首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent (1970–1999) and future (2070–2099) climates under the SRES A1B scenario, simulated by the regional climate model RegCM4.0 driven with lateral boundary conditions from the ECHAM5 general circulation model, are utilized to force a large-scale hydrological model for assessing the hydrological response to climate changes in the Yangtze River Basin, China. The variable infiltration capacity model (VIC) is utilized to simulate various hydrological components for examining the changes in streamflow at various locations throughout the Yangtze River Basin. In the end of the twenty-first century, most of the Yangtze River Basin stands out as “hotspots” of climate change in China, with an annual temperature increase of approximately 3.5 °C, an increase of annual precipitation in North and a decrease in South. Runoff in the upper reach of Yangtze River is projected to increase throughout the year in the future, especially in spring when the increase will be approximately 30 %. Runoff from the catchments in the northern part of Yangtze River will increase by approximately 10 %, whereas that in the southern part will decrease, especially in the dry season, following precipitation changes. The frequency of extreme floods at three mainstream stations (Cuntan, Yichang, and Datong) is projected to increase significantly. The original extreme floods with return periods of 50, 20, and 10 years will change into floods with return periods of no more than 20, 10, and 5 years. The projected increase in extreme floods will have significant impacts on water resources management and flood control systems in the Yangtze River Basin.  相似文献   

2.
The hydrological response to the potential future climate change in Yangtze River Basin (YRB), China, was assessed by using an ensemble of 54 climate change simulations. The Coupled Model Intercomparison Project 5 simulations under two new Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios were downscaled and used to drive the Variable Infiltration Capacity hydrological model. This study found that the range of temperature changes is homogeneous for almost the entire region, with an average annual increase of more than 2 °C under RCP4.5 and even more than 4 °C under RCP8.5 in the end of the twenty first century. The warmest period (June–July–August) of the year would experience lower changes than the colder ones (December–January–February). Overall, mean precipitation was projected to increase slightly in YRB, with large dispersion among different global climate models, especially during the dry season months. These phenomena lead to changes in future streamflow for three mainstream hydrological stations (Cuntan, Yichang, and Datong), with slightly increasing annual average streamflows, especially at the end of twenty first century. Compared with the percentage change of mean flow, the high flow shows (90th percentile on the probability of no exceedance) a higher increasing trend and the low flow (10th percentile) shows a decreasing trend or lower increasing trend. The maximum daily discharges with 5, 10, 15, and 30-year return periods show an increasing trend in most sub-basins in the future. Therefore, extreme hydrological events (e.g., floods and droughts) will increase significantly, although the annual mean streamflow shows insignificant change. The findings of this study would provide scientific supports to implement the integrated adaptive water resource management for climate change at regional scales in the YRB.  相似文献   

3.
Abstract

Climate change will likely have severe effects on water shortages, flood disasters and the deterioration of aquatic systems. In this study, the hydrological response to climate change was assessed in the Wei River basin (WRB), China. The statistical downscaling method (SDSM) was used to downscale regional climate change scenarios on the basis of the outputs of three general circulation models (GCMs) and two emissions scenarios. Driven by these scenarios, the Soil and Water Assessment Tool (SWAT) was set up, calibrated and validated to assess the impact of climate change on hydrological processes of the WRB. The results showed that the average annual runoff in the periods 2046–2065 and 2081–2100 would increase by 12.4% and 45%, respectively, relative to the baseline period 1961–2008. Low flows would be much lower, while high flows would be much higher, which means there would be more extreme events of droughts and floods. The results exhibited consistency in the spatial distribution of runoff change under most scenarios, with decreased runoff in the upstream regions, and increases in the mid- and lower reaches of the WRB.
Editor Z.W. Kundzewicz; Associate editor D. Yang  相似文献   

