首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mafic tholeiitic basalts from the Nejapa and Granada (NG) cindercone alignments provide new insights into the origin and evolutionof magmas at convergent plate margins. In comparison to otherbasalts from the Central American volcanic front, these marietholeiitic basalts are high in MgO and CaO and low in Al2Op,K2O1, Ba and Sr. They also differ from other Central Americanbasalts, in having clinopyroxene phenocrysts with higher MgO,CaO and Cr2O3 concentrations and olivine phenocrysts with higherMgO contents. Except for significantly higher concentrationsof Ba, Sr and 87Sr/86Sr, most of the tholeiites are indistinguishable in compositionfrom mid-ocean ridge basalts. In general, phenocryst mineralcompositions are also very similar between NG tholeiites andmid-ocean ridge basalts. The basalts as a whole can be dividedinto two groups based on relative TiO2-K2O concentrations. Thehigh-Ti basalts always have the lowest K2O and Ba and usuallyhave the highest Ni and Cr. All of the basalts have experienced some fractional crystallizationof olivine, plagioclase and clinopyroxene. Relative to otherCentral American basalts, the Nejapa-Granada basalts appearto have fractionated at low PT and PH2O. The source of primarymagmas for these basalts is the mantle wedge. Fluids and/ormelts may have been added to the mantle wedge from hydrothermally-altered,subducting oceanic crust in order to enrich the mantle in Sr,Ba and 87Sr/86Sr, but not in K and Rb. The role of lower crustaicontamination in causing the observed enrichments in Sr, Baand 87Sr/86Sr of NG basalts in comparison to mid-ocean ridgebasalts, however, is unclear. Rutile or a similar high-Ti accessoryphase may have been stable in the mantle source of the low-TiNG basalts, but not in that of the high-Ti basalts. Mafic tholeiiticbasalts, similar to those from Nejapa and Granada, may representmagmatic compositions parental to high-Al basalts, the mostmafic basalts at most Central American volcanoes. The characterof the residual high-Al basalts after this fractionation stepdepends critically on PH2O Both high and low-Ti andesites are also present at Nejapa. Likethe high-Ti basalts, the high-Ti andesites have lower K2O andBa and higher Ni and Cr in comparison to the low-Ti group. Thehigh-Ti andesites appear to be unrelated to any of the otherrocks and their exact origin is unknown. The low-Ti andesitesare the products of fractional crystallization of plagioclase,clinopyroxene, olivine (or orthopyroxene) and magnetite fromthe low-Ti basalts. The eruption that deposited a lapilli sectionat Cuesta del Plomo involved the explosive mixing of 3 components:high-Ti basaltic magma, low-Ti andesitic magma and high-Ti andesiticlava.  相似文献   

2.
The bimodal NW Etendeka province is located at the continentalend of the Tristan plume trace in coastal Namibia. It comprisesa high-Ti (Khumib type) and three low-Ti basalt (Tafelberg,Kuidas and Esmeralda types) suites, with, at stratigraphicallyhigher level, interstratified high-Ti latites (three units)and quartz latites (five units), and one low-Ti quartz latite.Khumib basalts are enriched in high field strength elementsand light rare earth elements relative to low-Ti types and exhibittrace element affinities with Tristan da Cunha lavas. The unradiogenic206Pb/204Pb ratios of Khumib basalts are distinctive, most plottingto the left of the 132 Ma Geochron, together with elevated 207Pb/204Pbratios, and Sr–Nd isotopic compositions plotting in thelower 143Nd/144Nd part of mantle array (EM1-like). The low-Tibasalts have less coherent trace element patterns and variable,radiogenic initial Sr (  相似文献   

3.
Jurassic age volcanic rocks of the Stonyford volcanic complex(SFVC) comprise three distinct petrological groups based ontheir whole-rock geochemistry: (1) oceanic tholeiites; (2) transitionalalkali basalts and glasses; (3) high-Al, low-Ti tholeiites.Major and trace element, and Sr–Nd–Pb isotopic dataindicate that the oceanic tholeiites formed as low-degree partialmelts of normal mid-ocean ridge basalt (N-MORB)-source asthenospheresimilar in isotope composition to the East Pacific Rise today;the alkalic lavas were derived from an enriched source similarto that of E-MORB. The high-Al, low-Ti lavas resemble second-stagemelts of a depleted MORB-source asthenosphere that formed bymelting spinel lherzolite at low pressures. Trace element systematicsof the high-Al, low-Ti basalts show the influence of an enrichedcomponent, which overprints generally depleted trace elementcharacteristics. Tectonic discrimination diagrams show thatthe oceanic tholeiite and alkali suites are similar to present-daybasalts generated at mid-oceanic ridges. The high-Al, low-Tisuite resembles primitive arc basalts with an enriched, alkalibasalt-like overprint. Isotopic data show the influence of recycledcomponents in all three suites. The SFVC was constructed ona substrate of normal Coast Range ophiolite in an extensionalforearc setting. The close juxtaposition of the MORB-like olivinetholeiites with alkali and high-Al, low-Ti basalts suggestsderivation from a hybrid mantle source region that includedMORB-source asthenosphere, enriched oceanic asthenosphere, andthe depleted supra-subduction zone mantle wedge. We proposethat the SFVC formed in response to collision of a mid-oceanridge spreading center with the Coast Range ophiolite subductionzone. Formation of a slab window beneath the forearc duringcollision allowed the influx of ridge-derived magmas or themantle source of these magmas. Continued melting of the previouslydepleted mantle wedge above the now defunct subduction zoneproduced strongly depleted high-Al, low-Ti basalts that werepartially fertilized with enriched, alkali basalt-type meltsand slab-derived fluids. KEY WORDS: CRO; oceanic basalts; California  相似文献   

