首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蒙新高原湖泊高等水生植物和大型底栖无脊椎动物调查   总被引:2,自引:2,他引:0  
2008年7月和9月调查了我国蒙新高原12个湖泊的高等水生植物和大型底栖无脊椎动物,除阜康天池外皆采集到了水生植物和底栖动物.水生植物共有8科12种,优势种为芦苇和蓖齿眼子菜.底栖动物共鉴定出4门8纲26科64种(属),优势类群为摇蚊和水丝蚓.乌梁素海的水生植物和底栖动物种类最丰富,分别为9种和35种(属).乌梁素海和哈素海全湖都有水生植物分布,但其它湖泊仅分布在个别湖湾.不同湖泊间的底栖动物群落相似性很低.将蒙新地区湖泊湖区分为敞水区、沿岸带水生植物区和强劲湖流区.底栖动物在沿岸带水生植物区的多样性比敞水区高,优势集中性比敞水区低,而强劲湖流区无底栖动物.沿岸带水生植物区不同类型生境中的底栖动物群落相似性分析表明沉水植物密布、风生湖流微弱生境中的底栖动物最丰富,风生湖流强劲生境中无底栖动物.总体上,蒙新高原湖泊水生植物和底栖动物群落相似性较低,要保护湖泊生物多样性,建议对每个湖泊进行适当保护,重点保护风生湖流较弱的沉水植物区.  相似文献   

2.
土地利用和水环境因子是影响湖泊生态系统的关键因素,探究大型底栖动物次级生产力受环境因子的作用机制,可揭示底栖动物栖息地的生态系统与外源环境的关系。为了解土地利用和水环境因子对大型底栖动物次级生产力的影响,2020年对连环湖13个主要湖泊的土地利用类型及6、8和10月的大型底栖动物、水环境因子进行调查,共采集到大型底栖动物75种,隶属于3门32科56属,其中优势种属及重要种属以摇蚊幼虫和腹足纲为主,前突摇蚊(Procladius sp.)为第一优势种。主成分分析表明,土地利用及水环境因子具备明显的时空梯度,而大型底栖动物次级生产力也存在明显的时空变化。春季、夏季、秋季次级生产力和P/B值分别为5.65、6.06、4.31 g/(m2·a)和2.74、2.55、2.40 a-1,其中春季次级生产力集中于东北部湖区,龙虎泡集中于湖心区;夏季次级生产力逐渐向各湖区扩散,龙虎泡整体偏低;秋季次级生产力集中于西北部及东南部湖区,龙虎泡集中于东北部湖区。P/B值随季节的推移呈现由东部湖区向西部湖区逐渐递增的趋势,而龙虎泡始终集中于南部湖区。次级生产力和P/B值的结构分析表明,春季次级生产力主要由腹足纲构成,进入夏、秋季后以双壳纲对次级生产力的贡献最高。其中腹足纲、双壳纲、摇蚊幼虫和寡毛纲次级生产力主要集中于北部湖区、东南部湖区、中部湖区和龙虎泡,而甲壳纲仅出现于阿木塔泡。寡毛纲和双壳纲P/B 值随季节的推移逐渐降低,摇蚊幼虫和腹足纲P/B 值呈先升后降的趋势。通径分析表明,pH、人造地表和叶绿素a是影响年均大型底栖动物次级生产力的关键环境因子。典范对应分析表明,总磷和电导率是影响不同季节大型底栖动物次级生产力的重要环境变量。耕地、人造地表与总磷、电导率和悬浮物呈显著正相关,农业生产和城镇建设的增加是连环湖呈富营养化状态的重要原因,且此现象已对大型底栖动物次级生产力形成威胁。未来应通过控制农业面源污染、秸秆腐熟还田、鼓励粪便施肥、科学规划用地等措施改善连环湖流域的生态环境,以促进大型底栖动物资源合理的开发利用。  相似文献   

3.
放养河蚌,提高水体透明度以促进沉水植物生长,是湖泊生态修复中的常用手段之一.而小型杂食性鱼类鳑鲏依赖河蚌繁殖,河蚌放养可能会促进鳑鲏种群的发展;而鳑鲏与河蚌交互作用对水生态系统的影响仍研究较少.于2018年11-12月通过原位受控实验,设置对照组、河蚌组、鳑鲏组和河蚌+鳑鲏组,研究了鳑鲏(大鳍鱊Acheilognath...  相似文献   

