首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adding the angular velocity of sidereal solar rotation and the apparent rotational effect of the Earth's revolution vectorially, a new synodic solar rotation vector has been obtained. The sidereal and synodic solar rotation axes (and equators) are separated. Using the known parameters of the Earth's orbital motion, the synodic rotation angular velocity and the inclination of the synodic equator, the corresponding sidereal rotation parameters have been calculated (ω1 = 2.915 × 10#X2212;6 rad s#X2212;1 and i 1 = 6.076). Various linear rotational velocities at the solar globe are briefly described.  相似文献   

2.
The gravitational rotation of slowly rotating neutron stars with rough surfaces is examined. The source of the gravitational waves is assumed to be the energy transferred to the crust of the star during irregular changes in its angular rotation velocity. It is shown that individual pulsars whose angular velocity regularly undergoes glitches will radiate a periodic gravitational signal that can be distinguished from noise by the latest generation of detectors. Simultaneous recording of a gravitational signal and of a glitch in the angular velocity of a pulsar will ensure reliable detection of gravitational radiation. __________ Translated from Astrofizika, Vol. 49, No. 2, pp. 221–229 (May 2006).  相似文献   

3.
The response of an axially symmetric rigid rotator to incident gravitational radiation is discussed for particular states of free rotator motion using generalized EULERian equations, and assuming wavelengths large compared with the rotator dimensions. First, if coincident initially, the rotation and the symmetry axes slightly differ after exposed to a radiation flux which has suitable polarization and propagates perpendicular to the rotation axis. Secondly, the angular velocity of a rotation perpendicular to the symmetry axis is changed in a wave field propagating in the direction of the rotation axis (BRAGINSKI-rotator). — For highly monochromatic resonance radiation with wave frequencies equal to the rotation frequency (in the first case) or twice the rotation frequency (second case), the response is sufficiently large to have some interest for future experiments.  相似文献   

4.
Using a consistent perturbation theory for collisionless disk-like and spherical star clusters, we construct a theory of slow modes for systems having an extended central region with a nearly harmonic potential due to the presence of a fairly homogeneous (on the scales of the stellar system) heavy, dynamically passive halo. In such systems, the stellar orbits are slowly precessing, centrally symmetric ellipses (2: 1 orbits). We consider star clusters with monoenergetic distribution functions that monotonically increase with angular momentum in the entire range of angular momenta (from purely radial orbits to circular ones) or have a growing region only at low angular momenta. In these cases, there are orbits with a retrograde precession, i.e., in a direction opposite to the orbital rotation of the star. The presence of a gravitational loss-cone instability, which is also observed in systems of 1: 1 orbits in near-Keplerian potentials, is associated with such orbits. In contrast to 1: 1 systems, the loss-cone instability takes place even for distribution functions monotonically increasing with angular momentum, including those for systems with circular orbits. The regions of phase space with retrograde orbits do not disappear when the distribution function is smeared in energy. We investigate the influence of a weak inhomogeneity of a heavy halo with a density that decreases with distance from the center.  相似文献   

5.
The hydrodynamic interaction of an accretion disc with its central object is reanalysed within the framework of the slim-disc approximation. Arguments are presented against an interpretation of the total angular momentum flux as an eigenvalue of the system. A simple intuitive consideration is provided, which shows that the central object may be in a state of stationary rotation even if the disc imposes the constraint of a finite angular momentum flux into it. It is argued that equilibrium rotation is characterized by vanishing viscous torque rather than by zero total angular momentum flux. As a consequence, the central object can be in a state of stationary rotation below the break-up limit, although its angular momentum increases. Despite accretion, even for positive total angular momentum flux and subcritical rotation, central objects are spun down within a considerable range of their parameters. The results are illustrated by application to FU Orionis systems.  相似文献   

6.
We formulate the first order theory of meridian circulation in radiative zones of approximate chemical homogeneity so as to allow calculation of circulation velocities in a star subject to an arbitrary axially symmetric angular velocity ω(r, θ). The calculation includes circulation due to perturbations in the nuclear burning rate. The formalism agrees with previous calculations relevant to special cases, and assumes maximum simplicity for rotation on cylinders. We find two types of steady state configurations: (1) rotation according to a special class of distributions ω(r, θ) which drive no currents, and (2) rotation according to arbitrary ω(r, θ), but with a correction to the molecular weight μ such that the net circulation velocity is zero. We find that a small μ gradient can quench the circulation in many cases. In particular, we conclude that a large differential rotation in the Sun might have escaped disruption by meridian currents, for a μ stratification of a few parts in 103.  相似文献   