4.
Using the defined sensitivity index, the sensitivity of streamflow, evapotranspiration and soil moisture to climate change was investigated in four catchments in the Haihe River basin. Climate change contained three parts: annual precipitation and temperature change and the change of the percentage of precipitation in the flood season (Pf). With satisfying monthly streamflow simulation using the variable infiltration capacity model, the sensitivity was estimated by the change of simulated hydrological variables with hypothetical climatic scenarios and observed climatic data. The results indicated that (i) the sensitivity of streamflow would increase as precipitation or Pf increased but would decrease as temperature increased; (ii) the sensitivity of evapotranspiration and soil moisture would decrease as precipitation or temperature increased, but it to Pf varied in different catchments; and (iii) hydrological variables were more sensitive to precipitation, followed by Pf, and then temperature. The nonlinear response of streamflow, evapotranspiration and soil moisture to climate change could provide a reference for water resources planning and management under future climate change scenarios in the Haihe River basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Since the 1960s, dramatic changes have taken place in land-use patterns characterized by the persistent expansion of cultivated land and a continuous decrease in natural woodland and grassland in the arid inland river basins of China. It is very important to assess the effects of such land-use changes on the hydrological processes so vital for water resource management and sustainable development on the catchment scale. The Maying River catchment, a typical arid inland watershed located in the middle of the Hexi Corridor in northwest China, was the site chosen to investigate the hydrological responses to land-use changes. The annual runoff, base flow, maximum peak flow, and typical seasonal runoff in both spring and autumn flood periods were selected as the variables in the hydrological processes. Statistical-trend analysis and curvilinear regression were utilized to detect the trends in hydrological variables while eliminating the climatic influence. The relationship between cultivated land-use and hydrological variables was analyzed based on four periods of land-use variation data collected since 1965. A runoff model was established composed of two factors, i.e., cultivated land use and precipitation. The impact of land use changes, especially in the large ar- eas of upstream woodland and grassland turned into cultivated lands since 1967, has resulted in a mean annual runoff decrease of 28.12%, a base flow decline of 35.32%, a drop in the maximum peak discharge of 35.77%, and mean discharge decreases in spring and autumn of 36.05% and 24.87% respectively, of which the contribution of cultivated land expansion to the influence of annual runoff amounts to 77%-80%, with the contribution to the influence of spring discharge being 73%-81%, and that to the influence of base flow reaching 62%-65%. Thus, a rational regulation policy of land use patterns is vitally important to the sustainable use of water resources and the proper development of the entire catchment.  相似文献   

6.
7.
A suite of extreme indices derived from daily precipitation and streamflow was analysed to assess changes in the hydrological extremes from 1951 to 2012 in the Kamo River Basin. The evaluated indices included annual maximum 1-day and 5-day precipitation (RX1day, RX5day), consecutive dry days (CDD), annual maximum 1-day and 5-day streamflow (SX1day, SX5day), and consecutive low-flow days (CDS). Sen’s slope estimator and two versions of the Mann-Kendall test were used to detect trends in the indices. Also, frequency distributions of the indices were analysed separately for two periods: 1951–1981 and 1982–2012. The results indicate that quantiles of the rainfall indices corresponding to the 100-year return period have decreased in recent years, and the streamflow indices had similar patterns. Although consecutive no rainfall days represented by 100-year CDD decreased, continuous low-flow days represented by 100-year CDS increased. This pattern change is likely associated with the increase in temperature during this period.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR E. Gargouri  相似文献   

8.
Parameter calibration and sensitivity analysis (SA) are usually not straightforward tasks for distributed hydrological models, owing to the complexity of models and the large number of parameters. A two-step SA approach is proposed for analysing hydrological signatures based on the distributed hydrology–soil–vegetation model (DHSVM) in the Jinhua River Basin, East China. A preliminary SA is conducted to obtain influential parameters via analysis of variance. These parameters are further analysed through a variance-based global sensitivity analysis method to achieve robust rankings and parameter contributions. Parallel computing is designed to reduce the computational burden. The results reveal that only a few parameters are significantly sensitive and that interactions between parameters cannot be ignored. When analysing hydrological signatures, it is found that water yield is simulated very well for most samples. Small and medium floods are simulated very well, while slight underestimations happen for large floods.  相似文献   

9.
ABSTRACT

Hydrological processes in hilly watersheds are significantly affected by variations in elevation; however, the hydrological functions of different vertical vegetation belts, have rarely been reported. The distributed hydrological model WEP-L (Water and Energy transfer Process in Large river basins) was applied to analyse vertical variations in the hydrological processes of Qingshui River basin (QRB), Wutai Mountain (altitude: 3058 m a.s.l.), China. The results show that the highest ratio of evapotranspiration to precipitation occurs at 1800 m a.s.l. Below 1800 m, evapotranspiration is mainly controlled by precipitation, and in regions above1800 m it is controlled by energy. The runoff coefficients for different vertical vegetation belts may be ranked as follows: farmland > grassland > subalpine meadow > evergreen coniferous shrub forest > deciduous broad-leaved forest. Grassland is the largest runoff production area, contributing approximately 39.10% to the annual water yield of the QRB. The runoff from forested land decreased to a greater extent than the grassland runoff. Increasing forest cover may increase evapotranspiration and reduce runoff. These results are important, not only for further understanding of the hydrological mechanisms in this basin, but also for implementing the sustainable management of water resources and ecosystems in other mountainous regions.  相似文献   