4.
Mafic-layered intrusions and sills and spatially associated andesitic basalts are well preserved in the Funing area, SW China. The 258±3 Ma-layered intrusions are composed of fine-grained gabbro, gabbro and diorite. The 260±3 Ma sills consist of undifferentiated diabases. Both the layered intrusions and volcanic rocks belong to a low-Ti group, whereas the diabases belong to a high-Ti group. Rocks of the high-Ti group have FeO, TiO2 and P2O5 higher but MgO and Th/Nb ratios lower than those of the low-Ti group. They have initial 87Sr/86Sr ratios (0.706–0.707) lower and ɛNd (−1.5 to −0.6) higher than the low-Ti equivalents (0.710–0.715 and −9.6 to −4.0, respectively). The high-Ti group was formed from relatively primitive, high-Ti magmas generated by low degrees (7.3 –9.5%) of partial melting of an enriched, OIB-type asthenospheric mantle source. The low-Ti group may have formed from melts derived from an EM2-like, lithospheric mantle source. The mafic rocks at Funing are part of the Emeishan large igneous province formed by a mantle plume at ∼260 Ma.  相似文献   

5.
The Paran continental flood basalt province is a voluminousbimodal volcanic sequence, with <5% silicic rocks (‘rhyolites’)lying on top of the basalts, concentrated towards the SouthAtlantic margin. Petrographically, the rhyolites have an anhydrousmineralogy (plagioclase, pyroxene, Fe–Ti oxides), and.two distinct groups are defined on the basis of phenocryst abundance.The Palmas group rhyolites are almost aphyric (<5% phenocrysts),in contrast to the plagioclase-rith Chapec group rhyolites(<25% phenocrysts). The plagioclase and clinopyroxene phenocrystsin the Palmas group rhyolites are rounded and poorly preserved,and are compositionally less evolved than those in the Chapecgroup. Calculated eruption temperatures are unusually high forsilicic magmas (950–1100C), and lie within the rangeof temperatures for the associated flood basalts. Chemically,the Palmas and Chapec group rhyolites are clearly distinguishable,with the most striking feature being the higher high field strengthelements, notably Ti, in the Chapec group. This mirrors thewell-documented low- and high-Ti division of the Paran basalts,and in addition there is a geographic correlation between thelow- and high- Ti basalt and rhyolite provinces, with high-Tivolcanics predominating in the north of the Paran Basin, andlow-Ti in the south. The Chapec group have Sr and Nd isotoperatios which overlap with those of the high-Ti basalts (87Sr/86Sr1300•705–0•708), whereas the Palmas group exhibita range towards high Sr isotope ratios (87Sr/86Sr130 0•714–0•727),continuing the trend of the low-Ti basalts to more radiogenicvalues. This suggests that assimilation of radiogenic materialhas occurred. Both rhyolite groups plot away from the isotopicfields for crustal basement types beneath the Paran, thus anorigin by simple crustal melting is discounted. Based on petrographic,chemical and isotopic data, petrogenetic models for the tworhyolite groups are developed, focusing on the clear geneticlink between the Palmas rhyolites and the low-Ti basalts, andthe Chapec rhyolites and the high-Ti basalts. The Chapec rhyolitesare modelled as partial melts ( 30%) of underplated high-Tibasalts, rather than fractionates, primarily because of thetime gap between eruption of the high-Ti basalts and Chapecrhyolites. However, the Palmas rhyolites are almost coeval withthe low-Ti basalts, and are modelled as the products of open-systemfractional crystallization from these low-Ti basaltic magmas.In addition, this low-Ti suite shows a continuous trend frombasalt to rhyolite in highly incompatible elements such as Zrand Hf consistent with a liquid line of descent, whereas thehigh-Ti magmas have a substantial gap in the concentration ofthese elements between the basalts and rhyolites. Experimentaldata support the derivation of both Paran rhyolite groups frombasaltic parents with moderately low water contents. Pressurecalculations suggest shallower ponding for the Palmas magmasthan for the Chapec magma (<5 kbar vs 5–15 kbar),and the style of eruption inferred for the two groups is explosive(rheoignimbritic) for the Palmas group, and effusive (lava flows)for the Chapec group. KEY WORDS: Paran; Brazil; rhyolits; petrogenesis; geochemistry *Corresponding author  相似文献   