4.
5.
The character of organic carbon (OC) in lake waters is strongly dependent on the time water has spent in the landscape as well as in the lake itself due to continuous biogeochemical OC transformation processes. A common view is that upstream lakes might prolong the water retention in the landscape, resulting in an altered OC character downstream. We calculated the number of lakes upstream for 24,742 Swedish lakes in seven river basins spanning from 56º to 68º N. For each of these lakes, we used a lake volume to discharge comparison on a landscape scale to account for upstream water retention by lakes (Tn tot). We found a surprisingly weak relationship between the number of lakes upstream and Tn tot. Accordingly, we found that the coloured fraction of organic carbon was not related to lake landscape position but significantly related to Tn tot when we analysed lake water chemical data from 1,559 lakes in the studied river basins. Thus, we conclude that water renewal along the aquatic continuum by lateral water inputs offsets cumulative retention by lakes. Based on our findings, we suggest integrating Tn tot in studies that address lake landscape position in the boreal zone to better understand variations in the character of organic carbon across lake districts.  相似文献   

6.
2019年春、秋两季,对江西省76个湖泊的底栖动物进行了调查,在分析其群落结构和多样性的基础上,探讨了多样性与环境因子间的关系,旨在确定影响大型底栖无脊椎动物多样性的重要环境因子,以期为江西省湖泊的精准化管理提供科学依据和技术支持。两次调查共检出140个分类单元,以水生昆虫和软体动物为主,摇蚊类物种数占水生昆虫物种数的53.62%。富营养指示种(长足摇蚊属一种和摇蚊属一种)为春、秋两季的优势分类单元,湖沼典型种(长足摇蚊属一种、摇蚊属一种、石田螺属一种、苏氏尾鳃蚓和霍甫水丝蚓)的丰度变化导致了群落结构的季节变化。大型底栖无脊椎动物α多样性水平较低,基于PLSR和PLS-SEM的分析结果表明,影响大型底栖无脊椎动物多样性指标的环境因子既与藻类种群动态密切相关,也与水质状态有关。大型底栖无脊椎动物多样性与藻类种群状态存在稳定的联系,不受季节因素的影响,过高的藻类丰度不利于大型底栖无脊椎动物多样性的提高,而较好的水质状况有利于大型底栖无脊椎动物多样性的提高。为保护江西省湖泊大型底栖无脊椎动物资源,应在具有渔业养殖功能的湖泊和城镇湖泊中进行水生植物的修复工作,使藻型湖泊向草型湖泊方向演化;对一...  相似文献   

7.
Submerged macrophyte detritus is a major component of the organic matter entering shallow lakes. Plant litter decomposition is a complex process that is mediated by microorganisms and some invertebrates. However, the role that aquatic organisms play in the decomposition of macrophytes in shallow subtropical lakes is unclear. This study compared the decomposition rates of Potamogeton pectinatus and Chara zeylanica in a shallow lake (southern Brazil) and assessed the fungal biomass and the macroinvertebrate community associated with the detritus. Aliquots of both species were incubated in litter bags and placed in the lake. After 1, 7, 20, 40, 60, and 80 days of incubation, one set of litter bags was removed from the lake. In a laboratory, plant material was washed for the determination of decomposition rates, chemical characterisation, and quantification of microorganisms and invertebrates. After 80 days of incubation, there was no C. zeylanica detritus, with a decomposition that was four times faster than that of P. pectinatus. The chemical composition was also different between the two detritus, with P. pectinatus showing a higher concentration of nitrogen, phosphorus, organic matter, polyphenols, and carbon. The fungal biomass was similar between the two species. In total, 7502 invertebrates belonging to 27 taxa were sampled in this study. The composition and abundance of invertebrates was different between the two species. In conclusion, the chemical structure of the macrophyte species studied was important for the microorganisms’ and invertebrates’ colonisation. In addition, leaching had an important function in the initial degradation process.  相似文献   

