首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Since Nb and Zr are only little fractionated during magmatic processes, the 92Nb-92Zr relative chronometer has the potential of dating the formation of the planetary bodies through their differentiation. Thus, we have analyzed the isotopic composition of zirconium in lunar, meteoritic and old and recent terrestrial samples.No isotopic variation has been found. However, the 92Zr90Zr ratio of 3.8 Ga. old zircons from the Isua acid conglomerate is on the lower limit of the range of the standard measurements. If considered an anomaly, it would correspond to a +1.5 × 10?492Zr relative deficiency or to a 3.0 × 10?494Zr relative excess.Our data constrain the 92Nb93Nb isotopic ratio at the time of formation of the solar system to be less than 0.007, so that the maximum sensitivity of the 92Nb-92Zr relative chronometer for the formation of planetary bodies is around 107 a. A discussion of some possible nuclear reactions indicates that zirconium isotopic variations in zircons are not easily produced, and that the 92Nb and 94Nb natural activities (Apt et al., 1974) cannot be explained by any single one of the processes proposed so far.  相似文献   

2.
We present calculations of rates of production of several nuclides in the Martian atmosphere and in the regolith due to nuclear interactions of cosmic ray and radiogenic particles and consider their implications to the evolutionary history of Mars. Nuclides selected are those which, considering their chemical properties, may be useful as tracers for delineating the past histories of the Martian atmosphere and regolith. Calculations are presented for different assumed atmospheric pressures. The regolith production rates for the present thin Martian atmosphere (approximately 20 g cm-2) are expected to be fairly robust because they are based primarily on observed cosmogenic effects in the Moon, for which semiempirical estimates of nuclide production rates have been provided earlier by Reedy (1981). Uncertainties which arise in the calculations of nuclide production rates for an earlier hypothetical Martian atmosphere of approximately 300-500 g cm-2 thickness are discussed. Compared to cosmic ray production rates, the nucleogenic production rates are smaller by several orders of magnitude. However, the nucleogenic production extends to much deeper levels, whereas the cosmogenic production is essentially confined to the top 750-1000 g cm-2 depth. Important examples of nucleogenic production are discussed. Isotopes of neon and argon appear to be very promising for delineating relative magnitudes of a number of planetary processes related to the temporal changes in the thickness of the atmosphere, as well as their release from the regolith. However, quantification of the processes would require higher-precision isotopic data for the atmosphere and also direct measurements of isotopic ratios in the Martian regolith, along with supplementary information on changes in the isotopic compositions of hydrogen, carbon, and nitrogen, which are affected by a variety of mechanisms of escape of gases from the atmosphere. Cosmogenic effects are minimal in these cases. We show that although we can at present draw but limited inferences, the planet Mars presents a unique opportunity to use cosmogenic nuclides as tools to delineate the evolutionary history of the planet as a whole, as well as its regolith and the atmosphere. This arises because of two factors: minimal degassing of the planet, and a fairly intense chemical weathering history of the upper surface. Consequently, an appreciable fraction of some of the isotopes of volatile elements is contributed by nuclear reactions.  相似文献   