6.
The nature of the source of continental flood basalts (CFB) is a highly debated topic. Proposed mantle sources for CFBs, including both high- and low-Ti basalts, include subcontinental lithospheric mantle (SCLM), asthenospheric mantle, and deep, plume-related mantle. Re-Os isotope systematics can offer important constraints on the sources of both ocean island basalts (OIB) and CFB, and may be applied to distinguish different possible melt sources. This paper reports the first Re-Os isotope data for the Late Permian Emeishan large igneous province (LIP) in Southwest China. Twenty one CFB samples including both low- and high-Ti basalts from five representative sites within the Emeishan LIP have been analyzed for Os, Nd, and Pb isotopic compositions. The obtained Os data demonstrate that crustal assimilation affected Os isotopic compositions of some Emeishan basalt samples with low Os concentrations but not all of the samples, and the Emeishan basalts with high Os contents likely experienced the least crustal contamination. The low and high-Ti basalts yield distinct Os signatures in terms of 187Os/188Os and Os content. The low-Ti basalt with the highest Os concentration (400 ppt) has a radiogenic Os isotopic composition (γOs(t), +6.5), similar to that of plume-derived OIB. Because the Os isotopic composition of basalts with relatively high Os concentrations (typically >50 ppt) likely represents that of their mantle source, this result implies a plume-derived origin for the low-Ti basalts. On the other hand, the high-Ti basalts with high Os concentration (over 50 ppt) have unradiogenic Os isotopic signatures (γOs(t) values range from −0.8 to −1.4), suggesting that a subcontinental lithosphere mantle (SCLM) component most likely contributed to the generation of these magmas. Combining Pb and Nd isotopic tracers with the Os data, we demonstrate that the low-Ti basaltic magmas in the Emeishan CFB were mainly sourced from a mantle plume reservoir, whereas the high-Ti basaltic magmas were most likely derived from a SCLM reservoir or were contaminated by a significant amount of lithospheric mantle material during plume-related magma ascent through the SCLM.  相似文献   

7.
峨眉山大火成岩省:地幔柱活动的证据及其熔融条件   总被引:138,自引:5,他引:138  
对苦橄岩中橄榄石斑晶及其中熔体包裹体的电子探针分析表明,峨眉山大火山岩省的原始岩浆具高镁( MgO > 16%)特征。玄武岩的 REE反演计算揭示,参与峨眉山玄武岩岩浆作用的地幔具有异常高的潜能温度( 1 550℃)。这些特征以及峨眉山玄武岩的大面积分布和一些熔岩所显示的类似于洋岛玄武岩 (OIB)的微量元素和 Sr- Nd同位素特征均为地幔热柱在能量和物质上参与峨眉山溢流玄武岩的形成提供了确凿证据。峨眉山两个主要岩类(高钛和低钛玄武岩)可能是不同地幔源区物质在不同条件下的熔融产物。低钛玄武岩形成于温度最高、岩石圈最薄的地幔柱轴部。地幔( ISr≈ 0.705,ε Nd(t)≈+ 2)熔融始于 140 km,并一直延续到较浅的深度( 60 km,尖晶石稳定区 ),部分熔融程度为 16%,这类岩石可能代表了峨眉山玄武岩的主体。而高钛玄武岩的母岩浆的形成基本局限在石榴子石稳定区( > 70 km),其源区特征为 : ISr≈ 0.704,ε Nd(t)≈+ 5,可能代表了热柱边部或消亡期地幔小程度部分熔融( 1.5%)的产物。  相似文献   

8.
The Hongshishan mafic–ultramafic intrusion (SIMS zircon U–Pb age 286.4 ± 2.8 Ma) consists of dunite, clinopyroxene peridotite, troctolite, and gabbro. Major elements display systematic correlations. Trace elements have identical distribution patterns, including flat rare-earth element (REE) patterns with positive Eu anomalies and enrichments in large ion lithophile elements (LILE) but depletions in Nb and Ta, indicating fractional crystallization as a key factor in magmatic evolution. Petrologic and geochemical variations in drill core samples demonstrate that minor assimilation and progressive magma injections were closely associated with Ni–Cu mineralization. Mass balance estimates and Sr–Nd isotopes reveal that the Hongshishan parental magmas were high-Mg and low-Ti tholeiitic basalts and were derived from a lithospheric mantle source that had been modified by subducted slab metasomatism before partial melting.

