首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
了解湖泊生态系统基准环境和历史演变规律是进行湖泊生态环境保护和管理的关键.本文研究江汉湖群32个浅水湖泊现代环境和基准环境下的摇蚊组合特征,分析摇蚊组合变化的趋势和影响因素,并探讨了江汉湖群生态和营养参考值.研究发现Paratanytarsus penicillatus-type、Microchironomus tener-type、Cricotopus sylvestris-type、Polypedilum nubifertype、Dicrotendipes nervosus-type、Procladius等为基准环境下的摇蚊优势种.现代环境中Chironomus plumosus-type、Microchironomus tabarui-type、Procladius、Tanypus、Propsilocerus akamusi-type等富营养种明显增多.摇蚊组合CONISS聚类分析结果表明,32个湖泊主要分为3类,其中21个湖泊(第Ⅰ、Ⅱ类)的摇蚊属种与基准环境相比发生了显著变化,主要原因是流域营养盐输入和水生植被的破坏.本研究介绍了摇蚊古生态研究在重建湖泊基准环境方面的应用,并为湖泊管理和生态修复提供参考数据.  相似文献   

2.
Increased ultraviolet-B radiation (UV-B) in aquatic ecosystems brought about by stratospheric ozone depletion may result in increased formation rates of photochemical reaction products in the surface waters of aquatic ecosystems. In this study, the potential impact of increases in lower wave-length radiation on the formation of hydrogen peroxide (H2O2) and singlet oxygen (1O2) was modelled for lakes over a range of dissolved organic carbon (DOC) concentrations. The impact of increased UV-B radiation on the production of carbon monoxide (CO) was also calculated for two humic stained systems. The relative increases of H2O2 and1O2 production were greater in the clear lakes (70% increase in photochemical reaction rates near the surface) than the coloured systems (25%). Production of CO in the study sites also increased under depleted ozone conditions implying increased DOC losses to the overlying atmosphere.  相似文献   

3.
Aquatic dance flies (Empididae; Clinocerinae and Hemerodromiinae) are important components of freshwater assemblages, especially in running waters. They are predators as larvae and adults and thus essential for understanding aquatic food webs. This study was conducted in Plitvice lakes National Park (Croatia) representing a wide variety of freshwater habitats (springs, streams, lakes and tufa barriers). Adults were collected monthly from March 2007 until March 2009 using pyramid-type emergence traps at 13 locations. A total of 3865 specimens comprising 18 species were collected. The dominant genus was Chelifera, while the most abundant species was Hemerodromia unilineata. All species were univoltine except Chelifera precabunda, Chelifera pyrenaica and Chelifera stigmatica that were bivoltine. Considerable differences in composition and structure of aquatic dance flies assemblages were recorded along a longitudinal gradient of studied sites, primarily related to differences in physical and chemical parameters of water. Water temperature was the main factor influencing the timing of emergence. Hemerodromia species preferred variable water temperature throughout the year while the majority of the Chelifera species preferred stable water temperature characteristic of spring sites. Furthermore, discharge affected assemblage composition of aquatic dance flies. The highest abundance of aquatic dance flies was recorded in lotic habitats with fast water current over substrates of moss, gravel and particulate tufa with detritus. These results give a new insight on microhabitat preference and their distribution on unique karstic habitats.  相似文献   

4.
Biogeochemical Indicators of Aquatic Ecosystem Pollution by Heavy Metals   总被引:1,自引:0,他引:1  
Leonova  G. A. 《Water Resources》2004,31(2):195-202
The present-day environmental state of some artificial (Irkutsk, Bratsk, and Novosibirsk reservoirs) and natural (lakes in Altai Territory and Yamal-Nenets Autonomous Okrug and the Tom River) water bodies in Western and Eastern Siberia was evaluated using biogeochemical indicators. The biogeochemical approach is presented as the best for establishing zones of risk and environmental disaster, since biogeochemical cycles play important role in aquatic ecosystems and unite all their blocks as a result of biogenic migration of chemical elements. Aquatic ecosystems transformed under anthropogenic impact are recognized and local sources of water pollution are identified.  相似文献   

