首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During a 4-year period starting in July 1996 and using intervals ranging from 3 days to 4 years, four precise polar motion (PM) series have been compared to excitation by atmospheric angular momentum (AAM) augmented with oceanic angular momentum (OAM) data. The first three series (C03, C04 and Bulletin A) are multi-technique combinations generated by the International Earth Rotation and Reference Systems Service (IERS) and the fourth combined series (IGS00P02) is produced by the International GPS Service (IGS) using only GPS data. The IGS PM compared the best with the combined excitations of atmosphere and oceans (AAM+OAM) at all intervals, showing high overall correlation of 0.8–0.9. Even for the interval of only three days, the IGS PM gave a significant correlation of about 0.6. Moreover, during the interval of February 1999 – July 2000, which should be representative of the current precision of the IGS PM, a significant correlation (>0.4) extended to periods as short as 2.2 days and 2.5 days for the xp and yp PM components, respectively. When using the IERS Bulletin B (C04) PM and an interval of almost 6 years, starting in November 1994, the combined OAM+AAM accounted for practically all the annual, semi-annual and Chandler wobble (CW) PM signals. When only AAM was used, either the US National Centers for Environment Prediction reanalysis data, which were used throughout this study, or the Japanese Meteorological Agency data, two large and well-resolved amplitude peaks of about 0.1 mas/day, remained at the retrograde annual and CW periods.  相似文献   

2.
 The annual and semiannual residuals derived in the axial angular momentum budget of the solid Earth–atmosphere system reflect significant signals. They must be caused by further excitation sources. Since, in particular, the contribution for the wind term from the atmospheric layer between the 10 and 0.3 hPa levels to the seasonal variations in length of day (LOD) is still missing, it is necessary to extend the top level into the upper stratosphere up to 0.3 hPa. Under the conservation of the total angular momentum of the entire Earth, variations in the oceanic angular momentum (OAM) and the hydrological angular momentum (HAM) are further significant excitation sources at seasonal time scales. Focusing on other contributions to the Earth's axial angular momentum budget, the following data are used in this study: axial atmospheric angular momentum (AAM) data derived for the 10–0.3 hPa layer from 1991 to 1997 for computing the missing wind effects; axial OAM functions as generated by oceanic general circulation models (GCMs), namely for the ECHAM3 and the MICOM models, available from 1975 to 1994 and from 1992 to 1994, respectively, for computing the oceanic contributions to LOD changes, and, concerning the HAM variations, the seasonal estimates of the hydrological contribution as derived by Chao and O'Connor [(1988) Geophys J 94: 263–270]. Using vector representation, it is shown that the vectors achieve a close balance in the global axial angular momentum budget within the estimated uncertainties of the momentum quantities on seasonal time scales. Received: 6 April 2000 / Accepted: 13 December 2000  相似文献   

3.
Contribution of new AAM data source to δLOD excitation   总被引:1,自引:0,他引:1  
N. Yu  D. Zheng  H. Wu 《Journal of Geodesy》1999,73(8):385-390
Data sets of the changes of the length of day (ΔLOD) measured by space geodetic techniques and of the atmospheric angular momentum (AAM) derived from global meteorological data by the National Meteorological Center (NMC) and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) are used to reanalyze and study the excitations of ΔLOD, and to examine and compare the contribution of each AAM series to ΔLOD. The main results are as follows. 1. The AAM reanalyzed with the assimilated global meteorological data by NCEP/NCAR are more accurate and have lower noise than the original AAM derived by NMC. The NCEP/NCAR-based AAM is more consistent with the changes of the length-of-day series. 2. The NCEP reanalysed AAM data may better explain the non-tidal LOD variations on intraseasonal to interannual time scales, especially on the quasi-biennial time scale. The atmosphere cannot, however, explain all LOD variations; other excitation sources are possible. 3. The effects of atmosphere on the estimated values of tides for ΔLOD components up to a month are weak. The preliminary results of the annual and semiannual tides can be estimated after removing the effects of atmosphere from ΔLOD. Received: 27 May 1998 / Accepted: 22 March 1999  相似文献   