7.
We investigate the rotation profile of solar-like stars with magnetic fields. A diffu-sion coefficient of magnetic angular momentum transport is deduced. Rotating stellar models with different mass incorporating the coefficient are computed to give the rotation profiles. The total angular momentum of a solar model with only hydrodynamic instabilities is about 13 times larger than that of the Sun at the age of the Sun, and this model can not reproduce quasi-solid rotation in the radiative region. However, the solar model with magnetic fields not only can reproduce an almost uniform rotation in the radiative region, but also a total angular momentum that is consistent with the helioseismic result at the 3 σ level at the age of the Sun. The rotation of solar-like stars with magnetic fields is almost uniform in the radiative region, but for models of 1.2-1.5 M⊙, there is an obvious transition region between the convective core and the radiative region, where angular velocity has a sharp radial gradient, which is different from the rotation profile of the Sun and of massive stars with magnetic fields. The change of angular velocity in the transition region increases with increasing age and mass.  相似文献   

8.
Two comments are prompted by the recent paper of Quiroga (1983). First, it is pointed out that Quiroga's identification of two distinct types of motion (hydrodynamic and turbulent) within the galactic disk supports the suggestion that turbulent motions in the Galaxy are generated by the shearig action of differential galactic rotation. Secondly, as a result of these turbulent motions dominating the systematic hydrodynamics of galactic rotation at scale sizes below 100–300 pc, it appears that some process(es) associated with interstellar turbulence rather than with galactic rotation should play a dominant role in the establishment of the angular momentum of interstellar material.  相似文献   

9.
The first 3-D non-linear hydrodynamical simulation of the inner convective envelope of a rotating low mass red giant star is presented. This simulation, computed with the ASH code, aims at understanding the redistribution of angular momentum and heat in extended convection zones. The convection patterns achieved in the simulation consist of few broad and warm upflows surrounded by a network of cool downflows. This asymmetry between up and downflows leads to a strong downward kinetic energy flux, that must be compensated by an overluminous enthalpy flux in order to carry outward the total luminosity of the star. The influence of rotation on turbulent convection results in the establishment of largescale mean flows: a strong radial differential rotation and a single cell poleward meridional circulation per hemisphere. A detailed analysis of angular momentum redistribution reveals that the meridional circulation transports angular momentum outward in the radial direction and poleward in the latitudinal direction, with the Reynolds stresses acting in the opposite direction. This simulation indicates that the classical hypothesis of mixing length theory and solid-body rotation in the envelope of red giants assumed in 1-D stellar evolution models are unlikely to be realized and thus should be reconsidered. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The orientation of the atmospheric angular momentum vector of Titan and its temporal variation predicted by a general circulation model are analysed and interpreted. The atmospheric angular momentum vector is tilted by a few degrees from the polar axis and the vector rotates (precesses) westward with a constant period of 1 Titan day. The fast westward rotation is likely to be caused by migrating diurnal thermal tides. The tilt is almost cancelled out in the troposphere by the wavenumber 2 pattern of Saturn's gravitational tide, but is more pronounced in the stratosphere, where thermal tides are significant. The predicted tilt angle and the equatorial angular momentum vary with season and maximize when the hemispheric asymmetry of the axial angular momentum or superrotation attains its peak.  相似文献   

11.
The interaction between differential rotation and magnetic fields in the solar convection zone was recently modelled by Brun (2004). One consequence of that model is that the Maxwell stresses can oppose the Reynolds stresses, and thus contribute to the transport of the angular momentum towards the solar poles, leading to a reduced differential rotation. So, when magnetic fields are weaker, a more pronounced differential rotation can be expected, yielding a higher rotation velocity at low latitudes taken on the average. This hypothesis is consistent with the behaviour of the solar rotation during the Maunder minimum. In this work we search for similar signatures of the relationship between the solar activity and rotation determined tracing sunspot groups and coronal bright points. We use the extended Greenwich data set (1878–1981) and a series of full-disc solar images taken at 28.4 nm with the EIT instrument on the SOHO spacecraft (1998–2000). We investigate the dependence of the solar rotation on the solar activity (described by the relative sunspot number) and the interplanetary magnetic field (calculated from the interdiurnal variability index). Possible rotational signatures of two weak solar activity cycles at the beginning of the 20th century (Gleissberg minimum) are discussed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The electromagnetic properties of neutron stars (pulsars) are studied. It is shown that taking the presence of two angular rotation velocities of the components of neutron stars and the first corrections to the general theory of relativity into account in the equations of hydrodynamic equilibrium for the plasma and in Maxwell’s equations leads to the generation of toroidal magnetic fields in the depths of a neutron star. __________ Translated from Astrofizika, Vol. 49, No. 1, pp. 97–101 (February 2006).  相似文献   

