首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The grain‐ and outcrop‐scale distribution of melt has been mapped in anatectic rocks from regional and contact metamorphic environments and used to infer melt movement paths. At the grain scale, anatectic melt is pervasively distributed in the grain boundaries and in small pools; consequently, most melt is located parallel to the principal fabric in the rock, typically a foliation. Short, branched arrays of linked, melt‐bearing grain boundaries connect melt‐depleted parts of the matrix to diffuse zones of melt accumulation (protoleucosomes), where magmatic flow and alignment of euhedral crystals grown from the melt developed. The distribution of melt (leucosome) and residual rocks (normally melanocratic) in outcrop provides different, but complementary, information. The residual rocks show where the melt came from, and the leucosomes preserve some of the channels through which the melt moved, or sites where it pooled. Different stages of the melt segregation process are recorded in the leucosome–melanosome arrays. Regions where melting and segregation had just begun when crystallization occurred are characterized by short arrays of thin, branching leucosomes with little melanosome. A more advanced stage of melting and segregation is marked by the development of residual rocks around extensive, branched leucosome arrays, generally oriented along the foliation or melting layer. Places where melting had stopped, or slowed down, before crystallization began are marked by a high ratio of melanosome to leucosome; because most of the melt has drained away, very few leucosomes remain to mark the melt escape path — this is common in melt‐depleted granulite terranes. Many migmatites contain abundant leucosomes oriented parallel to the foliation; mostly, these represent places where foliation planes dilated and melt drained from the matrix via the branched grain boundary and larger branched melt channel (leucosome) arrays collected. Melt collected in the foliation planes was partially, or fully, expelled later, when discordant leucosomes formed. Leucosomes (or veins) oriented at high angles to the foliation/layering formed last and commonly lack melanocratic borders; hence they were not involved in draining the matrix of the melting layer. Discordant leucosomes represent the channels through which melt flowed out of the melting layer.  相似文献   

2.
Granulite facies gabbroic and dioritic gneisses in the Pembroke Valley, Milford Sound, New Zealand, are cut by vertical and planar garnet reaction zones in rectilinear patterns. In gabbroic gneiss, narrow dykes of anorthositic leucosome are surrounded by fine‐grained garnet granulite that replaced the host two‐pyroxene hornblende granulite at conditions of 750 °C and 14 kbar. Major and trace element whole‐rock geochemical data indicate that recrystallization was mostly isochemical. The anorthositic veins cut contacts between gabbroic gneiss and dioritic gneiss, but change in morphology at the contacts, from the anorthositic vein surrounded by a garnet granulite reaction zone in the gabbroic gneiss, to zones with a septum of coarse‐grained garnet surrounded by anorthositic leucosome in the dioritic gneiss. The dioritic gneiss also contains isolated garnet grains enclosed by leucosome, and short planar trains of garnet grains linked by leucosome. Partial melting of the dioritic gneiss, mostly controlled by hornblende breakdown at water‐undersaturated conditions, is inferred to have generated the leucosomes. The form of the leucosomes is consistent with melt segregation and transport aided by fracture propagation; limited retrogression suggests considerable melt escape. Dyking and melt escape from the dioritic gneiss are inferred to have propagated fractures into the gabbroic gneiss. The migrating melt scavenged water from the surrounding gabbroic gneiss and induced the limited replacement by garnet granulite.  相似文献   

