首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fill–spill of surface depressions (wetlands) results in intermittent surface water connectivity between wetlands in the prairie wetland region of North America. Dynamic connectivity between wetlands results in dynamic contributing areas for runoff. However, the effect of fill–spill and the resultant variable or dynamic basin contributing area has largely been disregarded in the hydrological community. Long‐term field observations recorded at the St. Denis National Wildlife Area, Saskatchewan, allow fill–spill in the basin to be identified and quantified. Along with historical water‐level observations dating back to 1968, recent data collected for the basin include snow surveys, surface water survey and production of a light detection and ranging–derived digital elevation model. Data collection for the basin includes both wet and dry antecedent basin conditions during spring runoff events. A surface water survey at St. Denis in 2006 reveals a disconnected channel network during the spring freshet runoff event. Rather than 100% of the basin contributing runoff to the outlet, which most hydrological models assume, only approximately 39% of the basin contributes to the outlet. Anthropogenic features, such as culverts and roads, were found to influence the extent and spatial distribution of contributing areas in the basin. Historical pond depth records illustrate the effect of antecedent basin conditions on fill–spill and basin contributing area. A large pond at the outlet of the St. Denis basin, which only receives local runoff during dry years when upstream surface storage has not been satisfied, has pond runoff volumes that increase by a factor of 20 or more during wet years when upstream antecedent basin surface storage is satisfied and basin‐wide runoff contributes to the pond. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
鲂胚胎的发育   总被引:7,自引:1,他引:6  
太湖湖区暴雨径流携带有大量的泥沙和土壤有机物质,对河湖水质造成污染,为了定量分析有机污染对太湖水体的影响,分水田和旱地两种土地利用条件,采用数学模型模拟了湖区丰。平,枯典型年的产流,土壤侵蚀和有机物流失过程及年总量。结果表明,湖区土壤侵蚀量和有机物流失量随地表排水强度的增加呈指数形式增大,尤其是每年暴雨期,湖区地表排水中有机物含量显著增大,建议在太湖流域水质规划和治理中加以重视并采取必要防治措施。  相似文献   

3.
太湖地区的圩及其对洪涝的影响   总被引:17,自引:5,他引:12  
高俊峰  韩昌来 《湖泊科学》1999,11(2):105-109
本文介绍了圩的概念,太湖地区圩区的现状,以及修圩筑提对太湖流域洪涝形势的影响,筑圩有效地抵御了洪涝,但对太湖流域的洪涝形势产生了影响;(1)洪涝调蓄水面积减少,流域调蓄能力下降;(2)河网的自然状况被破坏,引起洪涝泄流不畅;(3)人类活动影响了流域的交,汇流情况,排涝动力的增加使圩内汇流时间缩短。  相似文献   

4.
太湖西苕溪流域径流过程的模拟   总被引:5,自引:1,他引:4  
张奇  李恒鹏  徐力刚 《湖泊科学》2006,18(4):401-406
西苕溪是太湖集水域的一个主要流域,研究西苕溪流域径流过程及污染物产出对了解太湖水文水质变化以及开展周围其它流域研究工作具有重要意义.作为研究的第一步,采用集总式模型LASCAM建立了西苕溪流域径流模型.以流域内2个水文观测站1968-1988年日径流观测数据对模型作了率定.率定效果满意,模拟日、年径流量与观测值吻合良好.在流域资料不够充分的情况下,模型能获得较为理想的模拟效果,说明所采用的模型适用于数据不足区域.模拟还揭示,西苕溪流域径流产生可能以饱和地面径流机制为主.近河道浅层饱和土体的水位与降雨量相关性好,呈现出明显的日波动周期;而深层地下水位呈年波动周期,在旱季和雨季,水位呈明显的降落和上升趋势.这些发现为进一步细化径流模型以及建立污染物输移模型奠定了基础.  相似文献   