5.
浮游植物是水生生态系统中重要的初级生产者,对维持水生态系统的平衡起着十分重要的作用.根据2008年云贵高原湖泊丰水期浮游植物调查数据,系统地分析了云贵高原13个湖泊中浮游植物的种群密度、生物量、组成及其多样性.云贵高原13个湖泊中共鉴定出浮游植物7门109种(绿藻52种、蓝藻23种、硅藻20种、其他14种).13个湖泊浮游植物Shannon-Wiener指数在0.5-2.2之间,其值大小与单个环境因子无显著相关.相关分析发现浮游植物总量与总氮、总磷、CODMn、硝态氮含量显著正相关,物种丰富度与总氮、总磷(0.1mg/L范围内)、CODMn含量亦显著正相关.另外,研究也发现各湖泊间浮游植物组成的相似性与各湖泊间营养状态差异显著负相关.由此可见,湖泊的营养状态不仅影响浮游植物的总量、组成以及物种丰富度,而且也影响各湖泊物种组成的相似性.  相似文献   

6.
巢湖流域水生植物多样性   总被引:2,自引:1,他引:1  
水生植物在浅水湖泊或河流生态系统中具有非常重要的作用.通过2次野外实地调查,对巢湖流域水生植物物种的区系组成和多样性进行初步分析.结果表明:巢湖流域水生植物共有43科85属123种(含种下分类单位,下同),其中蕨类植物有5科6属6种,被子植物38科77属117种,在被子植物中双子叶植物25科39属63种,单子叶植物13科40属54种.水禾(Hygroryza aristata)为安徽省首次记录;以禾本科(Gramineae)、蓼科(Polygonaceae)和莎草科(Cyperaceae)等为优势科;以蓼属(Polygonum)、眼子菜属(Potamogeton)和菱属(Trapa)等为优势属,属的组成比较分散,寡种属和单种属占总属数的96.5%;以喜旱莲子草(Alternanthera philoxeroides)、芦苇(Phragmites australis)、菹草(Potamogeton crispus)、菱(Trapa sp.)、金鱼藻(Ceratophyllum demersum)和黑藻(Hydrilla verticillata)等为优势种;从分布区类型看,在科级水平上有6个类型,科的分布区类型以世界广布最多,达55.81%,热带分布的科(11科)多于温带分布的科(8科);在属级水平上有13个类型,属的分布区类型以世界广布最多(36.47%),其次是泛热带分布(20.0%);从不同流域来看,水生植物物种多样性以白石天河流域最高,店埠河南淝河流域最低,这可能与南淝河水质污染比较严重有一定的关系.  相似文献   

7.
Stenina  A. S.  Khokhlova  L. G.  Patova  E. N.  Lytkina  Zh. A. 《Water Resources》2004,31(5):545-552
Chemical characteristics of the surface water and algae in lakes in the Seduiyakha River basin are presented. Specific features of components of limnetic ecosystems under the influence of anthropogenic factors in the territory of an oil–gas condensate field are shown. Ambiguous response of algal communities to changes in the aquatic environment is revealed.  相似文献   

8.
长三角地区大部分湖泊为非通江湖泊,地势低平,港汊及闸坝众多,水流宣泄不畅,水力滞留时间较长,加之周边地区城镇人口稠密.因此与水滞留时间短的通江湖泊相比,非通江湖泊的有色可溶性有机物(CDOM)来源和组成具有差异性.本文选取了3个重要的中型非通江供水湖泊——滆湖、淀山湖和阳澄湖,对枯水期、平水期、丰水期3种水文情景下CDOM组成结构变化特征进行分析,从而进一步揭示该类湖泊CDOM来源和对水文情景响应的内在机理.结果表明:滆湖、淀山湖和阳澄湖通过平行因子分析法得到2种类腐殖质(C1和C4)和2种类蛋白质(C2和C3),湖泊CDOM结构受到降雨事件和人类活动的双重影响.三个湖泊类蛋白质的高值在空间上主要集中在人类活动频繁的湖区,并且类蛋白质平均荧光强度与叶绿素a浓度相关性较差,说明湖泊类蛋白质组分受到内源藻类降解、外源人类生产生活排放双重作用的影响.三个湖泊类蛋白质的平均荧光强度和总氮浓度均在枯水期显著高于丰水期,说明降雨量的增加可以稀释湖泊有机质浓度;同时,陆源类腐殖质C1与溶解性有机碳、总氮、总磷、叶绿素a浓度呈显著正相关,并且随着降雨量增加,类蛋白质的占比逐渐降低,滆湖从86.84%降低至62.49%,淀山湖从96.53%降低至90.56%,阳澄湖从98.40%降低至96.26%,说明降雨事件也可以增强径流的冲刷作用,携带更多腐殖化程度高的陆源有机质进入湖泊.本研究发现降雨过程和人类活动共同作用于滆湖、淀山湖和阳澄湖CDOM库,研究结果可以为进一步保障太湖流域人类用水安全提供参考依据.  相似文献   