3.
Anatexis of metapelitic rocks at the Bandelierkop Quarry (BQ) locality in the Southern Marginal Zone of the Limpopo Belt occurred via muscovite and biotite breakdown reactions which, in order of increasing temperature, can be modelled as: (1) Muscovite + quartz + plagioclase = sillimanite + melt; (2) Biotite + sillimanite + quartz + plagioclase = garnet + melt; (3) Biotite + quartz + plagioclase = orthopyroxene ± cordierite ± garnet + melt. Reactions 1 and 2 produced stromatic leucosomes, which underwent solid‐state deformation before the formation of undeformed nebulitic leucosomes by reaction 3. The zircon U–Pb ages for both leucosomes are within error identical. Thus, the melt or magma formed by the first two reactions segregated and formed mechanically solid stromatic veins whilst temperature was increasing. As might be predicted from the deformational history and sequence of melting reactions, the compositions of the stromatic leucosomes depart markedly from those of melts from metapelitic sources. Despite having similar Si contents to melts, the leucosomes are strongly K‐depleted, have Ca:Na ratios similar to the residua from which their magmas segregated and are characterized by a strong positive Eu anomaly, whilst the associated residua has no pronounced Eu anomaly. In addition, within the leucosomes and their wall rocks, peritectic garnet and orthopyroxene are very well preserved. This collective evidence suggests that melt loss from the stromatic leucosome structures whilst the rocks were still undergoing heating is the dominant process that shaped the chemistry of these leucosomes and produced solid leucosomes. Two alternative scenarios are evaluated as generalized petrogenetic models for producing Si‐rich, yet markedly K‐depleted and Ca‐enriched leucosomes from metapelitic sources. The first process involves the mechanical concentration of entrained peritectic plagioclase and garnet in the leucosomes. In this scenario, the volume of quartz in the leucosome must reflect the remaining melt fraction with resultant positive correlation between Si and K in the leucosomes. No such correlation exists in the BQ leucosomes and in similar leucosomes from elsewhere. Consequently, we suggest disequilibrium congruent melting of plagioclase in the source and consequential crystallization of peritectic plagioclase in the melt transfer and accumulation structures rather than at the sites of biotite melting. This induces co‐precipitation of quartz in the structures by increasing SiO2 content of the melt. This process is characterized by an absence of plagioclase‐induced fractionation of Eu on melting, and the formation of Eu‐enriched, quartz + plagioclase + garnet leucosomes. From these findings, we argue that melt leaves the source rapidly and that the leucosomes form incrementally as melt or magma leaving the source dumps its disequilibrium Ca load, as well as quartz and entrained ferromagnesian peritectic minerals, in sites of magma accumulation and escape. This is consistent with evidence from S‐type granites suggesting rapid magma transfer from source to high level plutons. These findings also suggest that leucosomes of this type should be regarded as constituting part of the residuum from partial melting.  相似文献   

4.
Abstract. A method for the quantitative analysis of the spatial relations of minerals is described. Dispersed distributions are formed by annealing and destroyed in post-tectonic migmatization. Aggregate distributions characterize solid-state differentiation, whereas leucosomes formed in systems of high fluid:rock ratio (in the examples studied, anatectic melts) show random distributions.
Quantitative textural analysis can be used to indicate whether migmatization was post-tectonic or earlier, though caution is necessary if post-migmatite cooling is slow or if there is some minor deformation. More importantly, it can be used to discriminate melt-present from melt-absent leucosomes; this is exemplified by a suite of metamorphic and anatectic migmatites from the Scottish Caledonides.
The textural evolution of anatexites with increasing melt percentage is traced. Initial feldspar porphyroblastesis occurs by Ostwald ripening via grain boundary melts; subsequently ophthalmites develop with fabrics and chemistry inherited from the palaeosome. At greater than 30% melt these inherited fabrics are wholly destroyed. Deformation prompts segregation into melanosome and leucosome; resultant leucosomes contain no inherited crystals. The scale of anatectic systems is fixed at the point at which segregation begins; ophthalmites provide evidence for melt and crystal transfer beyond original palaeosome boundaries. In contrast, metamorphic migmatites are necessarily small-scale systems because of diffusive constraints, and melanosomes are invariably produced.  相似文献   

5.
A suite of migmatites in uppermost amphibolite facies schists of the Koettlitz Group exposed in the Taylor Valley, Antarctica, provides direct evidence of the behaviour of partially molten rock during syn-anatectic deformation. The geometry of the migmatites is directly related to their position relative to the hinge of a kilometre-scale antiform. Migmatitic rocks on the fold limbs are characterized by extensional shears and fractures, filled with leucosome material, that intersect the pervasive foliation and millimetre-thick stromatic leucosomes. Vein- and dyke-like leucosomes become more common and thicker from the limb to the hinge region of the antiform. Rocks characterized by high leucosome-to-rock ratios near the antiform hinge are xenolithic in appearance. Major parasitic folds within the hinge contain leucogranite 'microplutons' up to 50 m across beneath refractory 'cap-rock' layers.
Angular boudinage structures in schists surrounded by leucosomes indicate a relatively low yield strength in the leucosome, which is compatible with a molten rather than solid leucosome. Leucogranite-bearing extensional shears and fractures indicate that repeated extensional fracturing and shearing promoted by high fluid (melt) pressure is an important mechanism of melt segregation. Dilation in the hinges of developing folds aids the migration of melt into fold hinges and the development of 10–50-m-wide 'microplutons' of xenolith-rich leucogranite.
Lack of vapour-absent melting and consequent low melt-to-rock ratios allowed the Koettlitz Group to maintain its structural coherency on a kilometre scale. Consequently, leucosome 'microplutons' did not exceed 50 m in width, and therefore observed leucosomes have not contributed to the development of adjacent plutonic-scale granitoids.  相似文献   

