首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the chemistry of the molecular gas in evolved planetary nebulae. Three pseudo-time-dependent gas-phase models have been constructed for dense (104–105 cm−3) and cool ( T ∼15 K) clumpy envelopes of the evolved nebulae NGC 6781, M4-9 and NGC 7293. The three nebulae are modelled as carbon-rich stars evolved from the asymptotic giant branch to the late planetary nebula phase. The clumpy neutral envelopes are subjected to ultraviolet radiation from the central star and X-rays that enhance the rate of ionization in the clumps. With the ionization rate enhanced by four orders of magnitude over that of the ISM, we find that resultant abundances of the species HCN, HNC, HC3N and SiC2 are in good agreement with observations, while those of CN, HCO+, CS and SiO are in rough agreement. The results indicate that molecular species such as CH, CH2, CH2+ , HCl, OH and H2O are anticipated to be highly abundant in these objects.  相似文献   

2.
3.
4.
With the Hamilton echelle spectrograph at the Lick Observatory, emission-rich spectral lines of the planetary nebula NGC 6543 were secured in the wavelength range from 3550 to 10 100 Å. We chose two bright regions, ∼8 arcsec east and ∼13 arcsec north of the central star, the physical conditions and chemical abundances of which may differ as a result of the different physical characteristics involving the mass ejection of different epochs. By combining Hamilton echelle observations with archive UV data secured with the International Ultraviolet Explorer ( IUE ), we obtain improved diagnostics and chemical compositions for the two observed regions. The diagnostic diagram gives the average value of T e=8000∼8300 K, and the electron number density near N e∼5000 cm−3 for most ions, while some low-excitation lines indicate much higher temperatures, i.e. T e∼10 000 K. With the construction of a photoionization model, we try to fit the observed spectra in a self-consistent way: thus, for most elements, we employ the same chemical abundances in the nebular shell; and we adopt an improved Sobolev approximation model atmosphere for the hydrogen-deficient Wolf–Rayet type central star. Within the observational errors, the chemical abundances do not seem to show any positional variation except for helium. The chemical abundances of NGC 6543 appear to be the same as in average planetary nebulae. The progenitor star may have been an object of one solar mass, most of the heavier elements of which were less plentiful than in the Sun.  相似文献   

5.
We have investigated the variation of planetary nebula number densities as a function of nebular radius, taking account of uncertainties arising from interstellar extinction. We find that the trend is composed of two components: one (a “spike” component) located at radii R < 0.035 pc, and the other (a “plateau” component) extending to larger radii. The plateau component appears to follow a Gaussian fall‐off law with scale radius R0 = 0.28 pc. It is shown that this latter trend is not consistent with the assumption that larger shells are optically thin and density bounded. Rather, it seems likely thatmany of the larger sources have appreciable Lyman continuum optical depths and are ionization bounded. The deduced variation in N(R) then suggests that the velocities of the ionization fronts increase with radius. The nature of the spike component is less easy to fathom, and this may arise as a result of sharply lower ionization front velocities at radii R < 0.035 pc, or through contraction of the shells following a down‐turn in central star luminosities.  相似文献   

6.
7.
We have studied small-scale, filamentary features in 14 planetary nebulae and found that some structures are recurrent and shaped like the letters V and Y, with the apex or stem pointing toward the central parts of the nebula. Two such filaments containing dust, one in NGC 3132 and one in NGC 7293, were investigated in more detail. The mass and density of the filaments were obtained from extinction measurements, and their physical properties were derived. We propose that the structures are confined by magnetic fields, and derive magnetic field strengths of about 10−8 T, in line with earlier estimates. We also estimate the magnitude of the electric currents that we expect are generated in these dynamic systems. We propose a theory where the magnetic fields control the sculpting and evolution of small-scale filaments. This theory demonstrates how the substructures may form magnetized flux ropes that are twisted around each other, in the shape of double helices. Similar structures, and with similar origin, are found in many other astrophysical environments.  相似文献   

8.
9.
Accurate optical coordinates of 734 PNe, measured on the charts of the Digitized Palomar Sky Survey, are presented. As a result of the discussion about the external accuracy the constants –0.8″ in RA and +0.8″ in DEC should be added to the coordinates measured by us. They were used but rounded off already in CGPN(2000). The list and measurements of new 31 candidates of central stars are given which might be interesting for stellar evolution.  相似文献   