4.
The atmosphere induces variations in Earth rotation. These effects are classically computed using the “angular momentum approach”. In this method, the variations in Earth rotation are estimated from the variations in the atmospheric angular momentum (AAM). Several AAM time-series are available from different meteorological centers. However, the estimation of atmospheric effects on Earth rotation differs when using one atmospheric model or the other. The purpose of this work is to build an objective criterion that justifies the use of one series in particular. Because the atmosphere is not the only cause of Earth rotation variations, this criterion cannot rely only on a comparison of AAM series with geodetic data. Instead, we determine the quality of each series by making an estimation of their noise level, using a generalized formulation of the “three-cornered hat method”. We show the existence of a link between the noise of the AAM series and their correlation with geodetic data: a noisy series is usually less correlated with Earth orientation data. As the quality of the series varies in time, we construct a combined AAM series, using time-dependent weights chosen so that the noise level of the combined series is minimal. To determine the influence of a minimal noise level on the correlation with geodetic data, we compute the correlation between the combined series and Earth orientation data. We note that the combined series is always amongst the best correlated series, which confirms the link established before. The quality criterion, while totally independent of Earth orientation observations, appears to be physically convincing when atmospheric and geodetic data are compared  相似文献   

5.
 On the basis of the data series of the length of day (LOD), the atmospheric angular momentum (AAM) and the Southern Oscillation Index (SOI) for January 1970–June 1999, the relationship among Interannual LOD, AAM, and the EL Ni?o/Southern Oscillation (ENSO) is analyzed by the wavelet transform method. The results suggest that they have similar time-varying spectral structures. The signals of 1997–98 El Ni?o and 1998–99 La Ni?a events can be detected from the LOD or AAM data. Received: 25 January 2000 / Accepted: 9 January 2001  相似文献   

6.
Because the tide-raising potential is symmetric about the Earth’s polar axis it can excite polar motion only by acting upon non-axisymmetric features of the Earth like the oceans. In fact, after removing atmospheric and non-tidal oceanic effects, polar motion excitation observations show a strong fortnightly tidal signal that is not completely explained by existing dynamical and empirical ocean tide models. So a new empirical model for the effect of the termensual (Mtm and mtm), fortnightly (Mf and mf), and monthly (Mm) tides on polar motion is derived here by fitting periodic terms at these tidal frequencies to polar motion excitation observations that span 2 January 1980 to 8 September 2006 and from which atmospheric and non-tidal oceanic effects have been removed. While this new empirical tide model can fully explain the observed fortnightly polar motion excitation signal during this time interval it would still be desirable to have a model for the effect of long-period ocean tides on polar motion that is determined from a dynamical ocean tide model and that is therefore independent of polar motion observations.  相似文献   

7.
Recently, effective atmospheric-angular-momentum (AAM) functions as calculated from National Centers for Environmental Prediction (NCEP) (formerly National Meteorological Center, NMC) and National Center for Atmospheric Research (NCAR) Reanalyses have become available for the years 1958 to 1998. Concerning the wind terms, the top level in the atmosphere used here is 10 hPa. Compared with earlier NMC model versions, which incorporate wind fields up to 100 hPa since 1976 and up to 50 hPa since 1981, the reanalyses have produced improved data series over a longer period than before. The axial AAM component χ3 is associated with changes in length of day (LOD). Motivated by better quality and continuity of the series AAM (NCEP) Reanalysis, the problem of the seasonal imbalances in the solid Earth–atmosphere axial angular momentum budget is re-examined. To assess better the estimates of the annual and semiannual oscillations in LOD and AAM and of the residual oscillations derived as difference series between LOD and AAM, the series of LOD data from three analysis centers [International Earth Rotation Service (IERS), GeoForschungZentrum Potsdam (GFZ) and Jet Propulsion Laboratory Pasadena (JPL)] and of AAM data in terms of χ3(W), χ3(P) and χ3(P+IB) from four meteorological centers [NCEP, Japan Meteorological Agency (JMA), European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Meteorological Office (UKMO)] are used in this study. The main analysis steps were removing gaps, filtering out the seasonal oscillations, calculating optimal estimates of the parameters of the oscillations and calculating the difference series between the LOD and AAM systems as well as the residuals in the axial angular momentum budget in the LOD–AAM systems. The results derived as difference series between the different LOD, AAM and LOD–AAM systems show to what extent the variations reflect systematic differences and significant signals, respectively, which is important for future activities in this field. Received: 2 February 1999 / Accepted: 30 November 1999  相似文献   