8.
1988-2016年洞庭湖大型底栖动物群落变化及驱动因素分析   总被引:1,自引:0,他引:1  
洞庭湖是我国第二大淡水湖泊,其水文条件对湖泊湿地生态系统健康的维系发挥着不可替代的作用.近年来,水环境恶化日益威胁湖区水生态系统健康.然而,有关底栖动物水生态健康评价的研究仍然停留在物种群落结构方面,缺乏底栖动物群落功能对水污染响应的研究,尤其在较长时间尺度上.因而,本研究分析了19882016年近30 a来洞庭湖的水质和底栖动物群落数据,探寻底栖动物群落功能对水环境恶化的响应规律.结果表明,洞庭湖水体总氮浓度是威胁底栖动物物种和功能群落变动的主要因素.此外,不断恶化的水环境驱动底栖动物物种和功能群落结构改变,表现为敏感水生昆虫的比例下降,寡毛类、小型软体动物比例的上升,并伴随着体长为1.00~1.99 cm、背扁型、侧扁型、不移动等功能性状类别比例的下降.同时,水环境恶化降低物种丰富度、功能丰富度和劳氏二次熵多样性.基于距离的冗余分析结果显示,水体氮营养盐、重金属离子和有机污染物共同驱动底栖动物物种群落结构的变异,而营养盐类与无/有机污染物决定着其功能群落结构的变异.鉴于洞庭湖水质不断恶化的状况,本研究建议采取一系列措施,包括合理管控湖区周边废水直排入湖、取缔湖区内的非法采砂以及调控枯水季洞庭湖水位等.生物监测和评价方面,建议将底栖动物物种和功能群落一并纳入评价体系,且优先选用物种丰富度、功能丰富度和劳氏二次熵指数评估换水周期较短的大型浅水湖泊水质变化对底栖动物物种和功能多样性的影响.  相似文献   

9.
Water quality in lakes is influenced by a large number of watershed and lake characteristics. In this study, we examined the relative effects of watershed land use and lake morphology on the trophic state of 19 lakes in the Yunnan plateau and lower Yangtze floodplain, the two most eutrophic regions in China. Trophic state parameters consisted of total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll‐a, Secchi depth, and trophic state index, while lake morphometric variables included area, maximum depth, mean depth, water residence time (WRT), volume, and length to width ratio. Percentages of forest, grassland, cropland, unused land, built‐up land, and water body in each lake's watershed were extracted from a land use map interpreted from Landsat TM images. A t‐test indicated that lower Yangtze floodplain lakes were shallower and had higher percentages of cropland and built‐up land in watersheds than Yunnan plateau lakes. Pearson's correlation analysis indicated that both watershed land use and lake morphometric variables were significantly related to most of the trophic state parameters. However, stepwise regression analyses demonstrated that the trophic state of the lower Yangtze floodplain lakes was mainly controlled by the percentages of cropland and built‐up land in watersheds, while that of Yunnan plateau lakes was mostly determined by the lake depth and WRT. These results suggest that the relative effects of watershed land use and lake morphology on lake trophic state are dependent on the lake's location. This study can provide some useful information in watershed land use management for controlling eutrophication in Chinese lakes.  相似文献   

10.
湖滨带是湖泊与陆地生态系统间非常重要的生态过渡带,能够保障周围生态系统结构的完整以及功能的正常发挥.随着湖滨带被持续开发与利用,人为干扰对湖滨带的影响逐渐增强.大型底栖动物是淡水生态系统的重要生物类群之一,也是物质循环和能量流动的主要环节,起着承上启下的关键作用.为了解湖滨带开发利用对大型底栖动物群落结构的影响,2020年8月对洪泽湖湖滨带49个样点的大型底栖动物进行调查.共采集到大型底栖动物49种,隶属3门7纲17目26科44属,各样点大型底栖动物的密度差别较大,介于6.67~1386.67 ind./m2之间,整体上呈现西北高,东南低的趋势.相似性分析结果表明,河口型湖滨带和大堤型湖滨带与其他类型湖滨带差异显著,而围网型、圈圩型和光滩型3种湖滨带类型之间的大型底栖动物群落差异均不显著.相似性百分比分析结果表明,腹足纲的环棱螺属是造成不同湖滨带类型差异的主要物种.典范对应分析结果表明,悬浮物(SS)、溶解态总氮、pH、透明度(SD)、浊度、水生植物盖度和扰动指数对大型底栖动物群落有显著影响.考虑不同湖滨带宽度的开发利用情况,发现湖滨带开发利用200 m范围内,物种-环境解释率最高,说明200 m湖滨带范围内的开发利用情况对大型底栖动物的影响最大,对湖滨带200 m范围内的开发利用应该加强管控.结构方程模型表明湖滨带开发利用主要通过影响水生植物盖度、总氮、硝态氮、叶绿素a、SS、SD等进而影响大型底栖动物,且围网也会直接影响大型底栖动物群落结构.  相似文献   

