首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The recently refurbished Ooty Radio Telescope in southern India was used in a two-month campaign of interplanetary scintillation (IPS) observations in collaboration with the Cambridge IPS array in England during April–May 1992. The unique feature of this campaign was that, for the first time, scintillation enhancements were predicted in real time by observing solar events on 7–8 May, 1992 and then detected at both Ooty and Cambridge. Also, for the first time, high spatial resolution ( 100 sources sr–1) solar wind all-sky velocity maps were obtained at Ooty. Good consistency is found between the IPS observations from both observatories andin-situ shocks detected at Earth by IMP-8.Yohkoh soft X-ray images were used to infer the generation of a coronal mass ejection on 7 May, 1992.  相似文献   

2.
We have carried out a program of continuous Interplanetary Scintillation (IPS) monitoring of the interplanetary activity using Ooty Radio Telescope (ORT). From May 1990 to March 1991, during the 22nd, solar maximum, a few radio sources were monitored to provide long stretches of IPS data with a high-time resolution of few minutes. These observations covered 0.3 to 0.8 AU region (12° to 70° elongations) around the sun at several heliographic latitudes. During the observation, we detected 33 short-time scale IPS events which had significant variation in the scintillation index and solar wind velocity. These were considered to be due to travelling interplanetary disturbances.A multi-component model of plasma density enhancement was developed to estimate the geometry and physical properties of these IPS events. Detailed analysis of 20 of these events suggests, 1. fast IPS events were interplanetary signatures of Coronal Mass Ejections (CMEs), 2. the average mass and energy of these events was 1016 gm and 1033 erg respectively,3. 80% of IPS events were associated with X-ray flares on the sun and 50% were associated with geomagnetic activity at earth. Detailed study of the multicomponent model suggests IPS observations at smaller elongations (hence at higher radio frequencies) are more suited to detect fast-moving interplanetary disturbances such as produced by CMEs.  相似文献   

3.
Based on the advance predictions of two flare-generated shock fronts, obtained from the Space Environment Centre (SEC, NOAA, Boulder), observations of interplanetary scintillation (IPS) were carried out with the Ooty Radio Telescope (ORT) on a grid of appropriately located sources during the period 31 October to 5 November, 1992. Solar wind velocities were derived by fitting model spectra to the observed spectra and two travelling interplanetary disturbances were detected. Both disturbances were traced back to an active region on the Sun which was located close to a large coronal hole. The roles of flares and coronal holes in producing such disturbances are examined and it is shown that in the present case both the coronal hole and the active region probably played key roles in generating the two IPS disturbances.Currently on a Humboldt Fellowship at the Radioastronomisches Institut, D-53173, Bonn.  相似文献   

4.
Interplanetary scintillation measurements obtained inside 200 R using the Ooty Radio Telescope during August 1986–April 1991 have been analysed to study the interplanetary disturbances (or events) and their occurrence rates at various phases of the solar cycle. The disturbances are identified by the increase in the level of scintillation compared with the expected value. In total, 735 events have been identified. The results show a rate of 0.49 events per day near solar maximum and a low rate of 0.16 events per day during minimum of activity. The results are compared with coronal mass ejection (CME) rates and transients rates obtained from the Doppler scintillation measurements.  相似文献   

5.
In this paper, we review the results of interplanetary scintillation (IPS) observations made with the legacy system of the Ooty Radio Telescope (ORT) and compare them with the possibilities opened by the upgraded ORT, the Ooty Wide Field Array (OWFA). The stability and the sensitivity of the legacy system of ORT allowed the regular monitoring of IPS on a grid of large number of radio sources and the results of these studies have been useful to understand the physical processes in the heliosphere and space weather events, such as coronal mass ejections, interaction regions and their propagation effects. In the case of OWFA, its wide bandwidth of 38 MHz, the large field-of-view of ~27° and increased sensitivity provide a unique capability for the heliospheric science at 326.5 MHz. IPS observations with the OWFA would allow one to monitor more than 5000 sources per day. This, in turn, will lead to much improved studies of space weather events and solar wind plasma, overcoming the limitations faced with the legacy system. We also highlight some of the specific aspects of the OWFA, potentially relevant for the studies of coronal plasma and its turbulence characteristics.  相似文献   

