首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zonal mean data and amplitudes and phases of planetary zonal waves were derived from daily hemispheric maps for tropospheric and stratospheric levels, for the four winters 1975–76 to 1978–79. Important year-to-year fluctuation in zonal means and wave activity are described, most notable of which are the changes from 1975–76 to 1976–77. Comparison of the relative strengths of the stratospheric and tropospheric jet streams shows a strong negative correlation (–0.8) between monthly mean zonal stratospheric winds (at 10 mb, 65°N) and zonal tropospheric winds (at 200 mb, 32.5°N, in the jet core) and a positive correlation (+0.7) between the stratospheric 10 mb winds and the tropospheric 200 mb winds at 65°N. Parameters correlated were the departures from the climatological mean zonal winds. The structure of correlation between wave amplitudes in the same wave number (1, 2) at different altitudes and between wave numbers 1 and 2 is investigated. We find a high correlation (+0.93) between wave 1 in the stratosphere (10 mb height) and wave 2 (height) in the troposphere at 65°N; but only a weak correlation (+0.2) between wave 1 amplitudes in the stratosphere and troposphere. These results suggest the possible importance of wave-wave interactions in processes linking the stratosphere and troposphere. The wave correlations presented here are based on comparisons of monthly means of daily amplitudes; the correlation structure in individual wave developments may differ, in view of the likelihood of altitudinal lags in wave amplification.  相似文献   

2.
Summary The annual mean distribution of the surface stress curl over the Northern Hemisphere has been estimated from the horizontal vorticity advection in the atmosphere by using the upper-wind statistics as published byCrutcher [2]3). The results are used to compute the wind-driven mass transport (Sverdrup transport) in North Atlantic and North Pacific. The calculated intensity of the Gulf Stream is largest at the latitude 35°N, where a mass transport of 45×106 tons sec–1 is obtained; for the maximum intensity of the Kuroshio current a value of 60×106 tons sec–1 is obtained.Research supported in part by the Section of Atmospheric Sciences, National Science Foundation, Grant GP-2561.The research for this study was started by the author at the Department of Meteorology and Oceanography, The University of Michigan, Ann Arbor, Mich.  相似文献   

3.
Stratospheric temperatures show distinct trends, not necessarily monotonically upward or downward. At the North Pole, trends were large only during winter and spring and were different for different months; downward for November, December, mixed for January and upward for February, March and April. For the 10°-90°N belt, the trends were variable, viz., downward during 1971-1975, upward during 1975–1978 and downward again from 1978 onwards up to date, opposite to the upward trend of ground temperature in the Northern hemisphere in recent years. Twelve-monthly running averages revealed strong QBO (quasi-biennial oscillation). For the North Pole, the QBO showed colder (lower) temperatures during 50-mb wind QBO westerly phase maxima. For the 10°-90°N belt, the QBO was similar for 30 mb and 50 mb but the QBO phases did not match well with 50-mb wind QBO phases.  相似文献   

4.
Summary Winter and summer Mid-Latitude (45oN) atmospheres to 90 km, two of a family of nine atmospheres supplemental to the U.S. Standard Atmosphere (1962), provide information on atmospheric structure by seasons rather than the mean annual data shown in the Standard, which is described for reference. Principal data sources for constructing these atmospheres consisted of summaries of Northern Hemisphere radiosonde observations at stations near, 45oN, and observations made from rockets and instruments released by rockets, from nearly a dozen Northern Hemisphere launching sites.Winter and summer temperature-height profiles begin with surface temperatures of –1° and +21 °C, respectively, and contain three isothermal layers: –58°C at 19 to 27 km in winter and –57.5°C at 13 to 17 km in summer; –7.5° and +2.5°C at 47 to 52 km; and –79.5 and –99°C at 80 to 90 km, respectively. The temperature-height curve for the U.S. Standard has a surface temperature of +15°C with isothermal regions at 11 to 20 km (–56.5°C), 47 to 52 km (–2.5°C), and 80 to 90 km (–92.5°C). In all three atmospheres, temperature gradients for various segments are linear with geopotential, height. Humidity is incorporated into the lowest 10 km of the Supplemental Atmospheres, whereas the Standard is dry. Figures and tables depict temperature, relative humidity, pressure, and density for winter and summer, and temperature, pressure, density, speed of sound, and dynamic viscosity for the U.S. Standard Atmosphere.The Supplemental Atmospheres are mutually consistent; zonal wind profiles, computed from the geostrophic wind equation and selected pressure heights, compare favorably with existing radiosonde and rocket wind observations.  相似文献   