3.
New isotopic studies of 142Nd, the daughter product of the short-lived and now extinct isotope 146Sm, have revealed that the accessible part of the silicate Earth (e.g., upper mantle and crust) is more radiogenic in 142Nd/144Nd than that of chondritic meteorites. The positive 142Nd anomaly of the Earth’s mantle implies that the Sm/Nd ratio of the mantle was fractionated early in Earth’s history and that the complementary low 142Nd reservoir has remained isolated from the mantle since its formation. This has led to the suggestion that an early enriched reservoir, formed within Earth’s first hundred million years (the Hadean), resides permanently in the deep interior of the Earth. One hypothesis for a permanently isolated reservoir is that there may be an Fe-rich, and hence intrinsically dense, chemical boundary layer at the core-mantle boundary. The protoliths of this chemical boundary layer could have originated at upper mantle pressures during extreme fractional crystallization of a global magma ocean during the Hadean but testing this hypothesis is difficult because samples of this early enriched reservoir do not exist. This hypothesis, however, is potentially refutable. Here, we investigate a post-Archean magnetite-sulfide magma formed by extreme magmatic differentiation to test whether residual Fe-rich liquids of any kind have the necessary trace-element signatures to satisfy certain global geochemical imbalances. The magnetite-sulfide magma is found to have high Pb contents (and low U/Pb ratios), high Re/Os ratios, and anti-correlated Sm/Nd and Lu/Hf fractionations. Permanent segregation of such a magma would (1) provide a means of early Pb sequestration, resulting in the high U/Pb ratio of the bulk silicate Earth, (2) be a source of radiogenic 187Os in the source regions of plumes, and (3) provide an explanation for decoupled Hf and Nd isotopic evolution in the early Archean, which is not easily produced by silicate fractionation. However, the magnetite-sulfide magma is not highly enriched in K, and thus, at face value, this magma analog would not serve as a repository for all of the heat producing elements. Nevertheless, other Fe-O-S liquids reported elsewhere are enriched in apatite, which carries high concentrations of K, U and Th. Given some promising geochemical fractionations of the Fe-rich liquids investigated here, the notion of a Hadean Fe-rich residual liquid deserves continued consideration from additional experimental or analog studies.  相似文献   

4.
The terrestrial surface, the “skin of the earth”, is an important interface for global (geochemical) material fluxes between major reservoirs of the Earth system: continental and oceanic crust, ocean and atmosphere. Because of a lack in knowledge of the geochemical composition of the terrestrial surface, it is not well understood how the geochemical evolution of the Earth’s crust is impacted by its properties. Therefore, here a first estimate of the geochemical composition of the terrestrial surface is provided, which can be used for further analysis. The geochemical average compositions of distinct lithological classes are calculated based on a literature review and applied to a global lithological map. Comparison with the bulk composition of the upper continental crust shows that the geochemical composition of the terrestrial surface (below the soil horizons) is significantly different from the assumed average of the upper continental crust. Specifically, the elements Ca, S, C, Cl and Mg are enriched at the terrestrial surface, while Na is depleted (and probably K). Analysis of these results provide further evidence that chemical weathering, chemical alteration of minerals in marine settings, biogeochemical processes (e.g. sulphate reduction in sediments and biomineralization) and evaporite deposition are important for the geochemical composition of the terrestrial surface on geological time scales. The movement of significant amounts of carbonate to the terrestrial surface is identified as the major process for observed Ca-differences. Because abrupt and significant changes of the carbonate abundance on the terrestrial surface are likely influencing CO2-consumption rates by chemical weathering on geological time scales and thus the carbon cycle, refined, spatially resolved analysis is suggested. This should include the recognition of the geochemical composition of the shelf areas, now being below sea level.  相似文献   

5.
Carbon isotope values of 260 Precambrian limestones and dolomites (most of them being substantially unaltered) have yielded an overall mean of δ 13C = +0.4 ± 2.7‰ vs. PDB; the corresponding oxygen values average at δ 13O = +20.0 ± 4.2‰ vs. SMOW. Like the overall mean, the δ 13C values furnished by individual carbonate occurrences are, as a rule, fairly “modern” and almost constant as from the very beginning of the sedimentary record. A remarkable exception are the “heavy” dolomites of the Middle Precambrian Lomagundi Group, Rhodesia, with δ 13C = +9.4 ± 2.0‰ vs. PDB. As a result of our measurements, the sporadic occurrence in the geological past of anomalously heavy carbonates seems to be established.The approximate constancy around zero per mill of the δ 13C values of marine carbonates through geologic time would imply a corresponding constancy of the relative proportion of organic carbon in the total sedimentary carbon reservoir since about 3.3 · 109 y ago (with Corg/Ctotal ? 0.2). Utilizing this ratio and current models for the accumulation of the sedimentary mass as a function of time, we get a reasonable approximation for the absolute quantity of organic carbon buried in sediments and, accordingly, of photosynthetic oxygen released. Within the constraints of our model (based on a terrestrial degassing constant λ = 1.16 · 10?9 y?1) close to 80% of the amount of oxygen contained in the present oxygen budget should have been released prior to 3 · 109 y ago. Since geological evidence indicates an O2-deficient environment during the Early and most parts of the Middle Precambrian, there is reason to believe that the distribution of this oxygen between the “bound” and the “molecular” reservoir was different from that of today (with effective O2-consuming reactions bringing about an instantaneous transfer to the crust of any molecular oxygen released). Accordingly, the amount of Corg in the ancient sedimentary reservoir as derived from our isotope data is just a measure of the gross amount of photosynthetic oxygen produced, withholding any information as to how this oxygen was partitioned between the principal geochemical reservoirs. As a whole, the carbon isotope data accrued provide evidence of an extremely early origin of life on Earth since the impact of organic carbon on the geochemical carbon cycle can be traced back to almost 3.5 · 109y.  相似文献   