6.
P. K. Manoharan 《Solar physics》2010,265(1-2):137-157
In this paper, I investigate the three-dimensional evolution of solar wind density and speed distributions associated with coronal mass ejections (CMEs). The primary solar wind data used in this study has been obtained from the interplanetary scintillation (IPS) measurements made at the Ooty Radio Telescope, which is capable of measuring scintillation of a large number of radio sources per day and solar wind estimates along different cuts of the heliosphere that allow the reconstruction of three-dimensional structures of propagating transients in the inner heliosphere. The results of this study are: i) three-dimensional IPS images possibly show evidence for the flux-rope structure associated with the CME and its radial size evolution; the overall size and features within the CME are largely determined by the magnetic energy carried by the CME. Such a magnetically energetic CME can cause an intense geomagnetic storm, even if the trailing part of the CME passes through the Earth; ii) IPS measurements along the radial direction of a CME at ~?120 R show density turbulence enhancements linked to the shock ahead of the CME and the core of the CME. The density of the core decreases with distance, suggesting the expansion of the CME. However, the density associated with the shock increases with distance from the Sun, indicating the development of a strong compression at the leading edge of the CME. The increase of stand-off distance between ~?120 R and 1 AU is consistent with the deceleration of the CME and the continued outward expansion of the shock. The key point in this study is that the magnetic energy possessed by the transient determines its radial evolution.  相似文献   

7.
Gothoskar  Pradeep  Rao  A.P. 《Solar physics》1999,185(2):361-390
Scattering of radio waves by density fluctuations in the solar wind leads to rapid variation in the intensity of compact radio sources. This phenomenon, known as Interplanetary Scintillation (IPS), provides a simple method to study interplanetary activity in the inner heliosphere. During the solar maximum of cycle 22, we carried out extensive, high-time-resolution IPS observations of fast moving interplanetary plasma clouds (IPCs). The observations were done using the Ooty Radio Telescope (ORT) and covered the region between 0.2 AU and 0.8 AU around the Sun. We detected 33 IPCs having velocities of 600 to 1400 km s–1. A two-component model of scattering by time-varying solar wind was developed to analyse these IPCs. The model enabled us to estimate the mass, energy and geometry of each disturbance and to associate them with solar-geomagnetic activity.Detailed analysis suggests that these IPCs were interplanetary signatures of massive and energetic Solar Mass Ejections (SMEs). The SMEs were found to have average mass and kinetic energy of 5.3×1016 g, 2.4×1032 ergs. The average span and width of the SME was found to be 42° and 8×106 km. Association of these disturbances with solar-geomagnetic activity shows that about 80% of them are associated with Long-Duration X-ray Events (LDXE) and Solar Mass Ejections (SMEs). Only 50% of the events were associated with geomagnetic activity. The present experiment has demonstrated that continuous IPS monitoring is an effective technique to detect mass ejections in the interplanetary medium and to study their evolution through the inner heliosphere.  相似文献   

8.
We present an extension of the Tappin?–?Howard (TH) phenomenological model (Tappin and Howard, Space Sci. Rev. 147, 55, 2009) for coronal mass ejection reconstruction to use interplanetary scintillation g-map data. The necessary changes to the model are discussed. We then use the modified model to reconstruct two major interplanetary disturbances observed using the Cambridge 3.6 ha Array in September 1980. We find that despite the lower cadence of IPS observations compared with white-light imagers, a consistent reconstruction can be generated which is in agreement with in-situ measurements and solar observations.  相似文献   

9.
This paper reports on the first combination of results from in-situ plasma measurements at Venus, using data from Venus Express, and remote sensing data from observations of interplanetary scintillation (IPS). In so doing, we demonstrate the value of combining remote sensing and in-situ techniques for the purpose of investigating interaction between solar wind, under several different conditions, and the Venusian magnetosphere. The ion mass analyser instrument (IMA) is used to investigate solar wind interaction with the Venusian magnetosphere in the presence of two different solar wind phenomena; a co-rotating interaction region (CIR) and a coronal mass ejection (CME). The CIR, detected with IPS and sampled in-situ at Venus is found to dramatically affect upstream solar wind conditions. These case studies demonstrate how combining results from these different data sources can be of considerable value when investigating such phenomena.  相似文献   

10.
太阳风行星际闪烁(interplanetary scintillation,IPS)研究在太阳物理,日地空间物理和空间天气学研究中具有重要科学意义,经过近30年重点研究太阳风后,从90年代初开始,IPS研究在太阳风与日球观测的对比分析、行星际扰动与地磁活动预报,观测数据的层析分析三方面都取得了新的进展。  相似文献   