5.
The mean flow at and around the Hebrides and Shetland Shelf slope is measured with ARGOS tracked drifters. Forty-two drifters drogued at 50 m were deployed in three circles over the Hebrides slope at 56.15°N in two releases, one on 5th December, 1995 and the second on 5–9th May, 1996. The circles span a distance of some 20 km from water depths of 200 m to 1200 m. Drifters are initially advected poleward along-slope by the Hebrides slope current at between 0.05 and 0.70 m s–1 in a laterally constrained (25–50 km wide) jet-like flow. Drifters released in winter remained in the slope current for over 2000 km whilst summer drifters were lost from the slope current beyond the Wyville-Thomson Ridge, a major topographic feature at 60°N. Dispersion from the slope region into deeper waters occurs at bathymetric irregularities, particularly at the Anton Dohrn Seamount close to which the slope current is found to bifurcate, both in summer and winter, and at the Wyville-Thomson Ridge where drifters move into the Faeroe Shetland Channel. Dispersion onto the continental shelf occurs sporadically along the Hebrides slope. The initial dispersion around the Hebrides slope is remarkably sensitive to initial position, most of the drifters released in shallower water moving onto the shelf, whilst those in 1000 m or more are mostly carried away from the slope into deeper water near the Anton Dohrn Seamount. The dispersion coefficients estimated in directions parallel and normal to the local direction of the 500 m contour, approximately the position of the slope current core, are approximately 8.8 × 103 m2 s–1 and 0.36 × 103 m2 s–1, respectively, during winter, and 11.4 × 103 m2 s–1 and 0.36 x 103 m2 s–1, respectively, during summer. At the slope there is a minimum in across-slope mean velocity, Reynolds stress, and across-slope eddy correlations. The mean across-slope velocity associated with mass flux is about 4 × 10–3 m s–1 shelfward across the shelf break during winter and 2 × 10–3 m s–1 during summer. The drifters also sampled local patterns of circulation, and indicate that the source of water for the seasonal Fair Isle and East Shetland currents are the same, and drawn from Atlantic overflows at the Hebrides shelf.  相似文献   

6.
Numerical calculations of the thermospheric and ionospheric parameters above EISCAT are presented for quiet geomagnetic conditions in summer. The Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) was used. The numerical results were obtained both with a self-consistent calculation of the electric fields of magnetospheric and dynamo-action origin and with the magnetospheric electric fields only. It was found that the dynamo-electric field has some effect on the ionospheric convection pattern during quiet geomagnetic conditions. It has a marked effect mainly on the zonal neutral wind component above EISCAT (±20m/s at 140 km altitude). We have studied the effects of various field-aligned current (FAC) distributions on thermosphere/ionosphere parameters and we show that a qualitative agreement can be obtained with region-I and -II FAC zones at 75° and 65° geomagnetic latitude, respectively. The maximum FAC intensities have been assumed at 03–21 MLT for both regions with peak values of 2.5 × 10–7 Am–2 (region I) and 1.25 × 10–7 A m–2 (region II). These results are in agreement with statistical potential distribution and FAC models constructed by use of EISCAT data. The lack of decreased electron density in the night-time sector as observed by the EISCAT radar was found to be due to the spatial distribution of ionospheric convection resulting from electric fields of magnetospheric origin.  相似文献   

7.
Summary Many writers treated on the problem of dynamic instability of westerly flow due to the excessive horizontal shear, and the present author discusses the corresponding dynamic instability due to the vertical shear. The critical vertical shear in indifferent stratification is given by the condition — the meridional component of absolute vorticity vanishes, — and is an approximate negative valueof 10–4 sec –1 in middle latitude. However the critical vertical shear in normal stable stratification is a fairly large negative value of 2 sec–1. It might be emphasized that the problem of this study differs fromRichardson's criterion of turbulence, for the present author discusses the condition under which the zonal flow is dynamically stable, whileRichardson expressed the condition under which the turbulence will decrease.  相似文献   

8.
Summary The technique for evaluating the natural illumination of direct solar radiation introduced byÅngström andDrummond [1]2) has been applied by the authors to the pyrheliometric observations in India and the values of natural illumination derived at eight representative stations are presented in this paper. The dirunal and seasonal variations of the illumination fluxes have been discussed. —In general, illumination fluxes in India show a maximum during summer season except at Madras, where the maximum occurs during winter. The illumination fluxes at various stations vary within the range 80–110 kilolux throughout the year. However, at Calcutta, it varies within a rather narrow range of 65–85 kilolux. Both in summer and winter, the illumination flux during forenoon hours is usually more than that during afternoon hours. An increase in daylight illumination is observed with height of the station above sea level.  相似文献   