5.
Data collected in 4 years of field observations were used in conjunction with continuous simulation models to study, at the small‐basin scale, the water balance of a closed catchment‐lake system in a semi‐arid Mediterranean environment. The open water evaporation was computed with the Penman equation, using the data set collected in the middle of the lake. The surface runoff was partly measured at the main tributary and partly simulated using a distributed, catchment, hydrological model, calibrated with the observed discharge. The simplified structure of the developed modelling mainly concerns soil moisture dynamics and bedrock hydraulics, whereas the flow components are physically based. The calibration produced high efficiency coefficients and showed that surface runoff is greatly affected by soil water percolation into fractured bedrock. The bedrock reduces the storm‐flow peaks and the interflow and has important multi‐year effects on the annual runoff coefficients. The net subsurface outflow from the lake was calculated as the residual of the lake water balance. It was almost constant in the dry seasons and increased in the wet seasons, because of the moistening of the unsaturated soil. During the years of observation, rainfall 30% higher than average caused abundant runoff and a continuous rise in the lake water levels. The analysis allows to predict that, in years with lower than the average rainfall, runoff will be drastically reduced and will not be able to compensate for negative balance between precipitation and lake evaporation. Such highly unsteady situations, with great fluctuations in lake levels, are typical of closed catchment‐lake systems in the semi‐arid Mediterranean environment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
太湖水情特征   总被引:2,自引:0,他引:2  
袁静秀 《湖泊科学》1992,4(4):15-22
根据太湖湖区及环湖河道主要测站的历年水文气象资料,分析探讨了太湖的径流、水位、增减水现象和河湖流向等水情特征,为合理利用和保护湖泊水资源提供依据。  相似文献   

7.
Hydrologic regime plays an important role in maintaining aquatic ecosystem structures and biogeochemical processes of endorheic salt lakes. Due to joint influences of regional climate change, runoff regulation and water withdrawal, ecological water deficiency has been increasingly prominent in endorheic salt lakes in Northwest China, especially in the Inner Mongolian Plateau. Previous studies mainly focused on establishing and applying methods to determine ecological water levels of lakes, while much less attention was paid to a more important problem – how such water levels could be reached under changed watershed hydrological processes. Solutions of this gap were explored in this study using the Dalinuoer Lake as an example. This lake is a typical endorheic salt lake located in the Inner Mongolian Plateau. It is a critical source to provide important ecological services and economic values for locals. Its ecological water level to maintain the optimum salinity threshold was first calculated by applying a statistical analysis of relationships between the phytoplankton biomass, salinity and water level of the lake. Potential measures to preserve the ecological water level of the lake were subsequently evaluated based on a hydrological process analysis of the watershed. The results indicated that the optimum salinity threshold was 5.7 g/L. This value should be also valid for other endorheic salt lakes in this region. According to a function between the water storage and the mean water depth of this lake, the ecological water level was determined to be 10.28 m with an ecological water deficit of 2.5 × 108 m3. A basin water balance analysis using the results proposed measures to maintain a sustainable ecological water level, including controlling local water consumption and infusing ecological water. The results of this study could be extrapolated to other similar conditions to provide guidance for policy-makers, so that better decisions could be hopefully forged to protect eco-hydrological processes of endorheic salt lakes in the Mongolian Plateau, as well as other comparable scenarios.  相似文献   

8.
洞庭湖近30a水位时空演变特征及驱动因素分析   总被引:4,自引:4,他引:0  
洞庭湖地处北亚热带季风湿润气候区,水情时空变化尤为明显.为了探明洞庭湖水位时空演变特征,以洞庭湖6个水位站(城陵矶、鹿角、营田、杨柳潭、南咀、小河咀)、出入湖流量("三口"总入湖流量、"四水"总入湖流量、城陵矶出湖流量)和长江干流流量(宜昌、螺山)等1985-2014年逐日数据为基础,通过构建泰森多边形计算湖泊水位,运用Morlet小波分析、层次聚类分析和地统计理论研究湖泊水位的周期性变化规律及空间分布格局和自相关性.研究结果表明:洞庭湖水位变化具有典型的季节性,且年际变化具有28和22 a的多时间尺度特征;水位空间分布格局呈现出小河咀、南咀、杨柳潭(Group 1)以及城陵矶、鹿角、营田(Group 2)两种聚类,且在不同水文季节的空间自相关性依次表现为丰水期退水期涨水期枯水期.通过建立两类水位在不同水文季节与径流量的多元逐步回归模型揭示了洞庭湖水位时空演变的驱动因素,其中Group 1水位演变主要受长江干流水文情势的影响,Group 2水位演变由出入湖径流量和长江干流径流量共同作用,并随着不同水文季节江湖关系的改变以及湖泊自身水力联系的变化而变化.研究结果对于科学认识洞庭湖水位的时空演变规律以及湖泊生态系统保护和水资源的规划、管理与调控具有重要意义.  相似文献   