Southward subduction of the Palaeo-Tianshan–Junggar Ocean is further constrained by a compilation of inferred, subduction-induced modifications of mantle sources in mafic–ultramafic intrusions distributed in the eastern Tianshan–Beishan area. Integrating the regional positive ?Nd(t) granites, high-Mg and low-Ti basaltic magmas (mafic–ultramafic intrusions), and slightly later high-Ti basalts in NW China suggests that their petrogenesis could be attributed to Permian mantle plume activities.  相似文献   

9.
对信阳地区商丹断裂带南侧龟山岩组新元古代变质玄武岩进行了岩石学、地球化学及Sr-Nd同位素研究,分析结果显示该套玄武岩为亚碱性拉斑玄武系列,分为低Ti及高Ti两种类型:低Ti型较富Mg,不相容元素富集程度及稀土分馏程度较低,具有E-MORB的微量元素地球化学特征,Sr-Nd同位素组成相对富集,可能来自地幔柱引发的岩石圈地幔的部分熔融,并受到一定程度的地壳混染;高Ti型较富Fe,强烈富集不相容元素,具有OIB的地球化学特征,Sr-Nd同位素组成较为亏损,可能来自地幔柱的部分熔融,并较少受到地壳物质的影响。综合构造判别显示该套玄武岩可能为地幔柱伸展背景下的岩浆活动产物,可能为区域上沿商丹断裂带分布的中—新元古代局部伸展背景岩浆活动产物的组成部分。  相似文献   

10.
The paper reports data on the geology and tectono-magmatic reactivation of the Norilsk area and on the stratigraphy and geochemistry of its volcanic sequence, with the discussion of the sources and genesis of the ore magmas and the scale of the ore-forming process. According to the geochemistry of the lavas and intrusive rocks (Ti concentration and the La/Sm and Gd/Yb ratios), two types of the parental magmas are recognized: high-Ti magmas of the OIB type (from bottom to top, suites iv, sv, and gd of phase 1) and low-Ti magmas (suites hk, tk, and nd of phase 2 and suites mr-mk of phase 3), which were derived from the lithospheric mantle. The magmatic differentiation of the parental low-Ti magma of the tk type into a magma of the nd type was associated with the derivation of an evolved magma of the nd type, which was depleted in ore elements, and an ore magma, which was a mixture of silicate and sulfide melts, protocrysts of silicate minerals, and chromite. Judging from their geochemical parameters, the intrusions of the lower Norilsk type were comagmatic with the lavas of the upper part of the nd suite, and the ore-bearing intrusions of the upper Norilsk type were comagmatic with the lavas of the mr-mk suites. When the ore-bearing intrusions were emplaced, their magmas entrained droplets of sulfide melt and protocrysts of olivine and chromite and brought them to the modern magmatic chamber. These protocrysts are xenogenic with respect to the magma that formed the intrusions. In certain instances (Talnakh and Kharaelakh intrusions), the moving magma entrained single portions of sulfide magma, which were emplaced as individual subphases. The experimental study of the peridotite-basalt-fluid system shows that mantle reservoirs with protoliths of subducted oceanic crustal material could serve as sources of relatively low-temperature (1250–1350°C) high-Ti magnesian magmas of the rifting stage from an olivine-free source.  相似文献   

11.
Volcanic suites from Wawa greenstone belts in the southern Superior Province comprise an association of typical late Archean arc volcanic rocks including adakites, magnesian andesites (MA), niobium-enriched basalts (NEB), and ‘normal’ tholeiitic to calc-alkaline basalts to rhyolites. The adakites represent melts from subducted oceanic crust and all other suites were derived from the mantle wedge above the subducting oceanic lithosphere. The magnesian andesites are interpreted to be the product of hybridization of adakite melts with arc mantle wedge peridotite. The initial ?Hf values of the ∼2.7 Ga Wawa adakites (+3.5 to +5.2), magnesian andesites (+2.6 to +5.1), niobium-enriched basalts (+4.4 to +6.6), and ‘normal’ tholeiitic to calc-alkaline arc basalts (+5.3 to +6.4) are consistent with long-term depleted mantle sources. The niobium-enriched basalts and ‘normal’ arc basalts have more depleted ?Hf values than the adakites and magnesian andesites. The initial ?Nd values in the magnesian andesites (+0.4 to +2.0), niobium-enriched basalts (+1.4 to +2.4), and ‘normal’ arc tholeiitic to calc-alkaline basalts (+1.6 to +2.9) overlap with, but extend to lower values than, the slab-derived adakites (+2.3 to +2.8). The lower initial ?Nd values in the mantle-wedge-derived suites, particularly in the magnesian andesites, are attributed to recycling of an Nd-enriched component with lower ?Nd to the mantle wedge. As a group, the slab-derived adakites plot closest to the 2.7 Ga depleted mantle value in ?Nd versus ?Hf space, additionally suggesting that the Nd-enriched component in the mantle wedge did not originate from the 2.7 Ga slab-derived melts. Accordingly, we suggest that the enriched component had been added to the mantle wedge at variable proportions by recycling of older continental material. This recycling process may have occurred as early as 50-70 Ma before the initiation of the 2.7 Ga subduction zone. The selective enrichment of Nd in the sources of the Superior Province magmas can be explained by experimental studies and geochemical observations in modern subduction systems, indicating that light rare earth elements (e.g., La, Ce, Sm, Nd) are more soluble than high field strength elements (e.g., Zr, Hf, Nb, Ta) in aqueous fluids that are derived from subducted slabs. As a corollary, we suggest that the recycled Nd-enriched component was added to the mantle source of the Wawa arc magmas by dehydration of subducted sediments.  相似文献   