9.
Summary A new significant correlation has been sought between high magnitude global seismicity and lateral surface wave velocity gradients. Rayleigh wave velocity divisioning of Eurasia, Africa, Pacific Ocean, Atlantic Ocean and Indian Ocean into regions of similar group velocity dispersion character of 30 sec period bySanto andSato [1]3) has been mainly used for calculating the gradients. It is quite striking to note that all earthquakes of magnitude 8.6 and above during 1897–1956 have occurred in regions having gradients of the order of 1.5·10–3 sec–1.Finally, some potential areas for high magnitude earthquake occurrences are predicted and the possible velocity gradients in regions, where division pattern is not yet investigated like South America and Australia, are also estimated.N.G.R.I. Contribution No. 70-170.  相似文献   

10.
Mani  A.  Sreedharan  C. R.  Joseph  P. V.  Sinha  S. S. 《Pure and Applied Geophysics》1973,106(1):1192-1199
A series of ozone soundings were made at New Delhi (77°E 28°N) from 21 to 30 January 1969 and 10 to 22 February 1972 to study the changes in the vertical distribution of atmospheric ozone associated with western disturbances. The sonde used was the Indian ozonesonde made in the Instruments Laboratories at Poona.In February 1972, two western disturbances moved eastwards in quick succession across the western Himalayas, the first between the 11th and 13th and the second between the 13th and 15th. Associated with the first tropospheric trough was a high-speed jet stream with wind speeds reaching 180 knots, when the tropopause descended to 304 mb over Delhi. The second trough had no high-speed jet associated with it and the tropopause was at 227 mb. Ozone maxima were observed at 350, 180 and 125 mb in addition to the main peak at 35 mb in association with the upper tropospheric troughs over Delhi and its neighbourhood. A similar lowering of the tropopause and the influx of ozone in shallow layers was observed during the passage of two upper air troughs in January 1969. The study shows that with the approach of upper tropospheric troughs and the simultaneous lowering of the tropopause there is an increased influx in shallow layers of middle latitude ozone-rich air through breaks in the tropopause, replacing the subropical ozone-poor air over the station.  相似文献   

11.
Summary The mean zonal and meridional wind components of the northern hemisphere at different pressure levels for the summer season June–August have been determined and the mean meridional mass circulation has been computed as a function of latitude. From the mass circulation the meridional flux of moisture is computed for the latitudinal belt 0°–45° N. Using the horizontal divergence of this flux the average difference between precipitation and evapotranspiration from the earth's surface is evaluated.  相似文献   

12.
The temporal variations in mean zonal wind, horizontal temperature gradient at 30 mb and Total Ozone in Antarctic Spring (1 Sept.–30 Nov.) for nine seasons (1979–1987) were examined. The ozone hole filling commenced when the zonal flow decelerated to 50–58 m.sec–1 at 30 mb. Our calculation of Rossby critical wave number with vertical shear suited for Antarctic Spring indicated that flow is preconditioned for vertical propagation of Rossby critical wave number two at this range of zonal flow. This preconditioning can be attributed to the diabatic heating in the Antarctic Spring since no sudden minor warmings/coolings have occurred during the period.  相似文献   

13.
Eruptions of the active Karymsky stratovolcano began about 5300 (6100 14C) b.p. from within a pre-existing caldera which formed 7700 14C b.p. As indicated by 32 14C determinations on buried soils and charcoal, the volcano has gone through two major cycles of activity, separated by a 2300 year period of repose. The first cycle can be divided into two stages (6100–5100 and 4300–2800 b.p.). The earlier stage began with especially intense eruptions of basaltic andesite to dacite. The later stage was characterized by moderate-strength eruptions of andesite. The second cycle, which is characterized by weak to moderate intermittent eruptions of andesite, started 500 b.p. and continues to the present. Eruptive patterns suggest that this cycle may continue for at least another 200 years with an eruptive character similar to that of the recent past.  相似文献   

14.
Summary The measurement of condensation nucleus concentration from an aircraft is considered and preliminary observations made with a photo-electric condensation nucleus counter discussed. It is concluded that at heights up to 6000 ft concentrations of condensation nuclei vary, from 200 cm–3 in clean maritime air to 5 × 103 cm–3 generally over large industrial areas and 35 × 103 cm–3 downwind of specific industrial sources. It appears that sea spray makes a contribution to the nucleus population.Mr. G. J.Day, B. Sc., Meteorological Research Flight, Royal Aircraft Establishment,Farnborough, Hants. (Great Britain).  相似文献   

15.
The variations of total ozone at Alma-Ata (43°N, 76 °E) and ozone profiles obtained by balloon sounding at Tateno (36°N, 140°E), Wallops Island (38°N, 75°W) and Cagliari (39°N, 9°E) in the periods of Forbush decreases (FD) in galactic cosmic rays have been analysed. A decrease of total ozone was observed in the initial stage of the FD and an increase 10–11 days later. The average total deviations calculated using the superposed epoch method for 9 FD events are equal to 30 D. U. in the positive and to –18 D. U. in the negative phase. The changes of average ozone profiles, associated with 26 FD events, are more significant in the lower stratosphere and upper troposphere. The decrease of the partial ozone pressure at a height of 12–15 km is about 30 mb. These vertical variations of ozone coincide with the average changes of the respective temperature profiles. A cooling, on the average, of 3°C was observed at 12–15 km, and a heating of 4°C below this level.  相似文献   