9.
水生植被对于维持水生态系统结构和功能稳定性具有举足轻重的作用,而重建水生植物被认为是污染湖泊生态修复的重要手段.氮素是水生态系统重要的限制性元素之一,根着挺水植物生长发育无疑将深刻地影响着沉积物氮的迁移转化过程,但水生植物不同生长阶段对沉积物氮的需求和植物代谢强度均不同,目前对挺水植物完整生长过程中沉积物氮组分及含量变...  相似文献   

10.
Although acidifying deposition in western North America is lower than in many parts of the world, many high‐elevation ecosystems there are extremely sensitive to acidification. Previous studies determined that the Mount Zirkel Wilderness Area (MZWA) has the most acidic snowpack and aquatic ecosystems that are among the most sensitive in the region. In this study, spatial and temporal variability of ponds and lakes in and near the MZWA were examined to determine their sensitivity to acidification and the effects of acidic deposition during and after snowmelt. Within the areas identified as sensitive to acidification based on bedrock types, there was substantial variability in acid‐neutralizing capacity (ANC), which was related to differences in hydrological flowpaths that control delivery of weathering products to surface waters. Geological and topographic maps were of limited use in predicting acid sensitivity because their spatial resolution was not fine enough to capture the variability of these attributes for lakes and ponds with small catchment areas. Many of the lakes are sensitive to acidification (summer and autumn ANC < 100 µeq L?1), but none of them appeared to be threatened immediately by episodic or chronic acidification. In contrast, 22 ponds had minimum ANC < 30 µeq L?1, indicating that they are extremely sensitive to acidic deposition and could be damaged by episodic acidification, although net acidity (ANC < 0) was not measured in any of the ponds during the study. The lowest measured pH value was 5·4, and pH generally remained less than 6·0 throughout early summer in the most sensitive ponds, indicating that biological effects of acidification are possible at levels of atmospheric deposition that occurred during the study. The aquatic chemistry of lakes was dominated by atmospheric deposition and biogeochemical processes in soils and shallow ground water, whereas the aquatic chemistry of ponds was also affected by organic acids and biogeochemical processes in the water column and at the sediment–water interface. These results indicate that conceptual and mechanistic acidification models that have been developed for lakes and streams may be inadequate for predicting acidification in less‐understood systems such as ponds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Results of long-term studies of crude oil transformations in water and bottom sediments of river ecosystems polluted as a result of oil spills are presented. Regularities in changes in the concentration ratio of hydrocarbon and resinous components of oil in water and bottom sediments under the effect of natural selfpurification processes of aquatic ecosystems are found out.  相似文献   

12.
A hydrochemical investigation was carried out in spring, summer, and autumn, in the years 1991–1994, in three dystrophic lakes of the Wigry National Park (NE Poland). In spite of the fertile catchment basin, the developing ombrofile peat bogs of lake environment results in the acidification of lakes, the presence of small concentrations of dissolved mineral substances (below 50 mg L–1), and exceptionally high DOC concentrations, exceeding 10 mg L–1 C. During summer, a strong thermic stratification develops in the lakes, with constant conditions of oxygen deficiency prevailing below 3 m. In the course of the spring and autumn mixing of dystrophic lakes, the deterioration of oxygen conditions occurs in the epilimnion. In spite of high TP and NH4+ concentrations, which increase from spring to autumn, the conditions developing in the lakes are unfavourable, for the functioning of aquatic organisms, on account of the strong shading. The increased direct irradiation of water bodies caused by deforestation or favourable atmospheric conditions results in an increased trophy of lakes.  相似文献   

13.
沉水植物附植生物群落生态学研究进展   总被引:6,自引:4,他引:2  
在高等水生植物表面经常附着生长着藻类、真菌和细菌等,这些有机群体组成附植生物群落,在大中型浅水湖泊中普遍存在.附植生物群落具有特定的物种组成和空间结构,并随季节推移和沉水植物生长表现出一定的动态变化特征.附植生物群落与宿主植物及周围水体环境联系密切,不仅能够表征水体营养盐、光照、温度等环境因子特征,与沉水植物、食草动物、浮游植物等水生生物类群也存在不同的相互作用.水生生态系统中,附植生物群落参与水体营养物质转化,在草-藻型湖泊生态系统的相互转化过程中起重要作用;其较高的初级生产力作为水生动物重要的食物来源,增加了食物网的多样性;同时,附植生物群落因其独特的生理生态特征正逐渐被应用于水质净化和水环境质量监测.本文在综述近年来附植生物群落研究进展的基础上,分析了附植生物群落的组成结构和动态变化特征,阐述了附植生物群落在水生生态系统中的功能,可为湖泊富营养化治理,尤其是沉水植被的生态修复和管理提供科学依据.  相似文献   