12.
Previously published platinum group element (PGE) and rare earth element data (REE) from a sample suite of the Palaeogene flood basalts of the East Greenland rifted margin are used to approximate primary magma compositions by numerical models of mantle melting. Both high-Ti and low-Ti basalts are found intercalated in the coastal section “the Sortebre Profile” in central East Greenland, and the apparent lack of mixing between the two series indicates coexistence of two geographically separated melting regions and plumbing systems during continental breakup above the Palaeogene Iceland plume. The lavas show little or no sign of crustal contamination and the limited variation in La/Sm and Cu/Pd ratios can be interpreted to reflect mantle source composition and melting processes. Numerical modelling indicate that the low-Ti series formed by F~20% melting in a columnar melting regime from a slightly depleted upper mantle source with a relatively normal S-content (~180 ppm S). In contrast, the high-Ti series formed by much lower degrees of melting (F~6%) in a spreading-related, triangular melting regime from a relatively S-poor (~100 ppm S) source. The low-Ti suite was S-undersaturated at the stage of melt segregation from a shallow mantle source due to the high degree of melting. In contrast, the high-Ti suite probably formed from a S-poor source where some low degree melt batches were S-saturated at the stage of deep segregation in distal parts of the triangular melting regime. This suite shows a geochemical high pressure garnet-signature and adiabatic decompression could therefore have played a role in keeping the mantle-derived S in solution before Fe-enrichment related to fractional crystallisation also increased the S-capacity of these melts. An erratum to this article can be found at  相似文献   

13.
Geochemical Evidence for Slab Melting in the Trans-Mexican Volcanic Belt   总被引:3,自引:0,他引:3  
Geochemical studies of Plio-Quaternary volcanic rocks from theValle de Bravo–Zitácuaro volcanic field (VBZ) incentral Mexico indicate that slab melting plays a key role inthe petrogenesis of the Trans-Mexican Volcanic Belt. Rocks fromthe VBZ are typical arc-related high-Mg andesites, but two differentrock suites with distinct trace element patterns and isotopiccompositions erupted concurrently in the area, with a traceelement character that is also distinct from that of other Mexicanvolcanoes. The geochemical differences between the VBZ suitescannot be explained by simple crystal fractionation and/or crustalassimilation of a common primitive magma, but can be reconciledby the participation of different proportions of melts derivedfrom the subducted basalt and sediments interacting with themantle wedge. Sr/Y and Sr/Pb ratios of the VBZ rocks correlateinversely with Pb and Sr isotopic compositions, indicating thatthe Sr and Pb budgets are strongly controlled by melt additionsfrom the subducted slab. In contrast, an inverse correlationbetween Pb(Th)/Nd and 143Nd/144Nd ratios, which extend to lowerisotopic values than those for Pacific mid-ocean ridge basalts,indicates the participation of an enriched mantle wedge thatis similar to the source of Mexican intraplate basalts. In addition,a systematic decrease in middle and heavy rare earth concentrationsand Nb/Ta ratios with increasing SiO2 contents in the VBZ rocksis best explained if these elements are mobilized to some extentin the subduction flux, and suggests that slab partial fusionoccurred under garnet amphibolite-facies conditions. KEY WORDS: arcs; mantle; Mexico; sediment melting; slab melting  相似文献   