11.
Coronal Mass Ejections (CMEs) are important phenomena in coronal dynamics causing interplanetary signatures (ICMEs). They eject large amounts of mass and magnetic fields into the heliosphere, causing major geomagnetic storms and interplanetary shocks. Geomagnetic storms are often characterized by abrupt increases in the northward component of the earth’s field, called sudden commencements (SSC) followed by large decreases of the magnetic field and slow recovery to normal values. The SSCs are well correlated with IP shocks. Here a case study of 10–15 February 2000 and also the statistical study of CME events observed by IPS array, Rajkot, during the years 2000 to 2003 and Radio Astronomy Center, Ooty are described. The geomagnetic storm index Dst, which is a measure of geo-effectiveness, is shown to be well correlated with normalized scintillation index ‘g’, derived from Ooty Radio Telescope (ORT) observations.  相似文献   

12.
Outflow of slow solar wind from solar active regions has been reported in recent years by many different authors. Therefore, in this paper we have studied synoptic maps of the solar wind density (SWD) based on interplanetary scintillation (IPS) data for available parts of all the years 1991–1994 and 1997–2001 to verify correlations of maxima in SWD with sources in active regions. We have found convincing evidence that eruptive flares in active regions, and thus X-ray long-decay events (LDEs) in general, can produce short-lived enhancements of the SWD. However, we were not able to get statistically convincing evidence that active regions can be permanent sources of slow solar wind, and propose three possible reasons for this negative result.  相似文献   

13.
The ground-based radio astronomy method of interplanetary scintillations (IPS) and spacecraft observations have shown, in the past 25 years, that while coronal holes give rise to stable, reclining high speed solar wind streams during the minimum of the solar activity cycle, the slow speed wind seen more during the solar maximum activity is better associated with the closed field regions, which also give rise to solar flares and coronal mass ejections (CME’s). The latter events increase significantly, as the cycle maximum takes place. We have recently shown that in the case of energetic flares one may be able to track the associated disturbances almost on a one to one basis from a distance of 0.2 to 1 AU using IPS methods. Time dependent 3D MHD models which are constrained by IPS observations are being developed. These models are able to simulate general features of the solar-generated disturbances. Advances in this direction may lead to prediction of heliospheric propagation of these disturbances throughout the solar system.  相似文献   

14.
Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of enhanced density turbulence in the interplanetary medium driven by the high-speed flows of low-density plasma trailing behind for several days. Here, an attempt has been made to investigate the solar cause of erupting stream disturbances, mapped by Hewish & Bravo (1986) from interplanetary scintillation (IPS) measurements made between August 1978 and August 1979 at 81.5 MHz. The position of the sources of 68 erupting stream disturbances on the solar disk has been compared with the locations of newborn coronal holes and/or the areas that have been coronal holes previously. It is found that the occurrence of erupting stream disturbances is linked to the emergence of new coronal holes at the eruption site on the solar disk. A coronal hole is indicative of a radial magnetic field of a predominant magnetic polarity. The newborn coronal hole emerges on the Sun, owing to the changes in magnetic field configuration leading to the opening of closed magnetic structure into the corona. The fundamental activity for the onset of an erupting stream seems to be a transient opening of pre-existing closed magnetic structures into a new coronal hole, which can support highspeed flow trailing behind the compression zone of the erupting stream for several days.  相似文献   

15.
Interplanetary Scintillation (IPS) allows observation of the inner heliospheric response to corotating solar structures and coronal mass ejections (CMEs) in scintillation level and velocity. With colleagues at STELab, Nagoya University, Japan, we have developed near-real-time access of STELab IPS data for use in space-weather forecasting. We use a 3D reconstruction technique that produces perspective views from solar corotating plasma and outward-flowing solar wind as observed from Earth by iteratively fitting a kinematic solar wind model to IPS observations. This 3D modeling technique permits reconstruction of the density and velocity structure of CMEs and other interplanetary transients at a relatively coarse resolution: a solar rotational cadence and 10° latitudinal and longitudinal resolution for the corotational model and a one-day cadence and 20° latitudinal and longitudinal heliographic resolution for the time-dependent model. This technique is used to determine solar-wind pressure (“ram” pressure) at Mars. Results are compared with ram-pressure observations derived from Mars Global Surveyor magnetometer data (Crider et al. 2003, J. Geophys. Res. 108(A12), 1461) for the years 1999 through 2004. We identified 47 independent in situ pressure-pulse events above 3.5 nPa in the Mars Global Surveyor data in this time period where sufficient IPS data were available. We detail the large pressure pulse observed at Mars in association with a CME that erupted from the Sun on 27 May 2003, which was a halo CME as viewed from Earth. We also detail the response of a series of West-limb CME events and compare their response observed at Mars about 160° west of the Sun – Earth line by the Mars Global Surveyor with the response derived from the IPS 3D reconstructions.  相似文献   