14.
Aquatic plants are essential for maintaining the diversity and stability of a lake ecosystem. Stable carbon isotopes (δ13C) of macrophytes have been widely used as a powerful tool to study ecological processes and paleoenvironmental evolution in lakes. Varying results are obtained when using the δ13C of macrophytes to study the changes in the lake environment at different spatio-temporal scales. Thus, sample preparation and subsequent laboratory analyses are crucial for studying environmental changes using the isotopic signal retained in the macrophytes, and are essential for the interpretation of isotope-environment relationships. This study analyzed the δ13C of different tissue components of macrophytes in three lakes of the lower Yangtze River basin, and a correlation analysis was performed on aquatic environments influencing the δ13C values in the different tissue components of macrophytes. The test results showed the difference between the δ13C values of the whole sample and cellulose. Relative analyses indicated that the major factors contributing to the δ13C variability in macrophytes were pH and the concentration of dissolved inorganic carbon (DIC). The δ13C of α-cellulose (δ13CAC) is more sensitive to environmental variables than that of the whole sample (δ13CW) and holocellulose (δ13CHC). The results of this study imply that extraction of α-cellulose is a prerequisite for research on the changes in lake environment using δ13C of macrophytes. This study aims to provide theoretical and data basis for further research on the environmental and ecological change using stable carbon isotopes of aquatic plants.  相似文献   

15.
The history of aquatic environmental pollution goes back to the very beginning of the history of human civilization. However, aquatic pollution did not receive much attention until a threshold level was reached with adverse consequences on the ecosystems and organisms. Aquatic pollution has become a global concern, but even so, most developing nations are still producing huge pollution loads and the trends are expected to increase. Knowledge of the pollution sources and impacts on ecosystems is important not only for a better understanding on the ecosystem responses to pollutants but also to formulate prevention measures. Many of the sources of aquatic pollutions are generally well known and huge effort has been devoted to the issue. However, new concepts and ideas on environmental pollution are emerging (e.g., biological pollution) with a corresponding need for an update of the knowledge. The present paper attempts to provide an easy-to-follow depiction on the various forms of aquatic pollutions and their impacts on the ecosystem and organisms.  相似文献   

16.
2019年春、秋两季,对江西省76个湖泊的底栖动物进行了调查,在分析其群落结构和多样性的基础上,探讨了多样性与环境因子间的关系,旨在确定影响大型底栖无脊椎动物多样性的重要环境因子,以期为江西省湖泊的精准化管理提供科学依据和技术支持。两次调查共检出140个分类单元,以水生昆虫和软体动物为主,摇蚊类物种数占水生昆虫物种数的53.62%。富营养指示种(长足摇蚊属一种和摇蚊属一种)为春、秋两季的优势分类单元,湖沼典型种(长足摇蚊属一种、摇蚊属一种、石田螺属一种、苏氏尾鳃蚓和霍甫水丝蚓)的丰度变化导致了群落结构的季节变化。大型底栖无脊椎动物α多样性水平较低,基于PLSR和PLS-SEM的分析结果表明,影响大型底栖无脊椎动物多样性指标的环境因子既与藻类种群动态密切相关,也与水质状态有关。大型底栖无脊椎动物多样性与藻类种群状态存在稳定的联系,不受季节因素的影响,过高的藻类丰度不利于大型底栖无脊椎动物多样性的提高,而较好的水质状况有利于大型底栖无脊椎动物多样性的提高。为保护江西省湖泊大型底栖无脊椎动物资源,应在具有渔业养殖功能的湖泊和城镇湖泊中进行水生植物的修复工作,使藻型湖泊向草型湖泊方向演化;对一...  相似文献   

17.
The data given are the results of many-year studying the distribution of the concentrations of main oil components (hydrocarbons, surfactants, and asphaltene-tarry substances) in the water mass, vertically settling particulate matter, and bottom sediment cores taken from the section Lower Don-The Gulf of Taganrog-Russian sector of the Sea of Azov in summer and autumn periods in 2006–2011. Spatial and seasonal regularities in the distributions of the total concentration of oil components and the values of their ratios in water, as well as the spatial and annual features of their accumulation in bottom sediments have been established. Radiological methods have been used for layer-by-layer dating of bottom sediment cores and determine the thickness of the layer that had formed under the maximal anthropogenic impact on ecosystems. The presence of considerable amounts of hydrocarbons of modern biological origin has been revealed in all components of examined aquatic complexes.  相似文献   

