首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
P and S receiver functions obtained from a portable array of 34 broad-band stations in east central China provide a detailed image of the crust–mantle and lithosphere–asthenosphere boundaries (LAB) in the Dabie Shan and its adjacent areas. Clear S -to- P converted waves produced at the LAB show a thin lithosphere beneath the whole study area. Based on our results, the thickest lithosphere of 72 km is observed beneath the southern part of the area within the Yangtze craton, whereas beneath the North-China platform, the lithosphere is only 60 km thick. S receiver functions also reveal, in good agreement with P receiver functions, a maximum depth of the Moho beneath the Dabie Shan orogen at approximately 40 km. Furthermore, we interpret the structural difference at 32° latitude as the probable location of the mantle suture formed between the Yangtze and the Sino-Korean cratons.  相似文献   

2.
Wavelet modelling of broad-band receiver functions   总被引:2,自引:0,他引:2  
We present a wavelet modelling approach to invert for S -wave velocities from broad-band receiver functions. Taking spline function as the basic wavelet, the broad-band receiver function is decomposed into five resolution scales by Mallat's pyramid algorithm. The linearized least-squares inversion procedure is applied to every resolution scale. The fifth-scale approximation of receiver function is first inverted to recover the slowly varying background velocity variations with respect to a reference model. This solution is then taken as the initial model for fitting the fourth-scale wavelet coefficients of receiver function to further tune the solution to resolve sharper variations. This procedure is iteratively carried out up to the first-scale wavelet coefficients of receiver function. In this manner, the model neighbourhood containing the global minimum is first searched from the coarsest-scale receiver function, and the search gradually focuses on the global minimum by introducing finer-scale information of receiver function. Noise-free synthetic receiver function tests show that wavelet modelling of receiver functions can guide a certain range of initial models to converge to the true velocity distribution. Tests on actual data indicate that wavelet modelling can provide results very similar to those inferred by joint inversion of receiver function and surface wave dispersion.  相似文献   

3.
The S receiver functions: synthetics and data example   总被引:12,自引:0,他引:12  
Recently, the S receiver function method has been successfully developed to identify upper mantle interfaces. S receiver functions have the advantage of being free of S -wave multiple reflections and can be more suitable than P receiver functions for studying mantle lithosphere. However, because of specific ray geometry and interference of diverse phases, the S receiver function method has some technical difficulties and limitations. We use synthetic seismograms to demonstrate the feasibility and limitations of S receiver functions for studying mantle structures. Full-wavefield seismograms were calculated using the reflectivity method and processed to generate synthetic S receiver functions for S , SKS and ScS waves. Results show that S receiver functions can be obtained from waveforms of S , SKS and ScS waves. The synthetic S receiver functions for these incident waves show S -to- P converted phases at all discontinuities in the crust and upper mantle. Useful ranges of epicentral distances for calculation of S receiver functions are: 55°–85° for S , >85° for SKS and 50°–75° for ScS waves. We apply both the S and P receiver function methods to data recorded at broadband station YKW3 in Northwest Canada. The study shows that there is significant agreement among different receiver function methods, and demonstrates the usefulness of S receiver functions for imaging the mantle lithosphere.  相似文献   

4.
Five broad-band seismic stations were operated in the northwest fjords area of Iceland from 1996 to 1998 as part of the Iceland Hotspot project. The structures of the upper 35  km or so beneath these stations were determined by the modelling and joint inversion of receiver functions and regional surface wave phase velocities. More than 40 teleseismic events and a few regional events containing high-quality surface wave trains were used. Although the middle period passband of the seismograms is corrupted by oceanic microseismic noise, which hinders the interpretation of structural details, the inversions reveal the overall features. Many profiles obtained exhibit large velocity gradients in the upper 5  km or so, smaller zero gradients below this, and, at ~23  km depth, a zone 2–4  km thick with higher velocity gradients. The two shallower intervals are fairly consistent with the 'upper' and 'lower' crust, defined by Flovenz (1980 ). The deep zone of enhanced velocity gradient seems to correspond to the sharp reflector first reported by Bjarnason et al . (1993 ) and identified by them as the 'Moho'. However, this type of structure is not ubiquitous beneath the northwest fjords area. The distinctiveness of the three intervals is variable, and in some cases a structure with velocity gradient increasing smoothly with depth is observed. We term these two end-members structures of the first and second types respectively. Structures of the second type correlate with older areas. Substantial variation in fundamental structure is to be expected in Iceland because of the great geological heterogeneity there.  相似文献   