11.
Ephemeral aquatic ecosystems have a global distribution being most abundant in semi-arid and arid regions. Due to anthropogenic impacts threatening these environments, there is a need to understand various factors and processes structuring animal communities in these habitats. Macroinvertebrate and zooplankton assemblages were studied in different ephemeral (i.e. flood plain, large endorheic and small endorheic) pans in the south-eastern Lowveld of Zimbabwe in the wet season. Ten Cladoceran species, Calanoids and Cyclopoids taxa and thirty-three macroinvertebrate taxa were identified over the entire hydroperiod. Predator macroinvertebrates were the dominant taxa especially in endorheic pans. The pan categories differed significantly in both zooplankton and macroinvertebrates composition and richness, with zooplankton and macroinvertebrate taxa richness being high in flood plain pans. Conductivity, fish presence, hydroperiod, maximum depth, turbidity and vegetation cover played a major role in shaping both zooplankton and macroinvertebrate communities. The macroinvertebrate community assemblage reveals that small endorheic and flood plain pans represent extremes ends of the environmental gradient in the region while large endorheic pans represent an intermediate end.  相似文献   

12.
The spatial and temporal distribution of humic substances in aquatic ecosystems can have important effects on ecosystem productivity, negatively impacting primary productivity while positively impacting secondary productivity. In the present investigation, a large shallow lake ecosystem was studied to determine the spatial and seasonal variation of the composition and concentration of humic substances. Concentrations of total dissolved organic matter, humic acid, and fulvic acid were found to display significant spatial distributions (1.3…13.5 mg/L, DOM; 0.1…5.4 mg/L, HA). The distribution is described by using mapping techniques and the analysis of the spatial distribution of the lake. An analysis of the seasonal variations also indicated the dependence of the occurrence of these compounds on meteorological and hydrological conditions. To identify the potential sources of these organic materials, an analysis was made of the ratio of humic and fulvic acid fractions and total DOM. It was found that areas of high DOM concentration coincided with the areas of highest HA percentage of total DOM. Furthermore using the ratio of the normalised concentrations of HA, FA, and residual DOM (< 5000 g/mol) it was found that areas dominated by each are spatially distinct. This confirms the hypothesis that in these shallow lakes, photodegradation and bacterioplankton activity will create a residence time dependent zonation of each component of the total DOM.  相似文献   

13.
The European Water Framework Directive requires that member states assess all their surface waters based on a number of biological elements, including macroinvertebrates. Since 1989, the Flemish Environment Agency has been using the Belgian Biotic Index for assessing river water quality based on macroinvertebrates. Throughout the years, the Belgian Biotic Index has proven to be a reliable and robust method providing a good indication of general degradation of river water and habitat quality. Since the Belgian Biotic Index does not meet all the requirements of the Water Framework Directive, a new index, the Multimetric Macroinvertebrate Index Flanders (MMIF) for evaluating rivers and lakes was developed and tested. This index was developed in order to provide a general assessment of ecological deterioration caused by any kind of stressor, such as water pollution and habitat quality degradation. The MMIF is based on macroinvertebrate samples that are taken using the same sampling and identification procedure as the Belgian Biotic Index. The index calculation is a type-specific multimetric system based on five equally weighted metrics, which are taxa richness, number of Ephemeroptera, Plecoptera and Trichoptera taxa, number of other sensitive taxa, the Shannon-Wiener diversity index and the mean tolerance score. The final index value is expressed as an Ecological Quality Ratio ranging from zero for very bad ecological quality to one for very good ecological quality. The MMIF correlates positively with dissolved oxygen and negatively with Kjeldahl nitrogen, total nitrogen, ammonium, nitrite, total phosphorous, orthophosphate and biochemical and chemical oxygen demand. This new index is now being used by the Flemish Environment Agency as a standard method to report about the status of macroinvertebrates in rivers and lakes in Flanders within the context of the European Water Framework Directive.  相似文献   

