首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We discuss the morphology, photometry and kinematics of the bars which have formed in three N -body simulations. These have initially the same disc and the same halo-to-disc mass ratio, but their haloes have very different central concentrations. The third model includes a bulge. The bar in the model with the centrally concentrated halo (model MH) is much stronger, longer and thinner than the bar in the model with the less centrally concentrated halo (model MD). Its shape, when viewed side-on, evolves from boxy to peanut and then to 'X'-shaped, as opposed to that of model MD, which stays boxy. The projected density profiles obtained from cuts along the bar major axis, for both the face-on and the edge-on views, show a flat part, as opposed to those of model MD which are falling rapidly. A Fourier analysis of the face-on density distribution of model MH shows very large  m=2  , 4, 6 and 8 components. Contrary to this, for model MD the components  m=6  and 8 are negligible. The velocity field of model MH shows strong deviations from axial symmetry, and in particular has wavy isovelocities near the end of the bar when viewed along the bar minor axis. When viewed edge-on, it shows cylindrical rotation, which the MD model does not. The properties of the bar of the model with a bulge and a non-centrally concentrated halo (MDB) are intermediate between those of the bars of the other two models. All three models exhibit a lot of inflow of the disc material during their evolution, so that by the end of the simulations the disc dominates over the halo in the inner parts, even for model MH, for which the halo and disc contributions were initially comparable in that region.  相似文献   

2.
Deriving the three-dimensional volume density distribution from a two-dimensional light distribution of a system yields generally non-unique results. The case for nearby systems is studied, taking into account the extra constraints from the perspective effect. It is shown analytically that a new form of non-uniqueness exists. The phantom spheroid (PS) for a nearby system preserves the intrinsic mirror symmetry and projected asymmetry of the system while changing the shape and the major-axis orientation of the system. A family of analytical models is given as functions of the distance ( D 0) to the object and the amount ( γ ) of the PS density superimposed. The range of the major-axis angles is constrained analytically by requiring a positive density everywhere. These models suggest that observations other than surface brightness maps are required to lift the degeneracy in the major-axis angle and axis ratio of the central bar of the Milky Way.  相似文献   

3.
If a galaxy resides in a cluster, then its passage through the pervasive intracluster medium will produce a detectable signature in the X-ray emission from the cluster. Such features have now been detected in a number of systems. The simplest kinematic information that can be extracted from this signature is the galaxy's direction of motion on the plane of the sky. This paper explores the constraints on cluster dynamics that could be derived from such information. In particular, we show that it is possible to define a projected anisotropy parameter, B ( r ), which is directly analogous to the usual orbital anisotropy parameter. We describe an estimator for this quantity, ( R ), which can be derived in a robust and straightforward manner. We present a simple dynamical model for a cluster consisting of a Michie distribution function of galaxies orbiting in a truncated singular isothermal sphere potential. Using this model, we demonstrate the ambiguity between the distribution of mass and the distribution of galaxy orbits when interpreting the traditional measures of cluster kinematics (the projected density of galaxies and their line-of-sight velocity dispersion). As an example, we show how two very different dynamical models can fit the kinematic properties of the Coma cluster. We demonstrate that the measurement of using a relatively small sample of wake directions ( N wake≈50) would provide an effective mechanism for lifting this degeneracy. Thus, by combining X-ray measurements of wake directions with number counts and line-of-sight velocities derived from optical data, it will prove possible to measure both the orbit distribution and the form of the gravitational potential in clusters of galaxies. The requisite X-ray observations lie within reach of the soon-to-be-launched AXAF satellite.  相似文献   

4.
We present detailed scattering models confirming that distinctive variations in polarization across the broad Hα line, which are observed in a significant fraction of type 1 Seyfert galaxies, can be understood in terms of a rotating line-emitting disc surrounded by a coplanar scattering region (the equatorial scattering region). The predicted polarization properties are: (i) averaged over wavelength, the position angle (PA) of polarization is aligned with the projected disc rotation axis and hence also with the radio source axis; (ii) the polarization PA rotates across the line profile, reaching equal but opposite (relative to the continuum PA) rotations in the blue and red wings; and (iii) the degree of polarization peaks in the line wings and passes through a minimum in the line core. We identify 11 objects that exhibit these features to different degrees. In order to reproduce the large-amplitude PA rotations observed in some cases, the scattering region must closely surround the emission disc and the latter must itself be a relatively narrow annulus – presumably the Hα-emitting zone of a larger accretion disc. Asymmetries in the polarization spectra may be attributable to several possible causes, including bulk radial infall in the equatorial scattering region, or contamination by polar scattered light. The broad Hα lines do not, in general, exhibit double-peaked profiles, suggesting that a second Hα-emitting component of the broad-line region is present, in addition to the disc.  相似文献   