6.
Carbonate precipitation and hydrothermal reaction are the two major processes that remove Mg from seawater. Mg isotopes are significantly (up to 5‰) fractionated during carbonate precipitation by preferential incorporation of 24Mg, while hydrothermal reactions are associated with negligible Mg isotope fractionation by preferential sequestration of 26Mg. Thus, the marine Mg cycle could be reflected by seawater Mg isotopic composition (δ26Mgsw), which might be recorded in marine carbonate. However, carbonates are both texturally and compositionally heterogeneous, and it is unclear which carbonate component is the most reliable for reconstructing δ26Mgsw. In this study, we measured Mg isotopic compositions of limestone samples collected from the early Carboniferous Huangjin Formation in South China. Based on petrographic studies, four carbonate components were recognized: micrite, marine cement, brachiopod shell, and mixture. The four components had distinct δ26Mg: (1) micrite samples ranged from ?2.86‰ to ?2.97‰; (2) pure marine cements varied from ?3.40‰ to ?3.54‰, while impure cement samples containing small amount of Rugosa coral skeletons showed a wider range (?3.27‰ to ?3.75‰); (3) values for the mixture component were ?3.17‰ and ?3.49‰; and (4) brachiopod shells ranged from ?2.20‰ to ?3.07‰, with the thickened hinge area enriched in 24Mg. Due to having multiple carbonate sources, neither the micrite nor the mixture component could be used to reconstruct δ26Mgsw. In addition, the marine cement was homogenous in Mg isotopes, but lacking the fractionation by inorganic carbonate precipitation that is prerequisite for the accurate determination of δ26Mgsw. Furthermore, brachiopod shells had heterogeneous C and Mg isotopes, suggesting a significant vital effect during growth. Overall, the heterogeneous δ26Mg of the Huangjin limestone makes it difficult to reconstruct δ26Mgsw using bulk carbonate/calcareous sediments. Finally, δ26Mgsw was only slightly affected by the faunal composition of carbonate-secreting organisms, even though biogenic carbonate accounts for more than 90% of marine carbonate production in Phanerozoic oceans and there is a wide range (0.2‰–4.8‰) of fractionation during biogenic carbonate formation.  相似文献   

7.
We present new compositional data for six feldspathic lunar meteorites, two from cold deserts (Yamato 791197 and 82192) and four from hot deserts (Dhofar 025, Northwest Africa 482, and Dar al Gani 262 and 400). The concentrations of FeO (or Al2O3) and Th (or any other incompatible element) together provide first-order compositional information about lunar polymict samples (breccias and regoliths) and regions of the lunar surface observed from orbit. Concentrations of both elements on the lunar surface have been determined from data acquired by orbiting spacecraft, although the derived concentrations have large uncertainties and some systematic errors compared to sample data. Within the uncertainties and errors in the concentrations derived from orbital data, the distribution of FeO and Th concentrations among lunar meteorites, which represent ∼18 source regions on the lunar surface, is consistent with that of 18 random samples from the surface. Approximately 11 of the lunar meteorites are low-FeO and low-Th breccias, consistent with large regions of the lunar surface, particularly the northern farside highlands. Almost all regoliths from Apollo sites, on the other hand, have larger concentrations of both elements because they contain Fe-rich volcanic lithologies from the nearside maria and Th-rich lithologies from the high-Th anomaly in the northwestern nearside. The feldspathic lunar meteorites thus offer our best estimate of the composition of the surface of the feldspathic highlands, and we provide such an estimate based on the eight most well-characterized feldspathic lunar meteorites. The variable but high (on average) Mg/Fe ratio of the feldspathic lunar meteorites compared to ferroan anorthosites confirms a hypothesis that much of the plagioclase at the surface of the feldspathic highlands is associated with high-Mg/Fe feldspathic rocks such as magnesian granulitic breccia, not ferroan anorthosite. Geochemically, the high-Mg/Fe breccias appear to be unrelated to the mafic magnesian-suite rocks of the Apollo collection. Models for the formation of the upper lunar crust as a simple flotation cumulate composed mainly of ferroan anorthosite do not account for the complexity of the crust as inferred from the feldspathic lunar meteorites.  相似文献   