14.
云贵高原湖泊夏季浮游植物组成及多样性   总被引:2,自引:2,他引:0  
浮游植物是水生生态系统中重要的初级生产者,对维持水生态系统的平衡起着十分重要的作用.根据2008年云贵高原湖泊丰水期浮游植物调查数据,系统地分析了云贵高原13个湖泊中浮游植物的种群密度、生物量、组成及其多样性.云贵高原13个湖泊中共鉴定出浮游植物7门109种(绿藻52种、蓝藻23种、硅藻20种、其他14种).13个湖泊浮游植物Shannon-Wiener指数在0.5-2.2之间,其值大小与单个环境因子无显著相关.相关分析发现浮游植物总量与总氮、总磷、CODMn、硝态氮含量显著正相关,物种丰富度与总氮、总磷(0.1mg/L范围内)、CODMn含量亦显著正相关.另外,研究也发现各湖泊间浮游植物组成的相似性与各湖泊间营养状态差异显著负相关.由此可见,湖泊的营养状态不仅影响浮游植物的总量、组成以及物种丰富度,而且也影响各湖泊物种组成的相似性.  相似文献   

15.
云南高原湖泊有色可溶性有机物和颗粒物光谱吸收特性   总被引:9,自引:6,他引:3  
云南高原湖泊是我国湖泊分布最密集的五大湖群之一,不但湖泊数量众多而且类型多样.由于湖泊所处位置海拔较高,容易受只益增强UV-B辐射影响.通过对云南高原34个湖泊有色可溶性有机物和颗粒物吸收测定,分析其光谱吸收特性及对总吸收的贡献,有利于深刻理解紫外辐射在高原湖泊内衰减.不同湖泊间CDOM吸收差异明显,其大小与水体营养盐状况相关,CDOM吸收系数与水体总氮存在显著正相关.增加背景项的指数函数模型能最好模拟CDOM光谱吸收.除在浮游植物浓度非常高的杞麓湖、听湖、星云湖,颗粒物吸收系数在675nm附近存在一个吸收蜂外,其它湖泊总颗粒物光谱吸收大致随波长的增加吸收系数逐渐降低,呈现非色素颗粒物光谱吸收特征,整体上颗粒物吸收以非色素颗粒物为主.CDOM对总吸收的贡献主要集中在600nm以下波长,尤其是400nm以下的紫外波段,其在紫外波段(350-400nm)的贡献明显要大于光合有效辐射波段(400-700nm)(ANOVA,P<0.001).特别对于透明度SD≥1.0的清澈型湖泊,CDOM吸收对紫外辐射衰减的贡献更大,其吸收很大程度上决定了紫外辐射的影响深度.  相似文献   

16.
长江下游湖泊水生植物现状及与水环境因子的关系   总被引:4,自引:3,他引:1  
研究水生植物分布与环境因子的关系可为富营养化湖泊的生态修复提供重要科学依据.通过对长江下游10个不同营养水平湖泊的水生植物群落组成和环境状况进行野外调查,研究了长江下游湖泊主要水生植物分布状况及水环境因子对水生植物分布的影响.调查发现长江下游10个代表性湖泊主要水生植物共计6科7属11种,主要生活型为沉水植物.水生植物群落组成与环境因子的冗余分析结果显示,总氮、pH值和水深是显著影响这些不同营养水平湖泊水生植物分布的主导因子.  相似文献   

17.
乌伦古湖是我国十大内陆淡水湖之一,同时也是新疆维吾尔自治区的第二大湖泊和主要渔业基地.近年来,随着气候变化和人为因素的影响,湖区水体营养状况、生物群落组成等均发生了较大变化.为揭示该湖大型底栖无脊椎动物的群落结构特征及其对生态系统变化的响应,2006年11月至2008年7月设28个采样点对大型无脊椎底栖动物的群落结构特...  相似文献   