5.
6.
We modify the receiver-functions stacking technique known as velocity spectrum stacking (VSS) so as to estimate combinations of velocity model ( VP and VS ) and depth that stack the Ps conversion from upper-mantle discontinuities most coherently. We find that by estimating the differences in the depths to the 660 and 410 km discontinuities using velocities that maximize the stacked amplitudes of P410s and P660s phases we can estimate the thickness of the transition zone more accurately than the depths to either of these discontinuities. We present two examples indicating that the transition zone beneath Obninsk, Russia, is 252±6 km thick and that beneath Pasadena, California, is only 220±6 km thick.  相似文献   

7.
8.
We use teleseismic three-component digital data from the Trabzon, Turkey broadband seismic station TBZ to model the crustal structure by the receiver function method. The station is located at a structural transition from continental northeastern Anatolia to the oceanic Black Sea basin. Rocks in the region are of volcanic origin covered by young sediments. By forward modelling the radial receiver functions, we construct 1-D crustal shear velocity models that include a lower crustal low-velocity zone, indicating a partial melt mechanism which may be the source of surfacing magmatic rocks and regional volcanism. Within the top 5 km, velocities increase sharply from about 1.5 to 3.5 km s−1. Such near-surface low velocities are caused by sedimentation, extending from the Black Sea basin. Velocities at around 20 km depth have mantle-like values (about 4.25 km s−1 ), which easily correlate to magmatic rocks cropping out on the surface. At 25 km depth there is a thin low-velocity layer of about 4.0 km s−1. The average Moho velocity is about 4.6 km s−1, and its depth changes from 32 to 40 km. Arrivals on the tangential components indicate that the Moho discontinuity dips approximately southwards, in agreement with the crustal thickening to the south. We searched for the solution of receiver functions around the regional surface wave group velocity inversion results, which helped alleviate the multiple solution problem frequently encountered in receiver function modelling.
Station TBZ is a recently deployed broadband seismic station, and the aim of this study is to report on the analysis of new receiver function data. The analysis of new data in such a structurally complex region provides constraining starting models for future structural studies in the region.  相似文献   

9.
10.
11.
Crustal and upper-mantle seismic discontinuities beneath eastern Turkey are imaged using teleseismic S -to- P converted phases. Three crustal phases are observed: the Moho with depth ranging between 30 and 55 km, indicating variable tectonic regimes within this continental collision zone; an upper-crustal discontinuity at approximately 10 km depth; and various crustal low-velocity zones, possibly associated with recent Quaternary volcanism. Imaging of the upper mantle is complicated by the 3-D geometry of the region, in particular due to the Bitlis–Zagros suture zone. However, several upper-mantle S -to- P converted phase are identified as being the signature of the lithosphere–asthenosphere boundary (LAB). The inferred LAB for the Eastern Anatolian Accretionary Complex indicates that eastern Turkey has an anomalously thin (between ∼60 and 80 km) lithosphere which is consistent with an oceanic slab detachment model. The observed LAB phases for the Arabian shield and Iranian plateau indicate that lithospheric thickness for these stable regions is on the order of 100 to 125 km thick, which is typical of continental margins.  相似文献   