8.
IGS Earth Rotation Parameters   总被引:1,自引:0,他引:1  
Since its official start in January 1994, the International GPS Service (IGS) has been distributing, as part of its product combination, two distinct Earth rotation parameter (ERP) series: the IGS Rapid series and the IGS Final series. Initially, the IGS Rapid ERP values were interpolations of the International Earth Rotation Service (IERS) Bulletin A, whereas the IGS Final ERP series was based on the IERS Bulletin B. Since June 1996, the IGS has been generating its own Final ERP series consistent with the IGS combined orbit products and based on weighted means of individual IGS analysis center (AC) solutions. At first, only the polar motion (PM) coordinates and their rates were combined. Length of Day (LOD) and Universal Time (UT) solutions, also based on separate weighted mean combinations, followed in March 1997. Currently, the IGS Rapid and Final combinations are produced and made available within 17 hours and 11 days, respectively, after the last observation. Both IGS and the best AC series are consistent and precise at the 0.1-milliarcsecond (mas) level for PM and at about 30 μs for LOD. Biases in some AC solutions may exceed these consistency levels. Comparisons of both IGS ERP series with external standards, such as the IERS multitechnique Bulletins and atmospheric angular momentum series, confirm the estimated precisions. ? 1999 John Wiley & Sons, Inc.  相似文献   

9.
吴斌 《测绘学报》2001,30(1):6-9
本根据现代空间技术测定地球引力场变化的进展,提出了用实测的地球自转参数和实测的低阶重力场变化结合的方法以研究地球角动量变化。其突出的优点是可以使引起地球角动量变化的质量项和速度场项解耦,使原来较复杂的问题简化。作为本提出的方法的实例,我们用Lageos-1和Lageos-2两颗卫星的SLR资料求解ΔC20,计算出ΔLOD序列,与(ΔLOD-Wind)残差序列相比,有较好的一致性,显示出本方法的有效性。  相似文献   

10.
This article presents the application of a multivariate prediction technique for predicting universal time (UT1–UTC), length of day (LOD) and the axial component of atmospheric angular momentum (AAM χ 3). The multivariate predictions of LOD and UT1–UTC are generated by means of the combination of (1) least-squares (LS) extrapolation of models for annual, semiannual, 18.6-year, 9.3-year oscillations and for the linear trend, and (2) multivariate autoregressive (MAR) stochastic prediction of LS residuals (LS + MAR). The MAR technique enables the use of the AAM χ 3 time-series as the explanatory variable for the computation of LOD or UT1–UTC predictions. In order to evaluate the performance of this approach, two other prediction schemes are also applied: (1) LS extrapolation, (2) combination of LS extrapolation and univariate autoregressive (AR) prediction of LS residuals (LS + AR). The multivariate predictions of AAM χ 3 data, however, are computed as a combination of the extrapolation of the LS model for annual and semiannual oscillations and the LS + MAR. The AAM χ 3 predictions are also compared with LS extrapolation and LS + AR prediction. It is shown that the predictions of LOD and UT1–UTC based on LS + MAR taking into account the axial component of AAM are more accurate than the predictions of LOD and UT1–UTC based on LS extrapolation or on LS + AR. In particular, the UT1–UTC predictions based on LS + MAR during El Niño/La Niña events exhibit considerably smaller prediction errors than those calculated by means of LS or LS + AR. The AAM χ 3 time-series is predicted using LS + MAR with higher accuracy than applying LS extrapolation itself in the case of medium-term predictions (up to 100 days in the future). However, the predictions of AAM χ 3 reveal the best accuracy for LS + AR.  相似文献   

11.
The polar motion excited by the fluctuation of global atmospheric angular momentum (AAM) is investigated. Based on the global AAM data, numerical results demonstrate that the fluctuation of AAM can excite the seasonal wobbles (e.g., the 18-month wobble) and the Chandler wobble, which agree well with previous studies. In addition, by filtering the dominant low frequency components, some distinct polar wobbles corresponding to some great diurnal and semi-diurnal atmospheric tides are found.  相似文献   