8.
The highly siderophile elements (HSE) pose a challenge for planetary geochemistry. They are normally strongly partitioned into metal relative to silicate. Consequently, planetary core segregation might be expected to essentially quantitatively remove these elements from planetary mantles. Yet the abundances of these elements estimated for Earth's primitive upper mantle (PUM) and the martian mantle are broadly similar, and only about 200 times lower than those of chondritic meteorites. In contrast, although problematic to estimate, abundances in the lunar mantle may be more than twenty times lower than in the terrestrial PUM. The generally chondritic Os isotopic compositions estimated for the terrestrial, lunar and martian mantles require that their long-term Re/Os ratios were within the range of chondritic meteorites. Further, most HSE in the terrestrial PUM also appear to be present in chondritic relative abundances, although Ru/Ir and Pd/Ir ratios are slightly suprachondritic. Similarly suprachondritic Ru/Ir and Pd/Ir ratios have also been reported for some lunar impact melt breccias that were created via large basin forming events.Numerous hypotheses have been proposed to account for the HSE present in Earth's mantle. These hypotheses include inefficient core formation, lowered metal-silicate D values resulting from metal segregation at elevated temperatures and pressures (as may occur at the base of a deep magma ocean), and late accretion of materials with chondritic bulk compositions after the cessation of core segregation. Synthesis of the large database now available for HSE in the terrestrial mantle, lunar samples, and martian meteorites reveals that each of the main hypotheses has flaws. Most difficult to explain is the similarity between HSE in the Earth's PUM and estimates for the martian mantle, coupled with the striking differences between the PUM and estimates for the lunar mantle. More complex, hybrid models that may include aspects of inefficient core formation, HSE partitioning at elevated temperatures and pressures, and late accretion may ultimately be necessary to account for all of the observed HSE characteristics. Participation of aspects of each process may not be surprising as it is difficult to envision the growth of a planet, like Earth, without the involvement of each.  相似文献   

9.
朱茂旭  谢美  于红  姬泓巍 《地球化学》2005,34(3):278-284
在一定条件下利用钠基蒙脱石 (Na- Mt)合成了 OH/Al比为 1.6的聚合羟基铝-蒙脱石 (HyAl- Mt)复合体,并研究了弱酸性和强酸化条件下 HyAl- Mt与氟之间的相互作用及土壤环境意义.结果表明, pH在 5.0~ 9.0之间时, HyAl- Mt对氟的吸附受 pH影响小;当 pH < 4.5时,吸附能力随 pH减小迅速增大. pH 6.62时, HyAl- Mt对氟的吸附主要是络合交换机制,而 pH 3.02及高氟浓度条件下是表面吸附、矿物溶解及共沉淀-卷扫等协同作用机制,并使 HyAl- Mt具有异常高的氟去除能力.与蒙脱石粘土相比, HyAl- Mt的氟吸附能力明显提高,土壤中的 HyAl- Mt组分可有效地降低氟污染土壤中氟的迁移性并减少其生物有效性.在酸性氟污染的土壤中,氟与 HyAl- Mt相互作用还可一定程度抑制土壤的酸化.土壤酸度越大,这种抑制作用越明显.施用合成的 HyAl- Mt 可作为酸性氟污染土壤修复并控制土壤酸化的有效途经之一.  相似文献   