5.
The projected properties of some triaxial mass models are studied. The models are flattened versions of a set of spherical models. They are constructed by addition of two spherical harmonic terms to a spherical model. The projected properties exhibit strong correlations, when a model with a given set of intrinsic parameters is viewed in all possible orientations. The correlation plots appear to carry signatures of the intrinsic shape of the mass model. Rigorous shape estimates, using Bayesian statistics, yield satisfactory results for the test cases.  相似文献   

6.
We present a method for recovering the distribution functions of edge-on thin axisymmetric discs directly from their observable kinematic properties. The most generally observable properties of such a stellar system are the line-of-sight velocity distributions of the stars at different projected radii along the galaxy. If the gravitational potential is known, then the general two-integral distribution function can be reconstructed using the shapes of the high-velocity tails of these line-of-sight distributions. If the wrong gravitational potential is adopted, then a distribution function can still be constructed using this technique, but the low-velocity parts of the observed velocity distributions will not be reproduced by the derived dynamical model. Thus, the gravitational potential is also tightly constrained by the observed kinematics.  相似文献   

7.
We use a  0.040 < z < 0.085  sample of 37 866 star-forming galaxies from the Fourth Data Release of the Sloan Digital Sky Survey to investigate the dependence of gas-phase chemical properties on stellar mass and environment. The local density, determined from the projected distances to the fourth and fifth nearest neighbours, is used as an environment indicator. Considering environments ranging from voids, i.e.  log Σ≲−0.8  , to the periphery of galaxy clusters, i.e.  log Σ≈ 0.8  , we find no dependence of the relationship between galaxy stellar mass and gas-phase oxygen abundance, along with its associated scatter, on local galaxy density. However, the star-forming gas in galaxies shows a marginal increase in the chemical enrichment level at a fixed stellar mass in denser environments. Compared with galaxies of similar stellar mass in low-density environments, they are enhanced by a few per cent for massive galaxies to about 20 per cent for galaxies with stellar masses  ≲109.5 M  . These results imply that the evolution of star-forming galaxies is driven primarily by their intrinsic properties and is largely independent of their environment over a large range of local galaxy density.  相似文献   

8.
We investigate the properties of satellite galaxies formed in N -body/SPH simulations of galaxy formation in the ΛCDM cosmology. The simulations include the main physical effects thought to be important in galaxy formation and, in several cases, produce realistic spiral discs. In total, a sample of nine galaxies of luminosity comparable to the Milky Way was obtained. At magnitudes brighter than the resolution limit,   MV =−12  , the luminosity function of the satellite galaxies in the simulations is in excellent agreement with data for the Local Group. The radial number density profile of the model satellites, as well as their gas fractions also match observations very well. In agreement with previous N -body studies, we find that the satellites tend to be distributed in highly flattened configurations whose major axis is aligned with the major axis of the (generally triaxial) dark halo. In two out of three systems with sufficiently large satellite populations, the satellite system is nearly perpendicular to the plane of the galactic disc, a configuration analogous to that observed in the Milk Way. The discs themselves are perpendicular to the minor axis of their host haloes in the inner parts, and the correlation between the orientation of the galaxy and the shape of the halo persists even out to the virial radius. However, in one case the disc's minor axis ends up, at the virial radius, perpendicular to the minor axis of the halo. The angular momenta of the galaxies and their host halo tend to be well aligned.  相似文献   

9.
An exponentially expanding Universe, possibly governed by a cosmological constant, forces gravitationally bound structures to become more and more isolated, eventually becoming causally disconnected from each other and forming so-called 'island universes'. This new scenario reformulates the question about which will be the largest structures that will remain gravitationally bound, together with requiring a systematic tool that can be used to recognize the limits and mass of these structures from observational data, namely redshift surveys of galaxies. Here we present a method, based on the spherical collapse model and N -body simulations, by which we can estimate the limits of bound structures as observed in redshift space. The method is based on a theoretical criterion presented in a previous paper that determines the mean density contrast that a spherical shell must have in order to be marginally bound to the massive structure within it. Understanding the kinematics of the system, we translated the real-space limiting conditions of this 'critical' shell to redshift space, producing a projected velocity envelope that only depends on the density profile of the structure. From it we created a redshift-space version of the density contrast that we called 'density estimator', which can be calibrated from N -body simulations for a reasonable projected velocity envelope template, and used to estimate the limits and mass of a structure only from its redshift-space coordinates.  相似文献   