18.
Knowing the aquatic resources, such as emerging insects, that are entering terrestrial systems is important for food web and conservation studies, especially when water availability or quality is limited. Even though studies concerning benthic macroinvertebrates are numerous, insect emergence from lakes is less studied.To understand if water parameters (e.g., water temperature, oxygen concentration etc) determine insect emergence and the possible seasonal differences, we collected emergent insects from three different lakes in South Germany, during three seasons. We searched for common patterns of insect emergence at the three lakes. Moreover, the relative contribution of insects of aquatic origin to aerial flying arthropods was assessed, with collecting aerial flying arthropods at the shore.Chironomidae constituted the highest number of emerged insects in all lakes, however different patterns of emergence occurred in each lake (unimodal vs. bimodal) with different season-dependent times for the emergence peaks (spring, summer, beginning of autumn). Aquatic insects constituted a considerable proportion (at least 17%) of the aerial flying arthropods at the shore. The variation in insect emergence was explained by water temperature, however not by other water parameters or the nutrient values. Seasonal and spatial differences in insect emergence, should be considered when investigating aquatic-terrestrial interactions and designing conservation plans. A total biomass of up to 1.8 g m−2 of emerging insects from the littoral zone of Lake Constance can enter the terrestrial system in a year. We also provide length-dry weight relationships for emerged (adult) Chironomidae. These equations are useful to estimate the dry insect biomass from length data and currently such data lack for adult aquatic insects.  相似文献   

19.
Freshwater ecosystems are increasingly affected by human influences. Since the pre-industrial era, lakes of the Muskoka–Haliburton region of south-central Ontario have had increases in shoreline residential development and acid deposition. Previous research on 54 of these lakes, using sediment cores and diatom-based transfer functions, showed changes in lakewater pH and total phosphorus concentration between the preindustrial era and 1992. Since 1992, there has been further change, which we have documented for the same set of lakes, using similar methods. For example, dissolved organic carbon has increased and there have been significant increases in planktonic diatoms (e.g. Cyclotella stelligera) commonly associated with climate warming. More striking diatom changes have occurred in the past 15 years than between pre-industrial times and 1992. Significant changes observed in both chemical (e.g. pH, Ca, DOC) and biological data suggest that novel stressors, such as declines in lake calcium concentrations, acting in conjunction with climate and land-use change, have created ecosystems for which there are no historical analogs.  相似文献   

20.
The evolutions of diatom floras and the total phosphorous (TP) concentrations in the historical period were reconstructed for two lakes, Longgan and Taibai in the middle Yangtze River,based on high resolutional fossil diatom study from two sediment cores and an established regional diatom-TP transfer function. The TP concentration in Longgan Lake changed slightly in the range of 36-62 μg/L and kept its middle trophic level in the past 200 years. The changes of diatom assemblages reflect a macrophyte-dominated history of the lake. During the nineteenth century, the lake TP concentration increased comparatively, corresponding to the increase in abundance of benthic diatoms. The progressive increase of epiphytic diatoms since the onset of the twentieth century indicates the development of aquatic plants, coinciding with the twice drops of water TP level. The TP concentration in Taibai Lake kept a stable status about 50 μg/L before 1953 AD, while diatoms dominated by facultative planktonic Aulacoseira granulata shifted quickly to epiphytic diatom species, indicating a rapid expansion of aquatic vegetation. During 1953-1970 AD, the coverage of aquatic plants decreased greatly inferred by the low abundance of epiphytic diatoms as well as declined planktonic types, and the reconstructed TP concentration shows an obvious rising trend firstly, suggesting the beginning of the lake eutrophication. The lake was in the eutrophic condition after 1970, coinciding with the successive increase of planktonic diatoms. The comparison of the two lakes suggests the internal adjustment and purification function of aquatic plants for nutrients in water. The discrepancy of TP trends in the two lakes after 1960 reflects two different patterns of lake environmental response to human disturbance. Sediments in Taibai Lake clearly recorded the process of lake ecological transformation from the macrophyte-dominated stage to the algae-dominated stage. The limits of TP concentration (68-118 μg/L) in the transitional state can be considered as the critical value between the two stable ecosystems. Further work will be necessary to provide more evidence from the sediments in more eutrophic lakes for the primary inference. The reconstructive TP level and the inference of aquatic plants from fossil diatoms in different lakes, as well as their comparison provide a scientific basis for ecological restoration of eutrophic lakes in research regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号