13.
We present the results of two simulations of the convection zone, obtained by solving the full hydrodynamic equations in a section of a spherical shell. The first simulation has cylindrical rotation contours (parallel to the rotation axis) and a strong meridional circulation, which traverses the entire depth. The second simulation has isorotation contours about mid-way between cylinders and cones, and a weak meridional circulation, concentrated in the uppermost part of the shell.
We show that the solar differential rotation is directly related to a latitudinal entropy gradient, which pervades into the deep layers of the convection zone. We also offer an explanation of the angular velocity shear found at low latitudes near the top. A non-zero correlation between radial and zonal velocity fluctuations produces a significant Reynolds stress in that region. This constitutes a net transport of angular momentum inwards, which causes a slight modification of the overall structure of the differential rotation near the top. In essence, the thermodynamics controls the dynamics through the Taylor–Proudman momentum balance . The Reynolds stresses only become significant in the surface layers, where they generate a weak meridional circulation and an angular velocity 'bump'.  相似文献   

14.
A periodic long-term modulation of the solar surface rotation with a time scale on the order of 100 years is found in the sunspot data from 1874 to 1992 obtained by combinig the Greenwich Photoheliographic Results from cycle 11 to cycle 20 analysed by Balthasar, Vázquez, and Wöhl and the Mitaka sunspot sketch data from cycle 18 to 22 of the National Astronomical Observatory of Japan which was the Tokyo Astronomical Observatory of the University of Tokyo until 1988. A new index of the solar rotation M defined by integrating the angular momentum density over the whole surface, which we call the angular momentum surface layer density, reached a maximum at solar cycle 14, decreased to a minimum at cycle 17, and then increased to reach another maximum at cycle 21. The increase of M means acceleration of the surface layer as a whole by transport of angular momentum from the deeper layer. This implies an decrease (increase) of the radial gradient of the differential rotation if the basic radial gradient of the differential rotation increases (decreaes) inward. The decrease of M means deceleration of the surface layer and implies an increase (decrease) of the radial gradient. The degree of the equatorial acceleration of the surface differential rotation is also found to have undergone the same 100 year periodic modulation during the same interval, reaching a minimum at cycle 14, a maximum at cycle 17, and a minimum at cycle 21 in antiphase with the modulation of M. Thus both radial and latitudinal gradients of the differential rotation increased and decreased in phase (in anti-phase) if the basic radial gradient increases (decreases) inward.  相似文献   

15.
Subsequent to Paper I, the evolution and fragmentation of a rotating magnetized cloud are studied with use of three-dimensional magnetohydrodynamic nested grid simulations. After the isothermal runaway collapse, an adiabatic gas forms a protostellar first core at the centre of the cloud. When the isothermal gas is stable for fragmentation in a contracting disc, the adiabatic core often breaks into several fragments. Conditions for fragmentation and binary formation are studied. All the cores which show fragmentation are geometrically thin, as the diameter-to-thickness ratio is larger than 3. Two patterns of fragmentation are found. (1) When a thin disc is supported by centrifugal force, the disc fragments into a ring configuration (ring fragmentation). This is realized in a rapidly rotating adiabatic core as  Ω > 0.2τ−1ff  , where Ω and  τff  represent the angular rotation speed and the free-fall time of the core, respectively. (2) On the other hand, the disc is deformed to an elongated bar in the isothermal stage for a strongly magnetized or rapidly rotating cloud. The bar breaks into 2–4 fragments (bar fragmentation). Even if a disc is thin, the disc dominated by the magnetic force or thermal pressure is stable and forms a single compact body. In either ring or bar fragmentation mode, the fragments contract and a pair of outflows is ejected from the vicinities of the compact cores. The orbital angular momentum is larger than the spin angular momentum in the ring fragmentation. On the other hand, fragments often quickly merge in the bar fragmentation, since the orbital angular momentum is smaller than the spin angular momentum in this case. Comparison with observations is also shown.  相似文献   