10.
Zou  Lin  Dong  Lin  Ning  Meng  Huang  Kangjun  Peng  Yongbo  Qin  Shujian  Yuan  Honglin  Shen  Bing 《中国地球化学学报》2019,38(4):481-496

The continent is the second largest carbon sink on Earth’s surface. With the diversification of vascular land plants in the late Paleozoic, terrestrial organic carbon burial is represented by massive coal formation, while the development of soil profiles would account for both organic and inorganic carbon burial. As compared with soil organic carbon, inorganic carbon burial, collectively known as the soil carbonate, would have a greater impact on the long-term carbon cycle. Soil carbonate would have multiple carbon sources, including dissolution of host calcareous rocks, dissolved inorganic carbon from freshwater, and oxidation of organic matter, but the host calcareous rock dissolution would not cause atmospheric CO2 drawdown. Thus, to evaluate the potential effect of soil carbonate formation on the atmospheric pCO2 level, different carbon sources of soil carbonate should be quantitatively differentiated. In this study, we analyzed the carbon and magnesium isotopes of pedogenic calcite veins developed in a heavily weathered outcrop, consisting of limestone of the early Paleogene Guanzhuang Group in North China. Based on the C and Mg isotope data, we developed a numerical model to quantify the carbon source of calcite veins. The modeling results indicate that 4–37 wt% of carbon in these calcite veins was derived from atmospheric CO2. The low contribution from atmospheric CO2 might be attributed to the host limestone that might have diluted the atmospheric CO2 sink. Nevertheless, taking this value into consideration, it is estimated that soil carbonate formation would lower 1 ppm atmospheric CO2 within 2000 years, i.e., soil carbonate alone would sequester all atmospheric CO2 within 1 million years. Finally, our study suggests the C–Mg isotope system might be a better tool in quantifying the carbon source of soil carbonate.

  相似文献   

11.
Visible to infrared reflectance spectroscopic analyses (0.3-25 micromoles) have been performed on sediments from the Dry Valleys region of Antarctica. Sample characterization for these sediments includes extensive geochemical analyses and X-ray diffraction (XRD). The reflectance spectra and XRD indicate major amounts of quartz, feldspar, and pyroxene in these samples and lesser amounts of carbonate, mica, chlorite, amphibole, illite, smectite, and organic matter. Calcite is the primary form of carbonate present in these Lake Hoare sediments based on the elemental abundances and spectroscopic features. The particle size distribution of the major and secondary components influences their detection in mixtures and this sensitivity to particle size is manifested differently in the "volume scattering" and "surface scattering" infrared regions. The Christiansen feature lies between these two spectral regimes and is influenced by the spectral properties of both regions. For these mixtures the Christiansen feature was found to be dependent on physical parameters, such as particle size and sample texture, as well as the mineralogy. Semiquantitative spectroscopic detection of calcite and organic material has been tested in these quartz- and feldspar-rich sediments. The relative spectral band depths due to organics and calcite correlate in general with the wt% C from organic matter and carbonate. The amounts of organic matter and carbonate present correlate with high Br and U abundances and high Ca and Sr abundances, respectively. Variation in the elemental abundances was overall minimal, which is consistent with a common sedimentary origin for the forty-two samples studied here from Lake Hoare.  相似文献   

12.
Open-system pyrolysis experiments were performed on a suite of immature to marginally mature source rocks to investigate the influence of kerogen type on primary gas composition and the effect of grain size on gas expulsion characteristics. The pyrolysis of rock powders confirmed that hydrogen-rich kerogens yielded wetter gases than did hydrogen-poor kerogens. Gases detected from the pyrolysis of rock chips were drier than those from powders of equivalent samples. This was due to two processes: the retention and secondary cracking of higher molecular weight pyrolysis products and the preferential expulsion of methane from the rock matrix. These two effects, one chemical the other physical, could be distinguished using a novel approach involving multi-step pyrolysis of rock chips followed by on-line crushing of the residues. The enrichment of methane in natural gas attributed, by earlier workers, to be a consequence of fractionation during secondary migration (post-expulsion) has been proven to be real also during expulsion from source rocks at least for pyrolysis conditions.  相似文献   

