible representation of landslide susceptibility.The Model 1 modelling results were inconsistent with geomorphological process knowledge and reflected a large extent the underlying data bias.The Model 2 susceptibility maps provided a less biased picture of landslide susceptibility.However,a lower predicted likelihood of landslide occurrence still existed in areas known to be underrepresented in terms of landslide data(e.g.,the Kuenlun Mountains in the northern Tibetan Plateau).The non-linear mixed-effects model(Model 3)reduced the impact of these biases best by introducing bias-describing variables as random effects.Among the three models,Model 3 was selected as the best national-scale susceptibility model for China as it produced the most plausible portray of rainfall induced landslide susceptibility and the highest spatially explicit predictive perfor-mance(median AUROC of spatial cross validation 0.84)compared to the other two models(median AUROCs of 0.81 and 0.79,respectively).We conclude that ignoring landslide inventory-based incomplete-ness can entail misleading modelling results and that the application of non-linear mixed-effect models can reduce the propagation of such biases into the final results for very large areas.  相似文献   

18.
Aykut Akgun 《Landslides》2012,9(1):93-106
The main purpose of this study is to compare the use of logistic regression, multi-criteria decision analysis, and a likelihood ratio model to map landslide susceptibility in and around the city of İzmir in western Turkey. Parameters, such as lithology, slope gradient, slope aspect, faults, drainage lines, and roads, were considered. Landslide susceptibility maps were produced using each of the three methods and then compared and validated. Before the modeling and validation, the observed landslides were separated into two groups. The first group was for training, and the other group was for validation steps. The accuracy of models was measured by fitting them to a validation set of observed landslides. For validation process, the area under curvature (AUC) approach was applied. According to the AUC values of 0.810, 0.764, and 0.710 for logistic regression, likelihood ratio, and multi-criteria decision analysis, respectively, logistic regression was determined to be the most accurate method among the other used landslide susceptibility mapping methods. Based on these results, logistic regression and likelihood ratio models can be used to mitigate hazards related to landslides and to aid in land-use planning.  相似文献   

19.
Landslide-related factors were extracted from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, and integrated techniques were developed, applied, and verified for the analysis of landslide susceptibility in Boun, Korea, using a geographic information system (GIS). Digital elevation model (DEM), lineament, normalized difference vegetation index (NDVI), and land-cover factors were extracted from the ASTER images for analysis. Slope, aspect, and curvature were calculated from a DEM topographic database. Using the constructed spatial database, the relationships between the detected landslide locations and six related factors were identified and quantified using frequency ratio (FR), logistic regression (LR), and artificial neural network (ANN) models. These relationships were used as factor ratings in an overlay analysis to create landslide susceptibility indices and maps. Three landslide susceptibility maps were then combined and applied as new input factors in the FR, LR, and ANN models to make improved susceptibility maps. All of the susceptibility maps were verified by comparison with known landslide locations not used for training the models. The combined landslide susceptibility maps created using three landslide-related input factors showed improved accuracy (87.00% in FR, 88.21% in LR, and 86.51% in ANN models) compared to the individual landslide susceptibility maps (84.34% in FR, 85.40% in LR, and 74.29% in ANN models) generated using the six factors from the ASTER images.  相似文献   

20.
为有效预测县域滑坡发生的空间概率,探索不同统计学耦合模型滑坡易发性定量评价结果的合理性和精度,以四川省普格县为研究对象。选取坡度、坡向、高程、工程地质岩组、断层和斜坡结构等6项孕灾因子作为评价指标体系,基于信息量模型(I)、确定性系数模型(CF)、证据权模型(WF)、频率比模型(FR)分别与逻辑回归模型(LR)耦合开展滑坡易发性评价。结果表明:各耦合模型评价结果和易发程度区划均是合理的,极高易发区主要分布于则木河、黑水河河谷两侧斜坡带,面积介于129.04~183.43 km2(占比6.77%~9.62%),各模型评价精度依次为WF-LR模型(AUC=0.869)>I-LR模型(AUC=0.868)>CF-LR模型(AUC=0.866)>NFR-LR模型(AUC=0.858)。研究成果可为川西南山区县域滑坡易发性定量评估提供重要参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号