16.
A three-level, -plane, filtered model is used to simulate the Northern Hemisphere summer monsoon. A time-averaged initial state, devoid of sub-planetary scale waves, is integrated through 30 days on a 5° latitude-longitude grid. Day 25 through day 30 integrations are then repeated on a 2.5° grid. The planetary-scale waves are forced by time-independent, spatially varying diabatic heating. Energy is extracted via internal and surface frictional processes. Orography is excluded to simplify synoptic-scale energy sources.During integration the model energy first increases, but stabilizes near day 10. Subsequent flow patterns closely resemble the hemisphere summer monsoon. Climatological features remain quasi-stationary. At 200 mb high pressure dominates the land area, large-scale troughs are found over the Atlantic and Pacific Oceans, the easterly jet forms south of Asia, and subtropical jets develop in the westerlies. At 800 mb subtropical highs dominate the oceans and the monsoon trough develops over the Asian land mass. The planetary scales at all levels develop a realistic cellular structure from the passage of transient synoptic-scale features, e.g., a baroclinic cyclone track develops near 55°N and westward propagating waves form in the easterlies.Barotropic redistribution of kinetic energy is examined over a low-latitude zonal strip using a Fourier wave-space. In contrast to higher latitudes where the zonal flow and both longer and shorter waves are fed by barotropic energy redistribution from the baroclinically unstable wavelengths, the low-latitude waves have a planetary-scale kinetic energy source. Wave numbers 1 and 2 maintain both the zonal flow and all shorter scales via barotropic transfers. Transient and standing wave processes are examined individually and in combination.Wave energy accumulates at wave numbers 7 and 8 at 200 mb and at wave number 11 in the lower troposphere. The 800-mb waves are thermally indirect and in the mean they give energy to the zonal flow. These characteristics agree with atmospheric observation. The energy source for these waves is the three wave barotropic transfer. The implications of examining barotropic processes in a Fourier wave-space, vice the more common approach of separating the flow into a mean plus a deviation are discussed.  相似文献   

17.
Summary The best fit curves for upper air mean dry-bulb and dew-point temperatures over Gauhati airport (26°05N, 91°43E, 49 metres a.m.s.l.), for the month of April, have been calculated with the equation,x=A+By+Cy 2,y being the log value in mb of the isobaric level under consideration andx, the mean dry-bulb or dew-point temperature as the case may be, at the isobaric level under consideration. The values of constantsA, B andC for morning dry-bulb and dew-point curves come to be –29.54559, –93.65766 and +37.35048 and –118.84791, –31.15503 and +25.63585 respectively and values of these constants for evening curves come to be –35.86214, –94.15694 and +38.61870 and –127.55970, –29.97192 and +26.36538 respectively. These best fit curves help in finding out mean desired temperatures at any isobaric level in forecasting of thunderstorms and hailstorms, at a station, by dry-bulb and dew-point temperature anomaly technique propsed earlier by the authors.  相似文献   

18.
19.
Barotropic-Baroclinic instability of horizontally and vertically shearing mean monsoon flow during July is investigated numerically by using a 10-layer quasi-geostrophic model. The most unstable mode has a wavelength of about 3000 km and westward phase speed of about 15 m sec–1. The most dominant energy conversion is from zonal kinetic energy to eddy kinetic energy. The structure of the most unstable mode is such that the maximum amplitude is concentrated at about 150 mb and the amplitude at the lowest layers is negligibly small. Barotropic instability of the zonal flow at 150 mb seems to be the primary excitation mechanism for the most unstable mode which is also similar to the observed westward propagating waves in the upper troposphere during the monsoon season. The results further suggest that Barotropic-Baroclinic instability of the mean monsoon flow cannot explain the occurrence of monsoon depressions which have their maximum amplitude at the lower levels and are rarely detected at 200 mb.  相似文献   

20.
Summary Temperature and conductivity measurements show, that in the Southern part of Transdanubia (the part of Hungary which lies Westwards from Danube) the heat flow is about 2–2.4·10–6 cal/cm2 sec. Eastward from the Danube, in the Hungarian Plain estimates are even higher, and vary between 2.3·10–6 and 2.8·10–6 cgs. The gradient of temperature is everywhere quite high, 5.0 resp. 5.8·10–4 deg. C/cm on the average. Thus, at a depth of 1000 m, the virgin rock temperature is about 60–70 deg. C, at 2000 m about 110–130 deg. C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号