18.
随着社会经济和城市化进程的快速发展,湖泊水环境污染问题日益突出,加剧了湖泊原有功能的退化和丧失,因此污染治理成为了湖泊功能恢复和可持续发挥的必要条件,但如何实现污染精准溯源又是污染治理的重要前提。为此,本文以太湖流域滆湖为例,采用一种新兴技术——水质荧光指纹法开展湖泊污染溯源。于2021年累计采集滆湖周边70个农业、13个生活、3个企业排口的瞬时出水构建污染源荧光指纹库,连续12个月采集滆湖湖体8个样点水样分析水体荧光组分。通过平行因子分析共解析出4种污染源指纹和滆湖5种水体组分,经荧光相似度(塔克同余系数)分析进一步明确滆湖主要受到种植业面源、生活源和工业源的影响。此外,荧光强度与叶绿素a浓度和藻密度的强相关性表明藻类繁殖活动也会影响滆湖。从不同污染源对滆湖的时空影响特征来看,种植业面源主要在春、夏季影响西部、中部水域,生活源主要在夏、冬季影响西部、北部水域,工业源主要在特定月份(3 4月、10 12月)影响西部水域,藻类繁殖活动主要在夏季影响湖体。通过荧光组分与水质参数的时空相关性分析得到农业源和总磷、总氮,生活源和氨氮、有机物参数(BOD5、COD...  相似文献   

19.
张怡晅  庞锐  任源鑫  程丹东 《湖泊科学》2022,34(5):1550-1561
城市非点源污染向水生生态系统中输入大量的溶解有机物(DOM),对生态系统健康产生重要影响.有色可溶性有机物(CDOM)是广泛分布于自然水体中的一类成分和结构复杂、含有多种高活性化学官能团的大分子聚合物,是DOM的重要组分,对水生生态系统健康、能量流动及生物地球化学循环有重要影响.光化学反应和微生物代谢过程被认为是控制水体CDOM转化、降解和循环的主要影响因素.然而,对城市化如何影响CDOM组成以及光化学和微生物如何相互作用影响城市水体CDOM动态的理解是不足的.因此,为评估光化学过程和微生物代谢对不同城市水体CDOM降解与转化的贡献,解析不同城市水体CDOM光化学/微生物降解作用机理,本研究在英国伯明翰选择3类具有典型DOM来源的水体样本,通过实验室9 d受控培养实验,对比分析光化学以及微生物影响下CDOM来源和组成的变化.结果表明:(1)城市河流由于接受上游污水排放及较短的水力滞留时间,含有丰富的芳香性碳,其CDOM光化学活性明显高于湖泊,光化学降解率为16.60%;(2)城市湖泊CDOM受人类活动影响,自生源类荧光成分富集,生物活性高,在微生物培养过程中CDOM增加了62.16%,...  相似文献   

20.
Waterborne carbon (C) export from terrestrial ecosystems is a potentially important flux for the net catchment C balance and links the biogeochemical C cycling of terrestrial ecosystems to their downstream aquatic ecosystems. We have monitored hydrology and stream chemistry over 3 years in ten nested catchments (0.6–15.1 km2) with variable peatland cover (0%–22%) and groundwater influence in subarctic Sweden. Total waterborne C export, including dissolved and particulate organic carbon (DOC and POC) and dissolved inorganic carbon (DIC), ranged between 2.8 and 7.3 g m–2 year–1, representing ~10%–30% of catchment net ecosystem exchange of CO2. Several characteristics of catchment waterborne C export were affected by interacting effects of peatland cover and groundwater influence, including magnitude and timing, partitioning into DOC, POC, and DIC and chemical composition of the exported DOC. Waterborne C export was greater during the wetter years, equivalent to an average change in export of ~2 g m–2 year–1 per 100 mm of precipitation. Wetter years led to a greater relative increase in DIC export than DOC export due to an inferred relative shift in dominance from shallow organic flow pathways to groundwater sources. Indices of DOC composition (SUVA254 and a250/a365) indicated that DOC aromaticity and average molecular weight increased with catchment peatland cover and decreased with increased groundwater influence. Our results provide examples on how waterborne C export and DOC composition might be affected by climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号