10.
We present N -body simulations of galaxy groups embedded in a common halo of matter. We study the influence of the different initial conditions upon the evolution of the group and show that denser configurations evolve faster, as expected. We then concentrate on the influence of the initial radial density profile of the common halo and of the galaxy distribution. We select two kinds of density distributions, a singular profile (modelled by a Hernquist distribution) and a profile with a flat core (modelled by a Plummer sphere). In all cases we witness the formation of a central massive object owing to mergings of individual galaxies and to accretion of stripped material, but both its formation history and its properties depend heavily on the initial distribution. In Hernquist models the formation is caused by a 'burst' of mergings in the inner parts, owing to the large initial concentration of galaxies in the centre. The merging rate is much slower in the initial phases of the evolution of a Plummer distribution, where the contribution of accretion to the formation of the central object is much more important. The central objects formed within Plummer distributions have projected density profiles which are not in agreement with the radial profiles of observed brightest cluster members, unless the percentage of mass in the common halo is small. In contrast, the central object formed in initially cusped models has projected radial profiles in very good agreement with those of brightest cluster members, sometimes also showing luminosity excess over the r 1/4 law in the outer parts, as is observed in cD galaxies.  相似文献   

11.
Using the “Updated Nearby Galaxy Catalog”, we consider different properties of companion galaxies around luminous hosts in the Local Volume. The data on stellar masses, linear diameters, surface brightnesses, HI‐richness, specific star formation rate (sSFR), and morphological types are discussed for members of the nearest groups, including the Milky Way and M 31 groups, as a function of their separation from the hosts. Companion galaxies in groups tend to have lower stellar masses, smaller linear diameters, and fainter mean surface brightnesses as the distance to their host decreases. The hydrogen‐to‐stellar mass ratio of the companions increases with their linear projected separation from the dominant luminous galaxy. This tendency is more expressed around the bulge‐dominated hosts. While linear separation of the companions decreases, their mean sSFR becomes lower, accompanied with the increasing sSFR scatter. the typical linear projected separation of dSphs around the bulge‐dominated hosts, 350 kpc, is substantially larger than that around the disk‐dominated ones, 130 kpc. This difference probably indicates the presence of larger hot/warm gas haloes around the early‐type host galaxies. The mean fraction of dSph (quenched) companions in the 11 nearest groups as a function of their projected separation Rp can be expressed as ƒ(E) = (0.55–0.69)×Rp. The fraction of dSphs around the Milky Way and M 31 looks much higher than in other nearby groups because the quenching efficiency dramatically increases towards the ultra‐low mass companions. We emphasize that the observed properties of the Local Group are not typical for other groups in the Local Volume due to the role of selection effects caused by our location inside the Local Group. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We present four Mpc-sized radio galaxies which consist of a pair of double-lobed radio sources, aligned along the same axis, and with a coinciding radio core. We call these peculiar radio sources 'double-double' radio galaxies (DDRGs) and propose a general definition of such sources: a 'double-double' radio galaxy consists of a pair of double radio sources with a common centre. Furthermore, the two lobes of the inner radio source must have a clearly extended, edge-brightened radio morphology. Adopting this definition, we find several other candidate DDRGs in the literature. We find that in all sources the smaller (inner) pair of radio lobes is less luminous than the larger (outer) pair, and that the ratio of 1.4-GHz flux density of these two pairs appears to be anticorrelated with the projected linear size of the inner source. Also, the outer radio structures are large, exceeding 700 kpc. We discuss possible formation scenarios of the DDRGs, and we conclude that an interruption of the jet-forming central activity is the most likely mechanism. For one of our sources (B 1834+620) we have been able observationally to constrain the length of time of the interruption to a few Myr. We discuss several scenarios for the cause of the interruption, and suggest multiple encounters between interacting galaxies as a possibility. Finally, we discuss whether such interruptions help the formation of extremely large radio sources.  相似文献   