14.
Northern Brazil contains remnants of Mesozoic flood basalts and hypabyssal rocks that were apparently emplaced during tectonism related to opening of the Atlantic Ocean. Analyses and new K-Ar ages reveal that this 700x250 km Maranhão province (5°–8°S) has low-Ti basalts (1.1 wt% TiO2) in the western part that range about 160 to 190 Ma, and high-Ti basalts (3.4–4.4 wt% TiO2) in the eastern part about 115–122 Ma. Low-Ti basalt compositions are less evolved and have a smaller range, Mg# 62-56, than the high-Ti basalts, Mg# 44–33. General characteristics of the least evolved members of low- and high-Ti groups include, respectively, Zr 100 and 250 ppm, Sr 225 and 475 ppm, Ba 200 and 500 ppm, Nb 10 and 26 ppm, Y 29 and 36 ppm, La/Yb(n) 4.2 and 8.8, where La(n) is 30 and 90. Overall compositions resemble the low- and high-Ti basaltic rocks of the Mesozoic Serra Geral (Paraná) province in southern Brazil. The Maranhão low-Ti basalts have more radiogenic Sr and Pb and higher 18O than the high-Ti basalts. Respectively, low- vs high-Ti: Sr26–54 vs 15–18; 206Pb/204Pb=18.25–.78 vs 18.22–.24; and 18O 8.9–12.6 vs 6.5–8.6. Nd isotopes overlap: Nd–1.6 to –3.8 vs –2.1 to –3. Ages, compositions, and isotopes indicate that the low- and high-Ti groups had independent parentages from enriched subcontinental mantle. However, both groups can be modeled from one source composition if low-Ti basalt isotopes reflect crustal contamination, and if the parentages for each group were picritic liquids that represent either higher (for low-Ti) or lower (for high-Ti) percentages of melting of that single source. When comparing Pb isotopes of Maranhão and Serra Geral high-Ti basalts (uncontaminated) to evaluate the DUPAL anomaly, Maranhão has Pb 7/4=4.6–11, and Pb 8/4=72–87; Serra Geral has Pb 7/4=10–13, and Pb 8/4=95–125. The small difference is not enough to conform to DUPAL contours, and is inconsistent with large-scale isotopic heterogeneity of mantle beneath Brazil prior to rifting of South America from Africa. Maranhão low-Ti magmas probably relate to the opening of central North Atlantic, and high-Ti magmas to the opening of equatorial Atlantic. The proposed greater percentage of source melting for low-Ti basalts may reflect a Triassic-Jurassic hotspot, while lesser melting for high-Ti magmas may relate to Cretaceous decompressional (rifting) melting.  相似文献   

15.
The Emeishan flood basalts can be divided into high-Ti (HT) basalt (Ti/Y>500) and low-Ti (LT) basalt (Ti/Y<500). Sr, Nd isotopic characteristics of the lavas indicate that the LT- and the HT-type magmas originated from distinct mantle sources and parental magmas. The LT-type magma was derived from a shallower lithospheric mantle, whereas the HT-type magma was derived from a deeper mantle source that may be possibly a mantle plume. However, few studies on the Emeishan flood basalts involved their Pb isotopes, especially the Ertan basalts. In this paper, the authors investigated basalt samples from the Ertan area in terms of Pb isotopes, in order to constrain the source of the Emeishan flood basalts. The ratios of 206Pb/204Pb (18.31–18.41), 207Pb/204Pb (15.55–15.56) and 208Pb/204Pb (38.81–38.94) are significantly higher than those of the depleted mantle, just lying between EM I and EM II. This indicates that the Emeishan HT basalts (in the Ertan area) are the result of mixing of EMI end-member and EMII end-member.  相似文献   

16.
We report major and trace element abundances for 147 samplesand Sr, Nd, Hf, and Pb isotope compositions for a 36 samplesubset of basaltic lava flows, sills, and dykes from the Karoocontinental flood basalt (CFB) province in Botswana, Zimbabwe,and northern South Africa. Both low- and high-Ti (TiO2 <2 wt % and > 2 wt %) rocks are included. MELTS modeling showsthat these magmas evolved at low pressure (1 kbar) through fractionalcrystallization of gabbroic assemblages. Whereas both groupsdisplay enrichment in light rare earth elements (LREE) relativeto heavy REE (HREE) and high field strength elements, and systematicnegative Nb anomalies, they differ in terms of contrasting middleREE (MREE) to HREE fractionation, which is greater for the high-Tibasalts. This reflects different depths of melting of slightlyenriched mantle sources: calculations suggest that the low-Tibasalts were generated by melting of a shallow spinel-bearing(2 % spinel) lherzolite, whereas the high-Ti magmas originatedfrom a deeper-seated garnet-bearing (2–7% garnet) lherzolite.In most isotope plots, the high-Ti lavas together with the picritesdefine a common trend from Bulk Silicate Earth (BSE) to compositionswith strongly negative Ndi and Hfi akin to those of some nephelinitesand lamproites. The low-Ti rocks are shifted from BSE-like tomore radiogenic Sr isotope ratios, indicative of upper crustalcontamination. Trace element and isotope characteristics ofthe Karoo magmas require a combination of enrichment processes(subduction induced?) and long-term isolation of the mantlesources. We propose two distinct scenarios to explain the originof the Karoo province. The first calls for polybaric meltingof spatially heterogeneous, partially veined, sub-continentallithospheric mantle (SCLM). Calculations show that mixing betweenSCLM (BSE) and a strongly Nd–Hf unradiogenic nephelinite-likecomponent (sediment input?) could account for the compositionalvariations of most of the high-Ti group lavas, whereas the mantlecomposition responsible for the low-Ti magmas is more likelyto be similar to a vein-free, metasomatically enriched SCLMcomponent. The second scenario involves mixing between two end-membersrepresented by the SCLM and its deep-seated alkalic veins anda sub-lithospheric (asthenospheric- or ocean island basalt-like?)mantle plume. In this case, the data are compatible with anincreasing mantle plume contribution as the plume rises andexpands through the lithosphere. Regardless of which of thetwo scenarios is invoked, the spatial distribution of the low-and high-Ti magmas matches the relative positioning of the cratonsand the Limpopo belt in such a way that strong control of thelithosphere on magma composition and distribution is a mandatoryrequirement of any petrogenetic model applied to the Karoo CFB. KEY WORDS: Karoo; large igneous province; flood basalts; dyke swarms; major and trace elements; Sr; Nd; Hf; and Pb isotopes  相似文献   