12.
We study the crustal structure of eastern Marmara region by applying the receiver function method to the data obtained from the 11 broad-band stations that have been in operation since the 1999 İzmit earthquake. The stacked single-event receiver functions were modelled by an inversion algorithm based on a five-layered crustal velocity model to reveal the first-order shear-velocity discontinuities with a minimum degree of trade-off. We observe crustal thickening from west (29–32 km) to east (34–35 km) along the North Anatolian Fault Zone (NAFZ), but we observe no obvious crustal thickness variation from north to south while crossing the NAFZ. The crust is thinnest beneath station TER (29 km), located near the Black Sea coast in the west and thickest beneath station TAR (35 km), located inland in the southeast. The average crustal thickness and S -wave velocity for the whole regions are  31 ± 2  km and  3.64 ± 0.15 km s−1  , respectively. The eastern Marmara region with its average crustal thickness, high heat flow value (101 ± 11 mW m−2) and with its remarkable extensional features seems to have a Basin and Range type characteristics, but the higher average shear velocities (∼3.64 km s−1) and crustal thickening from 29 to 35 km towards the easternmost stations indicate that the crustal structure shows a transitional tectonic regime. Therefore, we conclude that the eastern Marmara region seems to be a transition zone between the Marmara Sea extensional domain and the continental Anatolian inland region.  相似文献   

13.
14.
Teleseismic data have been collected with temporary seismograph stations on two profiles in southern Norway. Including the permanent arrays NORSAR and Hagfors the profiles are 400 and 500 km long and extend from the Atlantic coast across regions of high topography and the Oslo Rift. A total of 1071 teleseismic waveforms recorded by 24 temporary and 8 permanent stations are analysed. The depth-migrated receiver functions show a well-resolved Moho for both profiles with Moho depths that are generally accurate within ±2 km.
For the northern profile across Jotunheimen we obtain Moho depths between 32 and 43 km (below sea level). On the southern profile across Hardangervidda, the Moho depths range from 29 km at the Atlantic coast to 41 km below the highland plateau. Generally the depth of Moho is close to or above 40 km beneath areas of high mean topography (>1 km), whereas in the Oslo Rift the crust locally thins down to 32 km. At the east end of the profiles we observe a deepening Moho beneath low topography. Beneath the highlands the obtained Moho depths are 4–5 km deeper than previous estimates. Our results are supported by the fact that west of the Oslo Rift a deep Moho correlates very well with low Bouguer gravity which also correlates well with high mean topography.
The presented results reveal a ca . 10–12 km thick Airy-type crustal root beneath the highlands of southern Norway, which leaves little room for additional buoyancy-effects below Moho. These observations do not seem consistent with the mechanisms of substantial buoyancy presently suggested to explain a significant Cenozoic uplift widely believed to be the cause of the high topography in present-day southern Norway.  相似文献   

15.
Receiver functions (RFs) from teleseismic events recorded by the NARS-Baja array were used to map crustal thickness in the continental margins of the Gulf of California, a newly forming ocean basin. Although the upper crust is known to have split apart simultaneously along the entire length of the Gulf, little is known about the behaviour of the lower crust in this region. The RFs show clear P -to- S wave conversions from the Moho beneath the stations. The delay times between the direct P and P -to- S waves indicate thinner crust closer to the Gulf along the entire Baja California peninsula. The thinner crust is associated with the eastern Peninsular Ranges batholith (PRB). Crustal thickness is uncorrelated with topography in the PRB and the Moho is not flat, suggesting mantle compensation by a weaker than normal mantle based on seismological evidence. The approximately W–E shallowing in Moho depths is significant with extremes in crustal thickness of ∼21 and 37 km. Similar results have been obtained at the northern end of the Gulf by Lewis et al., who proposed a mechanism of lower crustal flow associated with rifting in the Gulf Extensional Province for thinning of the crust. Based on the amount of pre-Pliocene extension possible in the continental margins, if the lower crust did thin in concert with the upper crust, it is possible that the crust was thinned during the early stages of rifting before the opening of the ocean basin. In this case, we suggest that when breakup occurred, the lower crust in the margins of the Gulf was still behaving ductilely. Alternatively, the lower crust may have thinned after the Gulf opened. The implications of these mechanisms are discussed.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号