13.
 Microsampling of cm-scale feldspar crystals within an S-type granite from the Lachlan Fold Belt of southeastern Australia has revealed complex internal Sr and Nd isotopic variations. The observed isotopic zonations are in part interpreted as recording feldspar crystallisation in a dynamically mixing magma system, the isotopic composition of which was varying in response to the influx of more mafic and isotopically more mantle-like magmas, the latter stages of which are now represented in modified form by microgranular enclaves. Similar core to rim isotopic variations in feldspar megacrysts from a microgranular enclave and the adjacent host granite strongly suggest megacrysts in the enclave were transferred from the granitic magma during crystallisation. Feldspar rims have higher 87Sr/86Sri and lower ɛNd(i) than adjacent whole rock analyses, but match those of mineral separates from the surrounding enclave matrix. This suggests that the final stages of megacryst growth occurred in the presence of a component that had previously interacted with a high 87Sr/86Sr, low ɛNd(i) component such as metasedimentary wall rocks. Isotopic heterogeneities are also presererved within different mineral phases in the enclave matrix, suggesting that differing phases grew at differing stages of equilibration between the enclave magma and its host granitic magma. Our results reveal major isotopic heterogeneities on a single crystal and also inter-mineral scale in a pluton which shows well constrained evidence for magma mingling. These results indicate the suitability of feldspars as recorders of isotopic change in magmatic systems, even those which have cooled slowly in the plutonic environment and suggest that much heterogeneity in plutonic systems may be overlooked on a whole rock scale. Received: 28 September 1998 / Accepted: 29 December 1999  相似文献   

14.
Yigang Xu  Chuanyong Lin  Lanbin Shi 《Lithos》1999,47(3-4):181-193
The Qilin geotherm established by Xu et al. [Xu, X.S., O'Reilly, S.Y., Zhou, X.M. and Griffin, W.L., 1996. A xenolith-derived geotherm and the crust-mantle boundary at Qilin, southeastern China. Lithos, 38: 41–62.] using the Ellis and Green [Ellis D.J. and Green D.H., 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol., 71: 13–22]/Wood [Wood B.J., 1974. Solubility of alumina in orthopyroxene coexisting with garnet. Contrib. Mineral. Petrol. 46: 1-15] combination is in need of revision on the basis of re-evaluation of geothermobarometers, comparison of calculated pressures and temperatures with experimentally determined phase relationships and geological/geophysical data. The invalid assumption that all iron is present as Fe2+ in minerals, and the thermal destruction of equilibrium Fe–Mg exchange between clinopyroxene and garnet that may have resulted from heating of the Qilin xenoliths by the host magma resulted in unrealistically high temperatures estimated by the Ellis and Green's thermometer. An important implication arising from this study is that care must be taken when applying thermobarometers to Fe-rich pyroxenites for the purpose of geotherm construction and a comprehensive analysis is often required.  相似文献   

15.
This paper examines the issues related to salinization and water quality in the complex drainage system of the historical land reclamation of Lamone basin (Ravenna coastal plain, northern Italy), with the aim of guiding ongoing agricultural-related decisions. Major and trace element concentration and O–H–B–Sr isotope-ratios were measured on surface water from a network of canals and ditches. Sampling was carried out during the winter period and in summer, to assess the effects of agricultural water management on the aquatic system. Results show widespread salinization of waters over the entire crop, due to both the direct saltwater inland flushing through the canals in proximity of the mouths, and sea salt leaching from soils. During winter, salinization is partly mitigated by rainfalls, while in summer dilution processes are due to freshwater input from outside the watershed, planned to assist the agricultural water demand. In the winter season, the concentration of some elements such as Fe, Mn, Al, and Cu in waters exceeds the maximum permissible limits imposed by the Italian regulations, while during summer the concentration of these elements is significantly reduced. A seasonal cycling is established, where the bottom sediments of canals and ditches act as sinks of harmful elements, mostly through adsorption by Fe–Mn–Al oxy-hydroxide solid phases. The irrigation practice, although improving the water quality, increases water turbidity by re-mobilization of sediments which act as transport agents of contaminants, with detrimental effects that may become significant over the years.  相似文献   