10.
The East River in South China plays a key role in the socio-economic development in the region and surrounding areas. Adequate understanding of the hydrologic response to land use change is crucial to develop sustainable water resources management strategies in the region. The present study makes an attempt to evaluate the possible impacts of land use change on hydrologic response using a numerical model and corresponding available vegetation datasets. The variable infiltration capacity model is applied to simulate runoff responses to several land use scenarios within the basin (e.g., afforestation, deforestation, and reduction in farmland area) for the period 1952–2000. The results indicate that annual runoff is reduced by 3.5 % (32.3 mm) when 25 % of the current grassland area (including grasslands and wooded grasslands, with 46.8 % of total vegetation cover) is converted to forestland. Afforestation results in reduction in the monthly flow volume, peak flow, and low flow, but with significantly greater reduction in low flow for the basin. The simulated annual runoff increases by about 1.4 % (12.6 mm) in the deforestation scenario by changing forestland (including deciduous broadleaf, evergreen needleleaf, and broadleaf, with 15.6 % of total vegetation cover) to grassland area. Increase in seasonal runoff occurs mainly in autumn for converting cropland to bare soil.  相似文献   

11.
We investigated trends in future seasonal runoff components in the Willamette River Basin (WRB) of Oregon for the twenty‐first century. Statistically downscaled climate projections by Climate Impacts Group (CIG), eight different global climate model (GCM) simulations with two different greenhouse gas (GHG) emission scenarios, (A1B and B1), were used as inputs for the US Geological Survey's Precipitation Runoff Modelling System. Ensemble mean results show negative trends in spring (March, April and May) and summer (June, July and August) runoff and positive trends in fall (September, October and November) and winter (December, January and February) runoff for 2000–2099. This is a result of temperature controls on the snowpack and declining summer and increasing winter precipitation. With temperature increases throughout the basin, snow water equivalent (SWE) is projected to decline consistently for all seasons. The decreases in the centre of timing and 7‐day low flows and increases in the top 5% flow are caused by the earlier snowmelt in spring, decreases in summer runoff and increases in fall and winter runoff, respectively. Winter runoff changes are more pronounced in higher elevations than in low elevations in winter. Seasonal runoff trends are associated with the complex interactions of climatic and topographic variables. While SWE is the most important explanatory variable for spring and winter runoff trends, precipitation has the strongest influence on fall runoff. Spatial error regression models that incorporate spatial dependence better explain the variations of runoff trends than ordinary least‐squares (OLS) multiple regression models. Our results show that long‐term trends of water balance components in the WRB could be highly affected by anthropogenic climate change, but the direction and magnitude of such changes are highly dependent on the interactions between climate change and land surface hydrology. This suggests a need for spatially explicit adaptive water resource management within the WRB under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The hydrological sensitivities to long-term climate change of a watershed in Eastern Canada were analysed using a deterministic watershed runoff model developed to simulate watershed acidification. This model was modified to study atmospheric change effects in the watershed. Water balance modelling techniques, modified for assessing climate effects, were developed and tested for a watershed using atmospheric change scenarios from both state of the art general circulation models and a series of hypothetical scenarios. The model computed daily surface, inter- and groundwater flows from the watershed. The moisture, infiltration and recharge rate are also computed in the soil reservoirs. The thirty years of simulated data can be used to evaluate the effects of climatic change on soil moisture, recharge rate and surface and subsurface flow systems. The interaction between surface and subsurface water is discussed in relation to climate change. These hydrological results raise the possibility of major environmental and socioeconomic difficulties and have significant implications for future water resource planning and management. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
Hydrological model sensitivity to climate change can be defined as the response of a particular hydrological model to a known quantum of climate change. This paper estimates the hydrological sensitivity, measured as the percentage change in mean annual runoff, of two lumped parameter rainfall-runoff models, SIMHYD and AWBM and an empirical model, Zhang01, to changes in rainfall and potential evaporation. These changes are estimated for 22 Australian catchments covering a range of climates, from cool temperate to tropical and moist to arid. The results show that the models display different sensitivities to both rainfall and potential evaporation changes. The SIMHYD, AWBM and Zhang01 models show mean sensitivities of 2.4%, 2.5% and 2.1% change in mean annual flow for every 1% change in mean annual rainfall, respectively. All rainfall sensitivities have a lower limit of 1.8% and show upper limits of 4.1%, 3.4% and 2.5%, respectively. The results for potential evaporation change are −0.5%, −0.8% and −1.0% for every 1% increase in mean annual potential evaporation, respectively, with changes rainfall being approximately 3–5 times more sensitive than changes in potential evaporation for each 1% change in climate. Despite these differences, the results show similar correlations for several catchment characteristics. The most significant relationship is between percent change in annual rainfall and potential evaporation to the catchment runoff coefficient. The sensitivity of both A and B factors decreases with an increasing runoff coefficient, as does the uncertainty in this relationship. The results suggest that a first-order relationship can be used to give a rough estimate of changes in runoff using estimates of change in rainfall and potential evaporation representing small to modest changes in climate. Further work will develop these methods further, by investigating other regions and changes on the subannual scale.  相似文献   