6.
北大别位于大别造山带的核部,分布着大量的造山带垮塌时期形成的混合岩,其于理解大别造山带的形成和演化有着重要的意义。北大别混合岩的原岩为TTG(D)岩石,因黑云母和角闪石的脱水熔融诱发深熔作用产生。顺层产出的为富斜长石浅色体,主要矿物组成为斜长石+石英+黑云母±钾长石±角闪石。伟晶岩脉或团块为富钾长石浅色体,主要矿物组成为钾长石+石英±斜长石±黑云母±角闪石。暗色体为变晶结构,主要矿物组成为角闪石+黑云母+斜长石+石英±单斜辉石;其中,暗色矿物角闪石和黑云母常常定向排列,具有明显的溶蚀结构;暗色体中浅色矿物颗粒较小,以斜长石和石英为主,指示部分熔融的残余产物。全岩地球化学特征表明,碱金属元素(Na、K等)、大离子亲石元素(Ba、K、La等)和LREE等优先进入酸性熔体,而相容元素和中-重稀土元素等残留在残余体中。浅色体与本区花岗岩相比,二者都有右倾的稀土配分模式,富集LREE,亏损HREE。但浅色体具有明显的Eu正异常,δEu值为2.48~6.55,而花岗岩则有弱的Eu负异常,并且浅色体中大颗粒斜长石相互构成框架结构,含量明显高于正常花岗岩熔体,表明浅色体更可能是熔体早期结晶的产物。  相似文献   

7.
Large garnet poikiloblasts hosted by leucosome in metapelitic gneiss from Broken Hill reflect complex mineral–melt relationships. The spatial relationship between the leucosomes and the garnet poikiloblasts implies that the growth of garnet was strongly linked to the production of melt. The apparent difficulty of garnet to nucleate a large number of grains during the prograde breakdown of coexisting biotite and sillimanite led to the spatial focussing of melting reactions around the few garnet nuclei that formed. Continued reaction of biotite and sillimanite required diffusion of elements from where minerals were reacting to sites of garnet growth. This diffusion was driven by chemical potential gradients between garnet‐bearing and garnet‐absent parts of the rock. As a consequence, melt and peritectic K‐feldspar also preferentially formed around the garnet. The diffusion of elements led to the chemical partitioning of the rock within an overall context in which equilibrium may have been approached. Thus, the garnet‐bearing leucosomes record in situ melt formation around garnet porphyroblasts rather than centimetre‐scale physical melt migration and segregation. The near complete preservation of the high‐grade assemblages in the mesosome and leucosome is consistent with substantial melt loss. Interconnected networks between garnet‐rich leucosomes provide the most likely pathway for melt migration. Decimetre‐scale, coarse‐grained, garnet‐poor leucosomes may represent areas of melt flux through a large‐scale melt transfer network.  相似文献   

8.
Leucosomes and melanosomes in selected specimens of migmatitic, sillimanite-zone, pelitic schists are modal and chemical complements formed by segregation within originally homogeneous paleosomes. Systematic bulk chemical and modal variations in melanosomes can be used to infer the reactions by which leucosomes were generated.Trace element variations and relationships in melanosomes and leucosomes indicate that the migmatites behaved as closed systems during leucosome formation. Mass-balance evaluation of trace element relationships in the context of inferred leucosome-forming reactions suggest that trace elements essentially followed the melanosome phases initially containing them, as these phases reacted in leucosome generation. The trace element composition of a leucosome is given by the sum of those of the melanosome phases reacted, minus the trace element contents of any new solid melanosome phases produced by the reactions.Trace element relations are consistent with metamorphic equilibrium during leucosome generation, but suggest that once leucosome was segregated, equilibrium was not maintained between leucosome and melanosome.  相似文献   

9.
Estimated variations in mineral concentrations across leucosomes suggest that leucosomes are generated during anatexis by a diffusive exchange between the leucosome and the mesosome, and not by the migration of melt from the mesosome. However, the presence of melt is a precondition for the diffusive exchange to take place. Initially a crack is formed due to shear stress. The formation of a crack allows a diffusive exchange to take place through the melt, which causes melting of minerals situated near the crack. The diffusive exchange of material is less efficient in the mesosome where the melt is isolated at grain corners and edges. The microcline enrichment of some granitic leucosomes is thought to be due to the diffusive depletion of the mesosome caused by growth of alkali feldspar during the consolidation of the migmatite. In general, it seems unnecessary to invoke concentrations of water in the leucosome or the intrusion of external fluids or magmas for migmatite formation.  相似文献   