10.
Electron temperatures derived from the He  i recombination line ratios, designated T e(He  i ), are presented for 48 planetary nebulae (PNe). We study the effect that temperature fluctuations inside nebulae have on the T e(He  i ) value. We show that a comparison between T e(He  i ) and the electron temperature derived from the Balmer jump of the H  i recombination spectrum, designated T e(H  i ), provides an opportunity to discriminate between the paradigms of a chemically homogeneous plasma with temperature and density variations, and a two-abundance nebular model with hydrogen-deficient material embedded in diffuse gas of a 'normal' chemical composition (i.e. ∼solar), as the possible causes of the dichotomy between the abundances that are deduced from collisionally excited lines and those deduced from recombination lines. We find that T e(He  i ) values are significantly lower than T e(H  i ) values, with an average difference of  〈 T e(H  i ) − T e(He  i )〉= 4000 K  . The result is consistent with the expectation of the two-abundance nebular model but is opposite to the prediction of the scenarios of temperature fluctuations and/or density inhomogeneities. From the observed difference between T e(He  i ) and T e(H  i ), we estimate that the filling factor of hydrogen-deficient components has a typical value of 10−4. In spite of its small mass, the existence of hydrogen-deficient inclusions may potentially have a profound effect in enhancing the intensities of He  i recombination lines and thereby lead to apparently overestimated helium abundances for PNe.  相似文献   

11.
12.
The low excitation properties of the planetary nebula (PN) NGC 6720 are known to be unusual, and to imply large ring/core emission ratios. We point out that such characteristics are by no means confined to this source alone, and that high ratios may occur in a large fraction of elliptical and circular PNe. Such trends may arise because of the presence of thin low-excitation emission sheets 'wrapped' within and around the primary outflows. The widths of such shells are required to be exceedingly small, and may (for certain cases) be of order ≪10−2 pc. Such a mechanism appears capable of explaining most of the observed emission properties, and may arise through shock interaction between differing envelopes. Alternative explanations in terms of bipolar or cylindrical outflows are shown to be implausible.  相似文献   

13.
14.
Narrow-band CCD images of 209 axially symmetrical planetary nebulae (PNe) have been examined in order to determine the orientation of their axes within the disc of the Galaxy. The nebulae have been divided into the bipolar (B) and elliptical (E) PNe morphological types, according to the scheme of Corradi &38; Schwarz. In both classes, contrary to the results of Melnick &38; Harwit and Phillips we do not find any strong evidence for non-random orientations of the nebulae in the Galaxy. Compared with previous work in this field, the present study takes advantage of the use of larger and morphologically more homogeneous samples and offers a more rigorous statistical analysis.  相似文献   

15.
16.
We have constructed photoionization models of five galactic bulge planetary nebulae using our automatic method, which enables a fully self-consistent determination of the physical parameters of a planetary nebula. The models are constrained using the spectrum, the IRAS and radio fluxes and the angular diameter of the nebula. We also conducted a literature search for physical parameters determined with classical methods for these nebulae. Comparison of the distance-independent physical parameters with published data shows that the stellar temperatures generally are in good agreement and can be considered reliable. The literature data for the electron temperature, electron density and also for the abundances show a large spread, indicating that the use of line diagnostics is not reliable and that the accuracy of these methods needs to be improved. Comparison of the various abundance determinations indicates that the uncertainty in the electron temperature is the main source of uncertainty in the abundance determination. The stellar magnitudes predicted by the photoionization models are in good agreement with observed values.  相似文献   

17.
18.
We examine the possibility of detecting signatures of surviving Uranus/Neptune-like planets inside planetary nebulae. Planets that are not too close to the stars (orbital separation larger than ∼5 au) are likely to survive the entire evolution of the star. As the star turns into a planetary nebula, it has a fast wind and strong ionizing radiation. The interaction of the radiation and wind with a planet may lead to the formation of a compact condensation or tail inside the planetary nebula, which emits strongly in H α , but not in [O  iii ]. The position of the condensation (or tail) will change over a time-scale of ∼10 yr. Such condensations might be detected with currently existing telescopes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号