14.
Dejuan Meng  Xingguo Mo 《水文研究》2012,26(7):1050-1061
Influences of climatic change on the components of global hydrological cycle, including runoff and evapotranspiration are significant in the mid‐ and high‐latitude basins. In this paper, the effect of climatic change on annual runoff is evaluated in a large basin—Songhua River basin which is located in the northeast of China. A method based on Budyko‐type equation is applied to separate the contributions of climatic factors to changes in annual runoff from 1960 to 2008, which are computed by multiplying their partial derivatives by the slopes of trends in climate factors. Furthermore, annual runoff changes are predicted under IPCC SRES A2 and B2 scenarios with projections from five GCMs. The results showed that contribution of annual precipitation to annual runoff change was more significant than that of annual potential evapotranspiration in the Songhua River basin; and the factors contributing to annual potential evapotranspiration change were ranked as temperature, wind speed, vapour pressure, and sunshine duration. In the 2020s, 2050s, and 2080s, changes in annual runoff estimated with the GCM projections exhibited noticeable difference and ranged from ? 8·4 to ? 16·8 mm a?1 (?5·77 to ? 11·53% of mean annual runoff). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
《水文科学杂志》2012,57(2):296-310
ABSTRACT

Hydrological models require different inputs for the simulation of processes, among which precipitation is essential. For hydrological simulation, four different precipitation products – Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE); European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim); Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) real time (RT); and Precipitation Estimation from Remotely Sensed Information using Arti?cial Neural Networks (PERSIANN) – are compared against ground-based datasets. The variable infiltration capacity (VIC) model was calibrated for the Sefidrood River Basin (SRB), Iran. APHRODITE and ERA-Interim gave better rainfall estimates at daily time scale than other products, with Nash-Sutcliffe efficiency (NSE) values of 0.79 and 0.63, and correlation coefficient (CC) of 0.91 and 0.82, respectively. At the monthly time scale, the CC between all rainfall datasets and ground observations is greater than 0.9, except for TMPA-RT. Hydrological assessment indicates that PERSIANN is the best rainfall dataset for capturing the streamflow and peak flows for the studied area (CC: 0.91, NSE: 0.80).  相似文献   

16.
Yonghui Yang  Fei Tian   《Journal of Hydrology》2009,374(3-4):373-383
Runoff in Haihe River Catchment of China is steadily declining due to climate change and human activity. Determining abrupt changes in runoff could enhance identification of the main driving factors for the sudden changes. In this study, the sequential Mann–Kendall test analysis is used to determine abrupt changes in runoff in eight sub-catchments of Haihe River Catchment, while trend analysis via the traditional Mann–Kendall test for the period 1960–1999 is used to identify the basic trend of precipitation and runoff. The results suggest an insignificant change in precipitation and a significant decline in runoff in five of the eight sub-catchments. For most of the sub-catchments, abrupt changes in runoff occurred in 1978–1985. Through correlation comparisons for precipitation and runoff for the periods prior to and after abrupt runoff changes, human activity, rather than climatic change, is identified as the main driving factor of runoff decline. It is also noted that abrupt decline in runoff was actually at the beginning of China’s 1978–1985 land reform. Given that the land reform motivated farmers to productively manage their reallocated lands, agricultural water use therefore increased. Hence percent agricultural land is analyzed in relation to land use/cover pattern for the late 1970s and early 1980s. The analysis shows that when cultivated farmland exceeds 25% of a sub-catchment area, an abrupt decline in runoff occurs. It is therefore concluded that high percent agricultural land and related agricultural water use are the most probable driving factors of runoff decline in the catchment.  相似文献   