10.
Abstract Migmatites in the Quetico Metasedimentary Belt contain two types of leucosome: (1) Layer-parallel leucosomes that grew during deformation and prograde metamorphism. These are enriched in SiO2, Sr, and Eu, but depleted in TiO2, Fe2O3, MgO, Cs, Rb, REE, Sc, Th, Zr, and Hf relative to the Quetico metasediments. (2) Discordant leucosomes that formed after the regional folding events when metamorphic temperatures were at their peak. These are enriched in Rb, Ba, Sr and Eu, but display a wide range of LREE, Th, Zr, and Hf contents relative to the Quetico metasediments.
Layer-parallel leucosomes formed by a subsolidus process termed tectonic segregation. This stress-induced mass transfer process began when the Quetico sediments were deformed during burial, and continued whilst the rocks were both stressed and heterogeneous. Subsolidus leucosome compositions are consistent with the mobilization of quartz and feldspar from the host rocks by pressure solution. The discordant leucosomes formed by partial melting of the Quetico metasediments, possibly during uplift of the belt. The range of composition displayed by the anatectic leucosomes arises from crystal fractionation during leucosome emplacement. Some anatectic leucosomes preserve primary melt compositions and have smooth REE patterns, but those with negative Eu anomalies represent fractionated melts, and others with positive Eu anomalies represent accumulations of feldspar plus trapped melt.  相似文献   

11.
Migmatites from Cone Peak, California, USA and the Satnur-Sangam road, Southern Karnataka, India contain coarser grained orthopyroxene-bearing leucosomes with subordinate biotite in finer grained hornblende-biotite-pyroxene-bearing hosts. At both localities the leucosomes are enriched in quartz and feldspar and have a higher ratio of pyroxene to hornblende + biotite compared to the host rocks. Biotite grains in leucosomes along the Satnur-Sangam road are concentrated at the margins of orthopyroxene grains and have lower abundances of Ti, Fe, and Cl and a higher abundance of F than biotite grains from the host rock. Fluorapatite grains in all rocks from both localities contain monazite inclusions similar to those produced experimentally by metasomatically induced dissolution and reprecipitation. Some fluorapatite grains at both localities are partially rimmed by allanite. The only compositional differences found between fluorapatite grains in the leucosomes and host rocks were higher concentrations of Cl in grains in leucosomes from Cone Peak. The mineralogies of the rocks suggest that the leucosomes formed by dehydration melting reactions that consumed feldspar, quartz, hornblende, and biotite and produced orthopyroxene. Allanite rims at the margins of fluorapatite grains may have formed by the later retrogression of monazite rims formed by incongruent dissolution of fluorapatite in the melt. Biotite grains at the margins of orthopyroxene crystals in the leucosomes from the Satnur-Sangam road apparently formed by retrogression of orthopyroxene upon the solidification of the anatectic melt. A similar high-grade retrogression did not affect orthopyroxene crystals at Cone Peak, indicating that H2O was removed from the crystallizing leucosomes probably in a low H2O activity fluid. Compositional differences between the paleosome and neosomes at Cone Peak are best explained by metasomatic interaction with concentrated brines while elevated Cl concentrations in fluorapatites in the leucosome suggest interaction with a Cl-bearing fluid. Brines may have been responsible for an exchange of elements between the host rock along the Satnur-Sangam road and zones of melt generation now marked by leucosomes, but fluid flow appears to have been less vigorous than at Cone Peak.  相似文献   