17.
Oxygen and iron isotope analyses of low-Ti and high-Ti mare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 17 missions. High-precision whole-rock δ18O values (referenced to VSMOW) of low-Ti and high-Ti basalts correlate with major-element compositions (Mg#, TiO2, Al2O3). The observed oxygen isotope variations within low-Ti and high-Ti basalts are consistent with crystal fractionation and match the results of mass-balance models assuming equilibrium crystallization. Whole-rock δ56Fe values (referenced to IRMM-014) of high-Ti and low-Ti basalts range from 0.134‰ to 0.217‰ and 0.038‰ to 0.104‰, respectively. Iron isotope compositions of both low-Ti and high-Ti basalts do not correlate with indices of crystal fractionation, possibly owing to small mineral-melt iron fractionation factors anticipated under lunar reducing conditions.The δ18O and δ56Fe values of low-Ti and the least differentiated high-Ti mare basalts are negatively correlated, which reflects their different mantle source characteristics (e.g., the presence or absence of ilmenite). The average δ56Fe values of low-Ti basalts (0.073 ± 0.018‰, n = 8) and high-Ti basalts (0.191 ± 0.020‰, n = 7) may directly record that of their parent mantle sources. Oxygen isotope compositions of mantle sources of low-Ti and high-Ti basalts are calculated using existing models of lunar magma ocean crystallization and mixing, the estimated equilibrium mantle olivine δ18O value, and equilibrium oxygen-fractionation between olivine and other mineral phases. The differences between the calculated whole-rock δ18O values for source regions, 5.57‰ for low-Ti and 5.30‰ for high-Ti mare basalt mantle source regions, are solely a function of the assumed source mineralogy. The oxygen and iron isotope compositions of lunar upper mantle can be approximated using these mantle source values. The δ18O and δ56Fe values of the lunar upper mantle are estimated to be 5.5 ± 0.2‰ (2σ) and 0.085 ± 0.040‰ (2σ), respectively. The oxygen isotope composition of lunar upper mantle is identical to the current estimate of Earth’s upper mantle (5.5 ± 0.2‰), and the iron isotope composition of the lunar upper mantle overlaps within uncertainty of estimates for the terrestrial upper mantle (0.044 ± 0.030‰).  相似文献   

18.
Subduction related basalts display wide ranges in large ion lithophile element ratios (e.g., Rb/Ba and Rb/ Sr) which are unlikely to result from mixing, but suggest a role for small degree partial melting of a relatively Rb-poor mantle wedge source. However, these variations do not correlate with other trace element criteria, such as the depletions of high field strength elements (HFSE) and light rare earth elements (LREE) relative to the LILE, which characterise subduction related magmatism. Integration of radiogenic isotope and trace element data demonstrates that the elemental enrichment cannot be simply related to two component mixtures inferred from isotopic variations. Thus a minimum of three components is required to describe the geochemistry of subduction zone basalts. Two are subduction related: high Sr/Nd material is derived from the dehydration of subducted basaltic ocean crust, and a low Sr/Nd component is thought to be from subducted terrigenous sediment. The third component is in the mantle wedge, it is usually similar to the source of MORB, particularly in its isotopic composition. However, in some cases, notably continental areas, more enriched mantle wedge material with relatively high 87Sr/86Sr, low 143Nd/144Nd and elevated incompatible trace element contents may be involved Mixing of these three components is capable of producing both the entire range of Sr, Nd and Pb isotope signatures observed in destructive margin basalts, and their distinctive trace element compositions. The isotope differences between Atlantic and Pacific island arc basalts are attributed to the isotope compositions of sediments in the two oceans.  相似文献   