12.
The polar motion excited by the fluctuation of global atmospheric angular momentum (AAM) is investigated. Based on the global AAM data, numerical results demonstrate that the fluctuation of AAM can excite the seasonal wobbles (e.g., the 18-month wobble) and the Chandler wobble, which agree well with previous studies. In addition, by filtering the dominant low frequency components, some distinct polar wobbles corresponding to some great diurnal and semi-diurnal atmospheric tides are found.  相似文献   

13.
14.
A 29-year time-series of four-times-daily atmospheric effective angular momentum (EAM) estimates is used to study the atmospheric influence on nutation. The most important atmospheric contributions are found for the prograde annual (77 μas), retrograde annual (53 as), prograde semiannual (45 as), and for the constant offset of the pole (δψsinɛ0=−86 as, δɛ=77 as). Among them only the prograde semiannual component is driven mostly by the wind term of the EAM function, while in all other cases the pressure term is dominant. These are nonnegligible quantities which should be taken into account in the new theory of nutation. Comparison with the VLBI corrections to the IAU 1980 nutation model taking into account the ocean tide contribution yields good agreement for the prograde annual and semiannual nutations. We also investigated time variability of the atmospheric contribution to the nutation amplitudes by performing the sliding-window least-squares analysis of both the atmospheric excitation and VLBI nutation data. Almost all detected variations of atmospheric origin can be attributed to the pressure term, the biggest being the in-phase annual prograde component (about 30 as) and the retrograde one (as much as 100200 as). These variations, if physical, limit the precision of classical modeling of nutation to the level of 0.1 mas. Comparison with the VLBI data shows significant correlation for the retrograde annual nutation after 1989, while for the prograde annual term there is a high correlation in shape but the size of the atmospherically driven variations is about three times less than deduced from the VLBI data. This discrepancy in size can be attributed either to inaccuracy of the theoretical transfer function or the frequency-dependent ocean response to the pressure variations. Our comparison also yields a considerably better agreement with the VLBI nutation data when using the EAM function without the IB correction for ocean response, which indicates that this correction is not adequate for nearly diurnal variations. Received: 10 September 1997 / Accepted: 5 March 1998  相似文献   

15.
 The solutions of the CODE Analysis Center submitted to the IGS, the International Global Position System (GPS) Service for Geodynamics, are based on three days of observation of about 80–100 stations of the IGS network. The Earth rotation parameters (ERPs) are assumed to vary linearly over the three days with respect to an a priori model. Continuity at the day boundaries as well as the continuity of the first derivatives are enforced by constraints. Since early April 1995 CODE has calculated a new ERP series with an increased time resolution of 2 hours. Again continuity is enforced at the 2-hours-interval boundaries. The analysis method is described, particularly how to deal with retrograde diurnal terms in the ERP series which may not be estimated with satellite geodetic methods. The results obtained from the first year of data covered by the time series (time interval from 4 April 1995 to 30 June 1996) are also discussed. The series is relatively homogeneous in the sense of the used orbit model and the a priori model for the ERPs. The largest source of excitation at daily and sub-daily periods is likely to be the effect of the ocean tides. There is good agreement between the present results and Topex/Poseidon ocean tide models, as well as with models based on Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) data. Non-oceanic periodic variations are also observed in the series. Their origin is most probably a consequence of the GPS solution strategy; other possible sources are the atmospheric tides. Received: 13 July 1999 / Accepted: 21 March 2000  相似文献   

16.
Using the ΔT (integrated variation of the Earth's rotation measured in terestrial time) series (1891.5–1955.5) derived from lunar occultation observations and the UT1–UTC (universal time–coordinated universal time) series (1955.5–1997.5) of the Bureau International de L'Heure/International Earth Rotation Service, a new ΔLOD (variation of the length of day) series in monthly intervals from 1892.0 to 1997.0 is calculated. Using digital filtering, the interannual and decadal components of the ΔLOD series are separated and then compared with those inferred from other geophysical quantities. It is shown that, on the interannual time scale, atmospheric processes can play an important role in exciting astronomical ΔLOD. However, the main oscillation with a mean period of about 5.8 years and peak-to-peak amplitude of about 0.3 ms in the residuals of ΔLOD(Astr) −ΔLOD(Wind) for 1968.0–1997.0 suggests that about half of the amplitude in astronomical ΔLOD must be excited by other geophysical processes, while on the decadal time scale the atmospheric excitation is too small. Geomagnetic core–mantle coupling may be a plausible source of the excitation of ΔLOD on the decadal time scale, but the geomagnetic data are still insufficient and an improved model of core–mantle coupling is required. Received: 3 April 1998 / Accepted: 31 May 1999  相似文献   