13.
This paper explores if, and to what an extent, the stellar populations of early-type galaxies can be traced through the colour distribution of their globular cluster (GC) systems. The analysis, based on a galaxy sample from the Virgo Advanced Camera for Surveys data, is an extension of a previous approach that has been successful in the cases of the giant ellipticals NGC 1399 and NGC 4486, and assumes that the two dominant GC populations form along diffuse stellar populations sharing the cluster chemical abundances and spatial distributions. The results show that (a) integrated galaxy colours can be matched to within the photometric uncertainties and are consistent with a narrow range of ages; (b) the inferred mass to luminosity ratios and stellar masses are within the range of values available in the literature; (c) most GC systems occupy a thick plane in the volume space defined by the cluster formation efficiency, total stellar mass and projected surface mass density. The formation efficiency parameter of the red clusters shows a dependency with projected stellar mass density that is absent for the blue globulars. In turn, the brightest galaxies appear clearly detached from that plane as a possible consequence of major past mergers; (d) the stellar mass–metallicity relation is relatively shallow but shows a slope change at   M *≈ 1010 M  . Galaxies with smaller stellar masses show predominantly unimodal GC colour distributions. This result may indicate that less massive galaxies are not able to retain chemically enriched interstellar matter.  相似文献   

14.
We use three-integral models to infer the distribution function (DF) of the boxy E3–E4 galaxy NGC 1600 from surface brightness and line-profile data on the minor and major axes. We assume axisymmetry and that the mass-to-light ratio is constant in the central ∼1 R e. Stars in the resulting gravitational potential move mainly on regular orbits. We use an approximate third integral K from perturbation theory and write the DF as a sum of basis functions in the three integrals E , L z and K . We then fit the projected moments of these basis functions to the kinematic observables and deprojected density, using a non-parametric algorithm. The deduced dynamical structure is radially anisotropic, with σ θ σ r ≈ σ φ σ r ≈0.7 on the major axis. Both on the minor axis and near the centre the velocity distribution is more isotropic; thus the model is flattened by equatorial radial orbits. The kinematic data are fitted without the need for a central black hole; the central mass determined previously from ground-based data therefore overestimates the actual black-hole mass. The mass-to-light ratio of the stars is M L V =6  h 50. The anisotropy structure of NGC 1600 with a radially anisotropic main body and more nearly isotropic centre is similar to that found recently in NGC 1399, 2434, 3379 and 6703, suggesting that this pattern may be common amongst massive elliptical galaxies. We discuss a possible merger origin of NGC 1600 in the light of these results.  相似文献   

15.
We present a theoretical and exact analysis of the bispectrum of projected galaxy catalogues. The result can be generalized to evaluate the projection in spherical harmonics of any 3D bispectrum and therefore has applications to cosmic microwave background and gravitational lensing studies.
By expanding the 2D distribution of galaxies on the sky in spherical harmonics, we show how the three-point function of the coefficients can be used in principle to determine the bias parameter of the galaxy sample. If this can be achieved, it would allow a lifting of the degeneracy between the bias and the matter density parameter of the Universe, which occurs in linear analysis of 3D galaxy catalogues. In previous papers, we have shown how a similar analysis can be done in three dimensions, and we show here through an error analysis and by implementing the method on a simulated projected catalogue that ongoing three-dimensional galaxy redshift surveys (even with all the additional uncertainties introduced by partial sky coverage, redshift-space distortions and smaller numbers) will do far better than all-sky projected catalogues with similar selection function.  相似文献   

16.
主并合星系对是研究星系同时受到本身与外部环境影响的绝佳实验对象,而星系恒星形成率的变化可以示踪这些影响产生的作用.星系的恒星质量、星系对之间的投影距离与相对倾角都是影响恒星形成率的几个重要因素.研究结果表明,更大恒星质量星系倾向于有更大的恒星形成率增幅,相对倾角接近平行的星系同样趋于有更大的恒星形成率增幅,而投影距离在研究范围内与恒星形成率没有相关性.  相似文献   