16.
We have been carrying out solar wind measurements using the interplanetary scintillation (IPS) method. Our IPS observation system is operated at a frequency of 327MHz and consists of four stations located at Toyokawa, Fuji, Sugadaira and Kiso. The present system, however, has insufficient sensitivity to measure enough IPS sources for observing the solar wind with adequate spatial and temporal resolution. Therefore we have been excuting the upgrade project since 1994 in order to observe a larger number of compact radio sources. The Fuji system has been improved successfully and has achieved sensitivity by a factor over five compared with the previous system. The upgrade project is now in progress for the Toyokawa and Sugadaira station.  相似文献   

17.
The technique of interplanetary scintillation (IPS) is the observation of rapid fluctuations of the radio signal from an astronomical compact source as the signal passes through the ever-changing density of the solar wind. Cross-correlation of simultaneous observations of IPS from a single radio source, received at multiple sites of the European Incoherent SCATter (EISCAT) radio antenna network, is used to determine the velocity of the solar wind material passing over the lines of sight of the antennas. Calculated velocities reveal the slow solar wind to contain rapid velocity variations when viewed on a time-scale of several minutes. Solar TErrestrial RElations Observatory (STEREO) Heliospheric Imager (HI) observations of white-light intensity have been compared with EISCAT observations of IPS to identify common density structures that may relate to the rapid velocity variations in the slow solar wind. We have surveyed a one-year period, starting in April 2007, of the EISCAT IPS observing campaigns beginning shortly after the commencement of full science operations of the STEREO mission in a bid to identify common density structures in both EISCAT and STEREO HI datasets. We provide a detailed investigation and presentation of joint IPS/HI observations from two specific intervals on 23 April 2007 and 19 May 2007 for which the IPS P-Point (point of closest approach of the line of sight to the Sun) was between 72 and 87 solar radii out from the Sun’s centre. During the 23 April interval, a meso-scale (of the order of 105 km or larger) transient structure was observed by HI-1A to pass over the IPS ray path near the P-Point; the observations of IPS showed a micro-scale structure (of the order of 102 km) within the meso-scale transient. Observations of IPS from the second interval, on 19 May, revealed similar micro-scale velocity changes, however, no transient structures were detected by the HIs during that period. We also pose some fundamental thoughts on the slow solar wind structure itself.  相似文献   

18.
We use dual-site radio observations of interplanetary scintillation (IPS) with extremely long baselines (ELB) to examine meridional flow characteristics of the ambient fast solar wind at plane-of-sky heliocentric distances of 24?–?85 solar radii (R ). Our results demonstrate an equatorwards deviation of 3?–?4° in the bulk fast solar wind flow direction over both northern and southern solar hemispheres during different times in the declining phase of Solar Cycle 23.  相似文献   

19.
This paper presents the average three-dimensional configuration of solar flare- or disappearing filament-associated interplanetary disturbances on the basis of IPS (interplanetary scintillation) and spacecraft observations in 1978–1981. The angular distribution of the propagation speed at 1 AU is largely isotropic over the range of 110° in solar longitude centered at the normal of the solar source. In the latitudinal direction, the characteristic angular extent is about 60°. Thus the three-dimensional shape of an interplanetary disturbance can be approximated by a half of an ellipsoid having an axial ratio of about 1.8.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

20.
Balachandran  Bala 《Solar physics》2000,195(1):195-208
Since the 1970s, the Solar-Terrestrial Environment Laboratory, Japan, has been publishing synoptic maps of solar wind velocity prepared using the technique of interplanetary scintillation. These maps, known as V-maps, are useful to study the global distribution of solar wind in the heliosphere. As the Earth-orbiting satellites are unable to probe regions outside the ecliptic, it is important to exploit the scope of interplanetary scintillation to study the solar wind properties at these regions and their relation with coronal features. It has been shown by Wang and Sheeley that there exists an inverse correlation between rate of magnetic flux expansion and the solar wind velocity. The NOAA/Space Environment Center daily updated version of the Wang and Sheeley model has been used to produce synoptic maps of solar wind velocity and magnetic field polarity for individual Carrington rotations. The predictions of the model at 1 AU have been found to be in good agreement with the observed values of the same. The present work is a comparison of the synoptic maps on the source surface using the interplanetary scintillation measurements from Japan and the NOAA/SEC version of the Wang and Sheeley model. The two results agree near the equatorial regions and the slow solar wind locations are consistent most of the times. However, at higher latitudes within ±60°, the wind velocities differ considerably. In the Wang and Sheeley model the highest speed obtained is 600 km s–1 whereas in the IPS results velocities as high as 800 km s–1 have been detected. The paper discusses the possible causes for this discrepancy and suggestion to improve the agreement between the two results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号