16.
The knowledge of Martian salts has gone through substantial changes during the past decades. In the 70th of last century, Viking landers have noticed the existence of salts on Mars. Several salt species have been suggested from then on, such as sulfates and chlorides. However, their origin was a mystery due to the lack of observations. The recent explorations and related studies at the beginning of this century revealed that the crustal composition of Mars is similar to that of Earth, and it was hypothesized that almost one third of Martian surface was covered by oceans and lakes in the early stage of Mars. The huge water bodies may have dissolved a large quantity of ions from Martian primary rocks during the whole Noachian and Hesperian epoch. After the enormous drought event happened during the late Hesperian and the early Amazonian, these dissolved ions have formed huge salts deposits and most of them were preserved on Mars until today. To date, carbonates, sulfates, chlorides have all been detected by orbital remote sensing and by landers and rovers. However, the salt mineral assemblages on Mars seems to have some differences from those on Earth, e.g., rich in sulfates and lack of massive carbonates. To explain this difference, we propose that most of the surface carbonates precipitated from the ancient oceans may have been dissolved by the later ubiquitous acidic fluids originated from the global volcanism in the Hesperian era, and formed the enormous sulfate deposits as detected, and this hypothesis seems to be supported by the evidence that most of the sulfate deposits distribute around the Tharsis volcanic province while the survived carbonates located far from it. This process can release most of the carbon on Mars to the atmosphere in the form of CO2 and then be erased by the late heavy bombardments, which might have profound influence on the climate change happened in the Hesperian age. The positive correlation between the GRS results of the potassium distributions and the distribution of chlorides on Mars, together with the high Br concentration measured from the evaporate sediments at two Mars exploration rover landing sites, indicate that the brines in the regions where the chlorides deposited may have reached the stage for potassium salts deposition, thus we propose for the first time that potassium salts deposits might be prevalent in these regions.  相似文献   

17.
The oxygen fugacity of the Dar al Gani 476 martian basalt is determined to be quartz-fayalite-magnetite (QFM) −2.3 ± 0.4 through analysis of olivine, low-Ca pyroxene, and Cr-spinel and is in good agreement with revised results from Fe-Ti oxides that yield QFM −2.5 ± 0.7. This estimate falls within the range of oxygen fugacity for the other martian basalts, QFM −3 to QFM −1. Oxygen fugacity in martian basalts correlates with 87Sr/86Sr, 143Nd/144Nd, and La/Yb ratios, indicating that the mantle source of the basalts is reduced and that assimilation of crust-like material controls the oxygen fugacity. This allows constraints to be placed on the oxidation state of the martian mantle and on the nature of assimilated crustal material. The assimilated material may be the product of early and extensive hydrothermal alteration of the martian crust, or it may be amphibole- or phlogopite-bearing basaltic rock within the crust. In either case, water may play a significant role in the oxidation of basaltic magmas on Mars, although it may be secondary to assimilation of ferric iron-rich material.  相似文献   

18.
Palaeokarst is an important feature of late Dinantian exposure surfaces. Soil-filled depressions are widely developed. These are comparable to modern day solution dolines and were probably interspersed by areas of relatively bare limestone pavement. The palaeokarst primarily exhibits a smooth, mamillated to potholed surface form, consistent with its formation beneath a soil cover. Areas between the depressions have been extensively stylolitised and would likely have originally been characterized by small-scale fretted and sculpted karren forms typical of subaerial karstification. Palaeokarst pits making up the depressions are thought to have been initiated through stem-flow drainage from trees. Rain water, intercepted by the crown of the tree, was concentrated at specific sites on the emergent surface and dissolution beneath the trunk produced cylindrical pits that propagated vertically downwards. Trees responsible for concentrating drainage may also have enhanced the acidic nature of the rain water through leaching of organic acids from foliar and woody tissues. Downward propagation of the pits was limited to the uppermost 1–2 m and enlargement primarily occurred through lateral amalgamation of adjacent pits. Once initiated, continued development of the depressions would have been self perpetuating; the preferential accumulation of volcanic ash and organic matter enhancing water retention and encouraging further vegetation growth. In contrast, intervening areas would have been characterized by slow vertical denudation only. Karstification likely took of the order of a few hundred years in the case of potholed palaeokarstic surfaces formed solely by stem-flow drainage, to a few tens of thousands of years where the palaeokarst is more mature.  相似文献   