17.
The NGC 5044 galaxy group is dominated by a luminous elliptical galaxy that is surrounded by ∼160 dwarf satellites. The projected number density profile of this dwarf population deviates within ∼1/3 of the virial radius from a projected Navarro, Frenk and White (NFW) profile, which is assumed to approximate the underlying total matter distribution. By means of a semi-analytic model, we demonstrate that the interplay between gravitation, dynamical friction and tidal mass loss and destruction can explain the observed number density profile. We use only two parameters in our models: the total to stellar mass fraction of the satellite haloes and the disruption efficiency. The disruption efficiency is expressed by a minimum radius. If the tidal radius of a galaxy (halo) falls below this radius, it is assumed to become unobservable. The preferred parameters are an initial total to stellar mass fraction of ∼20 and a disruption radius of  4 kpc  . In that model, about 20 per cent of all the satellites are totally disrupted on their orbits within the group environment. Dynamical friction is less important in shaping the inner slope of the number density profile because the reduction in mass by tidal forces lowers the impact of the friction term. The main destruction mechanism is tide. In the preferred model, the total B -band luminosity of all disrupted galaxies is about twice the observed luminosity of the central elliptical galaxy, indicating that a significant fraction of stars are scattered into the intragroup medium. Dwarf galaxy satellites closer to the centre of the NGC 5044 group may exhibit optical evidence of partial tidal disruption. If dynamical friction forces the satellite to merge with the central elliptical, the angular momentum of the satellite tends to be removed at the apocentre passage. Afterwards, the satellite drops radially towards the centre.  相似文献   

18.
In this paper, we present a detailed study of the peculiar early-type galaxy NGC 1947. The main goal of this work is to constrain the dynamical status and the formation history of NGC 1947 by comparing the observed properties with the predictions derived from different galaxy formation scenarios. To this aim, we derived the photometric and kinematical properties of NGC 1947. Due to the presence of an extended dust lane, which crosses the galaxy centre along the photometric minor axis, we used near-infrared (NIR) images ( J and K bands) to derive an accurate analysis of the stellar light distribution. Optical images (in the V and R bands) are used to derive the colour profiles and colour maps to study the structure of the dust lane. The observed kinematics confirm the presence of two components with decoupled angular momentum: gas and dust rotate along the minor axis, while the rotation velocities of the stars are observed along the major axis. The complex structure observed in NGC 1947 supports the hypothesis that some kind of interactions happened in the evolution of this object. We analysed two alternatives: a merging process and an accretion event. We discussed how the observed properties strongly suggest that the decoupled ring of gas and dust has been accreted from outside.  相似文献   

19.
A radio source with a spectral index of −2.2 between 0.08 and 1.425 GHz has been observed at the Very Large Array (VLA) at 1.425 GHz with resolution ∼ 3 arcsec. The projected linear length of the source is 56 kpc with an average projected distance of 42 kpc from the centroid of the rich southern cluster Abell 4038, assuming the source is in the cluster. The physical parameters of the source include a high minimum-energy field ( B me) of 38 μG, which is unusual for a source of low surface brightness and relaxed appearance, but is explained by its unusually steep spectrum. Although its radio morphology has some characteristics of a narrow-angle-tail source (NAT), the absence of an identified host galaxy ( m R ≥ 23.0) makes it unlikely that the source is a working radio galaxy. The relic is probably the remains of an FR II radio galaxy that was once energized by a particular bright cluster elliptical now 18 kpc to its east. The density of the intracluster gas has been sufficient to confine the source and preserve its morphology, permitting the source to age and its spectrum to steepen through synchrotron and inverse Compton energy losses.  相似文献   

20.
We have carried out an investigation of the environments of low redshift H  ii galaxies by cross-correlating their positions on the sky with those of faint field galaxies in the Automatic Plate Measuring Machine (APM) catalogues. We address the question of whether violent star formation in H  ii galaxies is induced by low-mass companions by statistically estimating the mean space density of galaxies around them. We argue that even if low-mass companions were mainly intergalactic H  i clouds, their optical counterparts should be detectable at faint limits of the APM scans.
A significantly positive signal is detected for the H  ii galaxy–APM galaxy angular cross-correlation function, but the amplitude is poorly determined. The projected cross-correlation function has a higher signal-to-noise ratio, and suggests that the amplitude is slightly lower than for normal field galaxies. This implies that these bursting dwarf galaxies inhabit slightly lower density environments than those of normal field galaxies, consistent with other studies of emission-line galaxies. This suggests that in these dwarf starburst galaxies, star formation is not always triggered by tidal interactions, and a significant fraction must have a different origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号