19.
Continental flood basalts from the Parana plateau are of LowerCretaceous age and are represented by abundant (c. 45 per centby volume) two-pyroxene tholeiites characterized by relativelylow-TiO2 (< 2 wt. percent) and incompatible (e.g., P, Ba,Sr, La, Ce, Zr) element contents. Low-Ti basalts are distributedthroughout the Parana Basin and predominate in the southernregions, where they represent over 90 per cent by volume ofthe basic activity. Major and trace elements and Sr-Nd isotope ratios were analysedin 43 low-Ti basalts selected so as to cover the entire Paranabasin. In general, low-Ti basalts with initial 87Sr86Sr ratios (R0)lower than O7060 may be divided into two groups: (A) those relativelyenriched in incompatible elements (e.g., average K2O = O.85and P2O5 = 0.27 wt. per cent, and Ba = 346, Sr =289, Rb=16;La =18; Zr=132 p.p.m.) and SiO2 (average 51.1 wt. per cent);and (B) depleted in incompatible elements (e.g., average K2O= 0.31, P2O5 =0.17 wt. per cent, and Ba=178, Sr= 179, Rb= 11,La = 9, Zr = 93 p.p.m.) and SiO2 (average 49.7 wt. per cent).Low-Ti basalts of Group A are typical of northern Paran? {Ro= O70550–O70596), but a few are also present in centralParan? (Ro = 070577–0–70591), while those of GroupB are exclusive to central Paran– {Ro = 070463–0–70580) Low-Ti basalts with R0> O7060 are typical of southern Paran?(R0 = O7O639 –O71137), but are also present in centralParana (Ro = 070620–070890). These low-Ti basalts havechemical similarity (e.g., Ti, P, Sr) with low-Ti basalts depletedin incompatible elements (Group B) from which, however, theydiffer-in possessing significantly higher concentrations ofSiO2, K2O, Rb, and Ba. Such chemical diversity, accompaniedby important Ro variations (070463–071137) suggests thatthe low-Ti basalts from southern and part of central Paranamay result from crustal contamination. On the contrary, low-Ti basalts from northern, and part of central, Parana (GroupA) may be considered virtually uncontaminated. Results indicate that crustal contamination by granitic material(s)may be in the range 7–17 per cent. Such contaminationin central Paran? appears compatible with an assimilation-fractionalcrystallization process (AFC), while in southern Parana, othercontamination processes (e.g., mixing of magmasfrom crustaland mantle sources, assimilation of wall rock while magmas flowthrough dykes, etc.) were probably superimposed on AFC. Thedegree of crustal contamination generally decreases from southernto northern Parana. Sr and Nd isotope ratios suggest that mantle source materialfor low-Ti basalts depleted in incompatible elements (GroupB: southern and part of central Parana) had a lower R0 value(c. O.7046) and a higher l43Nd/144Nd ratio (Nd + c. 0.51274)than that for low-Ti basalts enriched in incompatible elements(Group A: northern and part of central Parana), namely R0 c.O.7059 and Nd+ c. 0.51242. These Sr-isotopic differences alsoapply to the northern (incompatible-element rich, R0 c. O.7053)and southern (incompatible-element poor R0 c. 0.7046) basaltprovinces of Karoo, suggesting that both Parana and Karoo basaltmagmas, differing by about 70 m.y. in age, probably originatedin a similar batch of subcontinental lithospheric mantle inpredrift times (cf. Cox, 1986). The extension of the Dupal Sr-anomaly (i.e. Rio Grande Rise+ Wai vis Ridge + Gough and Tristan da Cunha islands: Sr = 46=53;Hart, 1984) inside the Brazilian continent (Sr = 46–59)suggests that the lithospheric mantle of the Parana (and Karoo)provinces was possibly also the local source of oceanic volcanismup to advanced stages of the opening of the South Atlantic. *Reprint requests to E. M. Piccirillo.  相似文献   

20.
华南板块西南缘、越北地块以北桂西那坡县城以西及西南一带发育一套晚二叠世基性岩,由层状、似层状次火山岩相辉绿岩、辉绿玢岩及球状岩组成。根据岩石地球化学特征,那坡基性岩可划分为高Ti(TiO_22.8%和Ti/Y500)和低Ti两部分。高Ti基性岩为碱性玄武岩,而低Ti基性岩为拉斑玄武岩。与低Ti基性岩相比,高Ti基性岩整体具有相对较低的SiO_2、MgO和较高的FeO_t、P_2O_5,轻、重稀土分馏明显,富集大离子亲石元素(LILE)和高场强元素(HFSE),显示出似OIB地球化学特征,与峨眉山高Ti玄武岩具高度亲缘性;低Ti基性岩具有相对较高的SiO_2、MgO和较低的FeO_t、P_2O_5,稀土配分曲线较平坦,富集LILE,严重亏损HFSE(Nb、Ta),与岛弧玄武岩地球化学特征类似。从微量元素比值及相关图解对岩浆源区和构造环境判别,那坡高Ti基性岩来自富集OIB地幔源区,而低Ti基性岩兼具OIB和岛弧岩浆源区的过渡特征。结合岩石地球化学特征及区域地质背景,认为那坡高Ti基性岩可能为峨眉山地幔柱岩浆作用的产物,低Ti基性岩为古特提斯俯冲与峨眉山地幔柱共同作用的产物,揭示了那坡地区晚二叠世同时受到峨眉山地幔柱和古特提斯俯冲相互作用的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号