19.
Barium-, Cl- and Ti-rich biotite occurs together with garnet, plagioclase and amphibole within narrow shear zones in 1800 Ma old noritic granulites in the Flakstadøy Basic Complex, Lofoten, north Norway. The granulite facies assemblage, plagioclase, clinopyroxene, orthopyroxene, biotite and ilmenite, was replaced by an amphibolite facies mineral assemblage including Ba-, Cl- and Ti-rich biotite during ductile deformation. Biotite shows complex compositional variations with respect to the contents of Ba, K, Cl, Ti, Al, Fe, Mg and Si. There are correlations between Si, AlIV, K, Ba and Cl and between AlVI and Ti. Titanium and Cl are uncorrelated. The Fe and Mg are correlated to both Cl and Ti. Multivariate analysis shows that most of the compositional variation of biotite can be described by two exchange reactions. This indicates that most of the variation in biotite composition was controlled by two chemical variables of the system. The content of the first exchange component (Ti1.0 Fe0.6 Al -1.1 VI Mg-0.8) in biotite can be related to the original distribution of Ti-bearing minerals in the igneous protolith. The content of the second exchange component (Al 0.4 IV Fe0.8 Ba0.5 Cl1.0 Si-0.4 Mg-1.0 K-0.5 OH-1.0) is related to compositional variations of an externally derived Ba- and Cl-bearing fluid in equilibrium with biotite.The initially low Cl-content of the externally derived fluid was increasing during bioite forming reactions, because OH was preferentially incorporated, relative to Cl, into biotite. Continued hydration/chloridisation reactions resulted in a gradual consumption of the free fluid phase, resulting in local fluid-absent conditions. The composition of biotite reflects the composition of the last fluid in equilibrium with the mineral, i.e. the composition of the fluid immediately before the grain boundaries were fluid-undersaturated. Thus, the variations in biotite composition reflect how the fluid was gradually consumed throughout the shear zone rock. The correlations between Fe, Mg, Ba, K and Cl can be attributed to differences between the structure of the crystal lattices and the sizes of the cation sites of OH-phlogopite and Cl-annite. The dependency of the Fe/Mg ratios of biotite on the Cl-and Ti-content has a strong effect on the Fe–Mg partitioning between biotite and garnet. The relationship between lnKD, X Ti Bt and X Cl Bt can be expressed by the regression equation: lnK D =-1.82+2.60X Ti Bt +5.67X Cl Bt  相似文献   

20.
The probability that storage of carbon dioxide (CO2) in deep geologic formations will become an important climate change mitigation strategy depends on a number of factors, namely (1) public acceptance, (2) the cost of geologic storage compared to other climate change mitigation options, and (3) the availability, capacity, and location of suitable sites. Whether or not a site is suitable will be determined by establishing that it can meet a set of performance requirements for safe and effective geologic storage. To date, no such performance requirements have been developed. Establishing effective requirements must start with an evaluation of how much CO2 might be stored and for how long the CO2 must remain underground to meet goals for controlling atmospheric CO2 concentrations. Answers to these questions provide a context for setting performance requirements for geologic storage projects.According to the results presented here, geologic storage could be an effective method to ease the transition away from a fossil-fuel based economy over the next several centuries, even if large amounts of CO2 are stored and some small fraction seeps from storage reservoirs back into the atmosphere. An annual seepage rate of 0.01% or 10-4/year would ensure the effectiveness of geologic carbon storage for any of the projected sequestration scenarios explored herein, even those with the largest amounts of storage (1,000 s of gigatonnes of carbon-GtC), and still provide some safety margin. Storing smaller amounts of carbon (10 s to 100 s of GtC) may allow for a slightly higher seepage rate on the order of 0.1% or 10-3/year. Based on both the large capacity of geologic storage formation and the likelihood of achieving leakage rates much lower than the rates estimated here, geologic storage appears to be a promising mitigation strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号