17.
Climate change and land use and cover change (LUCC) have had great impacts on watershed hydrological processes. Although previous studies have focused on quantitative assessment of the impacts of climate change and human activities on decreasing run‐off change, few studies have examined regions that have significant increasing run‐off due to both climate variability and land cover change. We show that annual run‐off had a significant increasing trend from 1956 to 2014 in the U.S. lower Connecticut River Basin. Abrupt change point years of annual run‐off for four subbasins are detected by nonparametric Mann–Kendall–Sneyers test and reconfirmed by the double mass curve. We then divide the study period into 2 subperiods at the abrupt change point year in the early 1970s for each subbasin. The Choudhury–Yang equation based on Budyko hypothesis was used to calculate precipitation and potential evapotranspiration, and landscape elasticities of run‐off. The results show that the difference in mean annual run‐off between 2 subperiods for each subbasin ranged from 102 to 165.6 mm. Climate variations were the primary drivers of increasing run‐off in this region. Quantitative contributions of precipitation and potential evapotranspiration in all subbasins are 106.5% and ?3.6% on average, respectively. However, LUCC contributed both positively and negatively to run‐off: ?18.6%, ?13.3%, and 10.1% and 9.9% for 4 subbasins. This may be attributed to historical LUCC occurring after the abrupt change point in each subbasin. Our results provide critical insight on the hydrological dynamics of north‐east tidal river systems to communities and policymakers engaged in water resources management in this region.  相似文献   

18.
ABSTRACT

Climate change alters hydrological processes and results in more extreme hydrological events, e.g. flooding and drought, which threaten human livelihoods. In this study, the large-scale distributed variable infiltration capacity (VIC) model was used to simulate future hydrological processes in the Yarlung Zangbo River basin (YZRB), China, with a combination of the CMIP5 (Coupled Model Intercomparison Project, fifth phase) and MIROC5 (Model for Interdisciplinary Research on Climate, fifth version) datasets. The results indicate that the performance of the VIC model is suitable for the case study, and the variation in runoff is remarkably consistent with that of precipitation, which exhibits a decreasing trend for the period 2046–2060 and an increasing trend for 2086–2100. The seasonality of runoff is evident, and substantial increases are projected for spring runoff, which might result from the increase in precipitation as well as the increase in the warming-induced melting of snow, glaciers and frozen soil. Moreover, evapotranspiration exhibits an increase between 2006–2020 and 2046–2060 over the entire basin, and soil moisture decreases in upstream areas and increases in midstream and downstream areas. For 2086–2100, both evapotranspiration and soil moisture increase slightly in the upstream and midstream areas and decrease slightly in the downstream area. The findings of this study could provide references for runoff forecasting and ecological protection for similar studies in the future.  相似文献   

19.
Quantifying the relative contributions of different factors to runoff change is helpful for basin management, especially in the context of climate change and anthropogenic activities. The effect of snow change on runoff is seldom evaluated. We attribute the runoff change in the Heihe Upstream Basin (HUB), an alpine basin in China, using two approaches: a snowmelt-based water balance model and the Budyko framework. Results from these approaches show good consistency. Precipitation accounts for 58% of the increasing runoff. The contribution of land-cover change seems unremarkable for the HUB as a whole, where land-cover change has a major effect on runoff in each sub-basin, but its positive effect on increasing runoff in sub-basins 1 and 3 is offset by the negative effect in sub-basin 2. Snow change plays an essential role in each sub-basin, with a contribution rate of around 30%. The impact of potential evapotranspiration is almost negligible.

EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR S. Huang  相似文献   

20.
气候变化和人类活动对流域径流影响的定量研究是当前研究的热点,赣江作为鄱阳湖流域最大的子流域,径流变化对鄱阳湖湿地水生态系统具有重要的影响.利用Mann-Kendall突变检验分析了赣江流域径流1955—2010年间演变趋势,再分别应用统计方法和IHACRES集总式模型分析气候要素和人类活动对径流的影响.研究表明IHACRES能够较好地模拟赣江流域径流,适用于中亚热带湿润季风气候区.Mann-Kendall突变检验表明赣江流域径流在1979年发生突变,可划分为1955—1979年和1980—2010年两个时段.降水是影响赣江流域径流年际变化的主要因素,而土地利用等人类活动的影响并不明显.水库建设显著影响赣江径流的季节分配,1980—2010年间人类活动影响更加显著,其中45%的年份秋季径流增加50%以上,26%的年份秋季径流增加超过100%,其中1989年的秋季径流增加幅度达到320%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号