9.
刘慧丽  戴国飞  张伟  廖兵 《湖泊科学》2015,27(2):266-274
鄱阳湖流域内湖库资源众多,柘林湖作为鄱阳湖最大的入湖湖库,是鄱阳湖流域内最大的调节湖库,对鄱阳湖入湖径流有一定的影响,在鄱阳湖的入湖流量中占重要地位.本文以鄱阳湖流域内纳入水质良好湖泊的柘林湖为例,通过对柘林湖的形成及湖泊水系生态环境演变进行探讨,分析近30年来该湖水生生态环境的变化及其关键驱动力因子.综合研究表明:柘林湖水生生物多样性有下降趋势,水质有先变差后改善的趋势,其变化的驱动力主要是流域内人口数量增加、城镇化工业化进程加快、入湖污染负荷逐年增长、滨湖区生态安全屏障受人为破坏以及资源开发不合理等.只有处理好"人湖"和谐、"三次飞跃"和"四大转变",并采取科学合理的措施进行集成研究和综合治理,才能行之有效地改善柘林湖水生生态环境,并发挥其应有的生态效应,从而保障鄱阳湖入湖"一湖清水".  相似文献   

10.
The hydrological regime, morphological structure, and landscapes of the Indus River delta are considered, and the significant changes that took place in them during the second half of the XX century because of the large-scale hydraulic engineering activity in the river’s basin, runoff regulation, and water withdrawal for irrigation are analyzed. It is shown that the abrupt decrease in water and sediment runoff in the Indus have affected the hydrological processes in the river’s lower reaches and caused delta degradation.  相似文献   

11.
Studying the processes responsible for the distribution of water resources in a river basin over space and time is of great importance for spatial planning. In this study a multi-agent simulation approach is applied for exploring the influence of alternative reservoir operation strategies on water use distribution in the semi-arid Jaguaribe basin in case of decreasing rainfall. Water use distribution is analyzed both for one specific subbasin – our study area – and for the river basin level. Agents in this study are farmers that adapt to local variations in water availability. In this way both natural and human influences on water availability are taken into account. This study shows that a decrease in rainfall and runoff in the Jaguaribe basin leads to a transition of water use from the dry season to the wet season. The dry season water use decreases because of reduced water availability in the dry season. This mainly is the result of reduced rainfall and runoff in the wet season and the consequent increased water use for irrigation in the wet season. A decrease in rainfall and runoff also leads to a relative transition of water use from downstream to upstream at the basin scale. Strategic reservoir operation enables local water managers to offset the effect of decreasing rainfall and runoff with regards to water use at the subbasin level, at the cost of further decreasing water availability at the basin level.  相似文献   

12.
何征  万荣荣  戴雪  杨桂山 《湖泊科学》2015,27(6):991-996
江湖水量交换的变化影响着通江湖泊洞庭湖的水情,进而影响湖区社会经济及生态的可持续发展.以洞庭湖城陵矶站、南咀站以及长江干流宜昌站、螺山站1981-2012年逐日水位、流量观测数据为基础,采用单位根检验、方差分析和水位-流量绳套曲线等方法对洞庭湖季节性水情变化特征进行提取,并探究江湖水量交换变化对其产生的影响.研究表明:近30年来洞庭湖水情呈阶段性特征,与相对稳定的1981-2002年相比,2003-2012年湖泊水位总体呈下降趋势,年均水位下降0.43 m;枯、涨、丰、退水期各季水情变化特征为:2003年以后洞庭湖丰水期水位平均下降0.60 m,呈现出"高水不高"现象;退水期水位平均下降1.49 m,退水加快;枯水期水位略有上升,平均上升0.18 m;涨水期水位变化不明显.湖泊退水期水位降幅最为明显,尤其是10月大幅下降,平均下降2.03 m,有提前进入枯水期的趋势.水情变化与江湖水量交换变化密切相关:丰水期,三口(松滋、太平和藕池)分流量减小在一定程度上降低湖泊水位;退水期,三口分流量减小叠加城陵矶出口长江水位下降对洞庭湖产生拉空作用,湖泊出流加快水位被拉低;枯水期,主要是1 3月,城陵矶出口长江水位上升对湖泊顶托作用增强,湖泊出流减缓水位略有抬升.  相似文献   