17.
Prediction of Earth orientation parameters by artificial neural networks   总被引:3,自引:1,他引:3  
 Earth orientation parameters (EOPs) [polar motion and length of day (LOD), or UT1–UTC] were predicted by artificial neural networks. EOP series from various sources, e.g. the C04 series from the International Earth Rotation Service and the re-analysis optical astrometry series based on the HIPPARCOS frame, served for training the neural network for both short-term and long-term predictions. At first, all effects which can be described by functional models, e.g. effects of the solid Earth tides and the ocean tides or seasonal atmospheric variations of the EOPs, were removed. Only the differences between the modeled and the observed EOPs, i.e. the quasi-periodic and irregular variations, were used for training and prediction. The Stuttgart neural network simulator, which is a very powerful software tool developed at the University of Stuttgart, was applied to construct and to validate different types of neural networks in order to find the optimal topology of the net, the most economical learning algorithm and the best procedure to feed the net with data patterns. The results of the prediction were analyzed and compared with those obtained by other methods. The accuracy of the prediction is equal to or even better than that by other prediction methods. Received: 6 February 2001 / Accepted: 23 October 2001  相似文献   

18.
Real-time orbit determination and interplanetary navigation require accurate predictions of the orientation of the Earth in the celestial reference frame and in particular that for Universal Time UT1. Much of the UT1 variations over periods ranging from hours to a couple of years are due to the global atmospheric circulation. Therefore, the axial atmospheric angular momentum (AAM) forecast series may be used as a proxy index to predict UT1. Our approach taking advantage of this fact is based on an adaptive procedure. It involves incorporating integrations of AAM estimates into UT1 series. The procedure runs on a routine basis using AAM forecasts that are based on the two meteorological series, from the US National Centers for Environmental Prediction and the Japan Meteorological Agency. It is pertinent to test the prediction method for the period that includes the special CONT08 campaign over which we expect a significant improvement in UT1 accuracy. The studies we carried out were aimed both to compare atmospheric forecasts and analyses, as well as to compare the skills of the UT1 forecasts based on the method with atmospheric forecasts and that using current statistical processes, as applied to the C04 Earth orientation parameters series derived by the International Earth rotation and Reference Systems service (IERS). Here we neglect the oceanic sub-diurnal and diurnal variations, as these signals are expected to be smaller than the UT1-equivalent of 100 μs, when averaged over a few days. The prediction performances for a 2-day forecast are similar, but at a forecast horizon of a week, the AAM-based forecast is roughly twice as skillful as the statistically based one.  相似文献   

19.
Oceanic tidal angular momentum (OTAM) is calculated for the four major tides of the Arctic Ocean, based on the tidal elevations and current velocities from a recent two-dimensional numerical hydrodynamic model. The presented OTAM tables are meant to be complementary to other modeling studies that use satellite altimetry (which cannot observe Arctic Ocean tides because of ice cover and limited satellite inclinations). Although the Arctic Ocean's influence on earth rotation is, as may be expected, relatively small, the rapid advancement of the subject now calls for such small contributions to be explicitly accounted for. Received: 22 January 1996; Accepted: 5 December 1996  相似文献   

20.
G. Bourda 《Journal of Geodesy》2008,82(4-5):295-305
The temporal variations of the Earth’s gravity field, nowadays routinely determined from satellite laser ranging (SLR) and GRACE (Gravity Recovery And Climate Experiment), are related to changes in the Earth’s rotation rate through the Earth’s inertia tensor. We study this connection from actual data by comparing the traditional length-of-day (LOD) measurements provided by the International Earth Rotation and Reference Systems Service (IERS) to the variations of the degree-2 and order-0 Stokes coefficient of the gravity field determined from fitting the orbits of the LAGEOS-1 and −2 satellites since 1985. The two series show a good correlation (0.62) and similar annual and semi-annual signals, indicating that the gravity-field-derived LOD is valuable. Our analysis also provides evidence for additional signals common to both series, especially at a period near 120 days, which could be due to hydrological effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号