16.
The time and spatial characteristics of 324 large sunspots (S50 millionths of the solar hemisphere) selected from the Abastumani Astrophysical Observatory photoheliogram collection (1950–1990) have been studied. The variations of sunspot angular rotation velocity residuals and oscillations of sunspot tilt angle were analyzed. It has been shown that the differential rotation rate of selected sunspots correlates on average with the solar cycle. The deceleration of differential rotation of large sunspots begins on the ascending arm of the activity curve and ends on the descending arm reaching minimum near the epochs of solar activity maxima. This behavior disappears during the 21st cycle. The amplitudes and periods of sunspot tilt-angle oscillations correlate well with the solar activity cycle. Near the epochs of activity maximum there appear sunspots with large amplitudes and periods showing a significant scatter while the scatter near the minimum is rather low. We also found evidence of phase difference between the sunspot angular rotation velocity and the amplitudes and periods of tilt-angle oscillations.  相似文献   

17.
Earlier work on the oscillations of an ellipsoid is extended to investigate the behaviour of a nonequilibrium compressible homogeneous rotating gaseous ellipsoid, with the components of the velocity field as linear functions of the coordinates, and with parallel angular velocity and uniform vorticity. The dynamical behaviour of the ellipsoid is obtained by numerically integrating the relevant differential equations for different values of the initial angular velocity and vorticity. This behaviour is displayed by the (a 1,a 2) and (a 1,a 3) phase plots, where thea i's (i = 1, 2, 3) are the semi-diameters, and by the graphs ofa 1,a 2,a 3, the volume, and the angular velocity as functions of time.The dynamical behaviour of the nonequilibrium ellipsoid depends on the deviation of the angular momentum from its equilibrium value; for larger deviations, the oscillations are more nonperiodic with larger amplitudes.An initially ellipsoidal configuration always remains ellipsoidal, but it cannot become spheroidal about its rotation axis, though it may become spheroidal instantaneously about either one of the other two principal axes.For an ellipsoid approaching axisymmetry about its axis of rotation, the angular velocity can suddenly increase by a large amount. Thus if an astrophysical object can be modelled by a nonequilibrium ellipsoid, it may occasionally undergo sudden large increases of angular velocity.  相似文献   

18.
We consider accretion onto a two–dimensional polytropic tube. In contrast to the standard papers we apply spatially uniform eddy viscosity (and eddy conductivity in part II resp.). In principle, the resulting rotation law is non–keplerian and proves to be rather flat. Wether the angular velocity increases or decreases inwadly depends on the strength of the torque exerted on the outer surface which is due to the inflow of angular momentum. Large (small) torque cause super–(sub–)rotation. The frictionally originated luminosity varies for various models. It lies one or two orders of magnitude below the total avialable accretion energy. For certain combinations of the Mach numbers the radial inflow profile possesses a sonic point.  相似文献   

19.
Horizontal branch stars should show significant differential rotation with depth. Models that assume systematic angular momentum exchange in the convective envelope and local conservation of angular momentum in the core produce HB models that preserve a rapidly rotating core. A direct probe of core rotation is available. The nonradial pulsations of the EC14026 stars frequently show rich pulsation spectra. Thus their pulsations probe the internal rotation of these stars, and should show the effects of rapid rotation in their cores. Using models of sdB stars that include angular momentum evolution, we explore this possibility and show that some of the sdB pulsators may indeed have rapidly rotating cores.  相似文献   

20.
The potential of the non-axisymmetric magnetic instability to transport angular momentum and to mix chemicals is probed considering the stability of a nearly uniform toroidal field between conducting cylinders with different rotation rates. The fluid between the cylinders is assumed as incompressible and to be of uniform density. With a linear theory, the neutral-stability maps for   m = 1  are computed. Rigid rotation must be sub-Alfvénic to allow instability, while for differential rotation also an unstable domain with faster rotation exists [azimuthal magnetorotational instability (AMRI)]. The rotational quenching of the magnetic instability is strongest for magnetic Prandtl number of the order of unity.
The effective angular momentum transport by the instability is directed outwards for subrotation. The resulting magnetic-induced eddy viscosity exceeds the microscopic values by factors of 10–100. This is only true for AMRI; in the opposite case of Tayler instability, the viscosity results are very small.
The same instability also quenches concentration gradients of chemicals by dynamic fluctuations. The corresponding diffusion coefficient always remains smaller than the magnetic-generated eddy viscosity. A Schmidt number of the order of 30 is found as the ratio of the effective viscosity and the diffusion coefficient. For not too strong magnetic fields in the radiation zone of young solar-type stars, the magnetic instability transports much more angular momentum than that it mixes chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号