13.
《Journal of Hydrology》2006,316(1-4):233-247
The annual water budget of Lake Tana is determined from estimates of runoff, rainfall on the lake, measured outflow and empirically determined evaporation. Simulation of lake level variation (1960–1992) has been conducted through modeling at a monthly time step. Despite the ±20% rainfall variations in the Blue Nile basin in the last 50 years, the lake level remained regular. A preliminary analysis of the sensitivity of level and outflow of the lake suggests that they are controlled more by variation in rainfall than by basin-scale forcing induced by human activities. The analysis shows that a drastic (40–45%) and sustained (7–8 years) rainfall reduction is required to change the lake from out flowing to terminal (cessation of outflow). However, the outflow from the lake shows significant variation responding to the rainfall variations. Unlike the terminal lakes in the Ethiopian rift valley or the other large lakes of Tropical Africa, at its present hydrologic condition, the Lake Tana level is less sensitive to rainfall variation and changes in catchment characteristics.  相似文献   

14.
The current features of the space and time variations of river runoff in Kamchatka Krai have been considered. Two relatively long cycles have been shown to exist in water runoff variations in the major portion of the examined rivers. The renewable water resources were increasing until 1970–1980, while in the following years (up to 2010), they were gradually decreasing. Current data on river runoff were used to prove the existence of three zonal types of water regime in Kamchatka Krai; five azonal types of annual runoff distribution are characterized. One of them (nearly uniform annual distribution caused by the predominance of groundwater recharge) has been theoretically predicted in the classification proposed by M.I. L’vovich, though without factual confirmation. The specific features of water regime of rivers whose basins lie on the slopes of active volcanoes are considered for the first time. This type of regime typically shows alternating periods of the presence and absence of surface runoff in river channels, corresponding to the inflow of snowmelt or rainfall runoff at high level of subsoil water (when channel deposits are fully saturated with water) or at its low position (when moisture is deficient).  相似文献   

15.
人类活动对洱海的影响及对策分析   总被引:25,自引:9,他引:16  
针对洱海生态环境问题,1996-1997年间通过系列动态资料分析,环境现状调查和水,土,生物取样测试等方法进行湖泊人为影响和对策感化研究。结果显示1980-1996年扶持续降低水位给洱海下灾难性后果;近年来资源过量开发和面源污染又使洱海面临富营养化威胁。  相似文献   

16.
耿玉琴  朱威  王同生 《湖泊科学》2003,15(Z1):255-260
太湖流域水资源供需矛盾主要体现为"水质型缺水"问题,如何对"水质型缺水"进行定量描述,在太湖流域是一个难题.本文提出了"分质水资源量"的概念,以流域水资源四级分区为单元,以分区水质监测资料结合水资源量进行分析,分别统计分区分质水资源量.分析表明:太湖流域142×108 m3的地表水资源量中,Ⅲ类以上的适合于饮用水源和一般工业用水的优质水为35.8×108 m3,占25.2%;适合于电力冷却用水、农业灌溉的Ⅳ-Ⅴ类水为46.4×108 m3,占32.6%;不可利用的劣Ⅴ类水有59.9×108 m3,占42.2%.流域内优于Ⅴ类(含Ⅴ类)的地表水资源量为82.2×108 m3,占地表水总资源量的57.8%.而浅层地下水己基本被污染.需要指出,Ⅰ-Ⅲ类优质水虽仍有35.8×108 m3,但目前流域内对Ⅰ-Ⅲ类水的需求量己达60.6×108 m3,如将此两数对比,则优质水缺额为24.8×108 m3,但实际上,优质水的需求主要集中在流域中下游,而可供优质水水源则主要集中在流域上游地区山区水库和中游太湖湖心区、东部湖区和太浦河,供需两者的空间分布有较大出入,因此优质水资源缺额将更大,由此可见太湖流域水质型缺水形势十分严峻.  相似文献   

17.
The paper presents the outcomes of a study conducted to analyse water resources availability and demand in the Mahanadi River Basin in India under climate change conditions. Climate change impact analysis was carried out for the years 2000, 2025, 2050, 2075 and 2100, for the months of September and April (representing wet and dry months), at a sub‐catchment level. A physically based distributed hydrologic model (DHM) was used for estimation of the present water availability. For future scenarios under climate change conditions, precipitation output of Canadian Centre for Climate Modelling and Analysis General Circulation Model (CGCM2) was used as the input data for the DHM. The model results show that the highest increase in peak runoff (38%) in the Mahanadi River outlet will occur during September, for the period 2075–2100 and the maximum decrease in average runoff (32·5%) will be in April, for the period 2050–2075. The outcomes indicate that the Mahanadi River Basin is expected to experience progressively increasing intensities of flood in September and drought in April over the considered years. The sectors of domestic, irrigation and industry were considered for water demand estimation. The outcomes of the analysis on present water use indicated a high water abstraction by the irrigation sector. Future water demand shows an increasing trend until 2050, beyond which the demand will decrease owing to the assumed regulation of population explosion. From the simulated future water availability and projected water demand, water stress was computed. Among the six sub‐catchments, the sub‐catchment six shows the peak water demand. This study hence emphasizes on the need for re‐defining water management policies, by incorporating hydrological response of the basin to the long‐term climate change, which will help in developing appropriate flood and drought mitigation measures at the basin level. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
河道型水库水动力特征与气候条件的响应关系   总被引:2,自引:1,他引:1  
气候条件(降雨、气温)的变化对流域内水资源、河道、湖库的径流影响较大.河道型水库由于具有河道和湖泊的双重特点,受气候条件的影响则更为显著.本文以广东省梅州的河道型水库——长潭水库为例,耦合流域分布式水文模型SWAT与环境流体动力学模型EFDC,研究了河道型水库水动力特征(以水龄表征)与气候条件的响应关系.根据梅县气象站1953-2010年共58年的年均降雨量资料的频率分析,选取降雨量保证率分别为20%(丰水年)、50%(平水年)和90%(枯水年)年份的气候条件作为3种气候方案,对应的典型年分别为1992、1988和2004年,并将各典型年的日均降雨量和气温作为SWAT水文模型的输入条件,模拟了进入长潭水库各主要支流的日均变化过程.并将该流量过程作为长潭水库库区水动力模型的入流边界,模拟了各种降雨典型年情景下长潭水库的水动力变化过程.结果表明,长潭水库库区水龄沿程逐渐增大,呈指数增长的趋势,且受气候条件的影响很大.与丰水年相比,平水年、枯水年年降雨量分别减少了14%和49%,入库径流分别减少了23%和62%,水库出库坝址附近水龄分别增大了66%和247%,支流区域水龄增幅可达81%和290%左右,可见水库水动力特征受气候条件影响很大,而支流区域受气候条件影响更显著.不同气候条件下,河道型水库分别呈现出河道和深水湖泊的双重特性.丰水年时,坝址附近垂向上水体交换频繁,水龄均匀,呈现出河道的特性;平水年与枯水年时,坝址附近水体垂向交换较弱,逐渐呈现出深水湖泊的垂向分层特性.另外,流域分布式水文模型SWAT与环境流体动力学模型EFDC的联用,为弥补历史长系列高频监测资料的缺失,提高湖库水动力模型模拟的精度提供了有效的方法.  相似文献   

19.
Mikhailova  M. V. 《Water Resources》2001,28(5):477-490
General information on the Nile River basin is presented. Specific features of the morphological regime of the Nile Delta and its near-shore zone, as well as the delta water balance and groundwater regime are discussed. The dynamics of the sea coastline of the Nile Delta is described in great detail. It is shown that the recent delta of the Nile and its sea coastline have been formed under the joint impact of the eustatic sea level rise, subsidence of sediments in the northern part of the deltaic plain, and considerable decrease in the river sediment runoff after the construction of the Aswan High Dam.  相似文献   

20.
The results of modeling of the long-term fluctuations in Lake Baikal levels and Angara River runoff are presented. The dynamic-stochastical model was developed and used to obtain analytical relationships between the statistic characteristics of the Baikal levels fluctuations and the parameters of forcing processes, including water inflow into the lake and the effective evaporation from its surface. The parameter λ determining the inertia of the Baikal levels fluctuations, decreased by about three times after Irkutsk Reservoir filling, resulting in an increase in the variance of the lake levels fluctuations. The dependence of variances of the Baikal levels fluctuations and Angara runoff on parameter λ was studied. It is shown that the decreasing in the variance of the Baikal levels fluctuations corresponds to increasing in the variance of Angara river runoff and vice versa. The results of numerical modeling of Baikal levels fluctuations show that water withdrawal from inflow into the lake has an adverse effect on Angara runoff regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号