12.
SAWYER  E. W. 《Journal of Petrology》1987,28(3):445-473
Anatectic migmatite leucosomes in the Quetico MetasedimentaryBelt (Superior Province) are discordant to the host rock layering.Two morphological varieties within the anatectic leucosome suiteare distinguished. The first type show little compositionalor textural variation either across, or along, the leucosomes.In contrast, the second variety exhibits both compositionaland textural variations in a single leucosome, typically withinternal cross-cutting relationships. Major-oxide contents varycomparatively little in the Quetico anatectic leucosome suite,but there is a considerable range in the incompatible element(REE, Hf, Zr, Y and Th) concentrations. In particular La contentsrange from 1.8 to 78.1 p.p.m. and the La/Yb ratios from 9.1to 101.9. Samples with high REE contents have negative Eu anomalies,whereas those with low total REE abundances have positive Euanomalies, which indicate that feldspar fractionation was importantin their petrogenesis. Three samples which have no Eu anomalies,and which are taken not to have experienced significant feldsparfractionation, are regarded as the closest approximation toa primary melt composition. Petrographic evidence indicates that only the most aluminousbulk compositions in the host rocks have melted, with cordieriteand biotite as the principal residual phases. Batch partialmelting models indicate that the three leucosomes without Euanomalies could have been derived from 40–80 per centpartial melting of the aluminous metasediments, but garnet musthave been a residual phase. Since the residuum from 40 per centpartial melting is more mafic than any of the rocks currentlyexposed in the area, it is concluded that the melting whichgave rise to the leucosomes occurred at greater depth. Crystallization models indicate that the observed range of leucosomecompositions can be derived by crystal fractionation of meltcompositions similar to the three leucosomes lacking Eu anomalies(i.e. the assumed primary melts). Samples with high abundancesof incompatible elements and negative Eu anomalies representfractionated melts, whereas those with low levels of REE andpositive Eu anomalies represent cumulates. Leucosome composition,morphology and texture can be related to crystallization history,notably the timing of crystallization with respect to leucosomeintrusion. In particular, those leucosomes that exhibit compositionaland textural zoning are interpreted to have undergone crystalfractionation during intrusion. Although a suite of migmatite leucosomes may be derived by partialmelting, it is concluded that the trace-element compositionof any particular leucosome depends, to a great extent, uponits segregation and crystallization history. Indeed, the primarymelt composition may not be preserved.  相似文献   

13.
Fabrics in the mid-crustal Bronson Hill zone of the southern New England Appalachian orogen record a range of apparent finite strains and conflicting kinematics, but structural relationships indicate coeval development. At the smallest scale of this study, shortening was accommodated in granitic orthogneiss, while transcurrent deformation was partitioned into relatively thin zones of metastratified rocks along the margins. The Monson orthogneiss can be broadly characterized by subvertical to steeply dipping S > L tectonites, subvertical to subhorizontal stretching lineations, closed to isoclinal folds, and dextral/reverse kinematics. The east-bounding Conant Brook shear zone and Greenwich syncline are characterized by steeply dipping mylonitic foliations, a range of lineations, and dextral/reverse kinematic indicators. The west-bounding Mt. Dumplin high strain zone is comprised of steeply dipping mylonites, subhorizontal lineations, and sinistral/normal kinematics. These structures reflect coeval partitioned dextral transpression, vertical extrusion, and north-directed lateral escape of the orthogneiss that was facilitated by bounding conjugate shear zones. Comparison of structural subdomains with transpressional modeling indicates vertical pseudo-monoclinic to inclined triclinic coaxial to simple shear influenced transpression. Compatibility between laterally adjacent subdomains was maintained by meso-/microscale partitioning. Absolute and relative timing constraints show that transpression was sustained from 330 Ma to 300 Ma.  相似文献   

14.
Differentiation of the continental crust is the result of complex interactions between a large number of processes, which govern partial melting of the deep crust, magma formation and segregation, and magma ascent to significantly higher crustal levels. The anatectic metasedimentary rocks exposed in the Southern Marginal Zone of the Limpopo Belt represent an unusually well‐exposed natural laboratory where the portion of these processes that operate in the deep crust can be directly investigated in the field. The formation of these migmatites occurred via absent incongruent melting reactions involving biotite, which produced cm‐ to m‐scale, K2O‐poor garnet‐bearing stromatic leucosomes, with high Ca/Na ratios relative to their source rocks. Field investigation combined with geochemical analyses, and phase equilibrium modelling designed to investigate some aspects of disequilibrium partial melting show that the outcrop features and compositions of the leucosomes suggest several steps in their evolution: (1) Melting of a portion of the source, with restricted plagioclase availability due to kinetic controls, to produce a magma (melt + entrained peritectic minerals in variable proportions relative to melt); (2) Segregation of the magma at near peak metamorphic conditions into melt accumulation sites (MAS), also known as future leucosome; (3a) Re‐equilibration of the magma with a portion of the bounding mafic residuum via chemical diffusion (H2O, K2O), which triggers the co‐precipitation of quartz and plagioclase in the MAS; (3b) Extraction of melt‐dominated magma to higher crustal levels, leaving peritectic minerals entrained from the site of the melting reaction, and the minerals precipitated in the MASs to form the leucosome in the source. The key mechanism controlling this behaviour is the kinetically induced restriction of the amount of plagioclase available to the melting reaction. This results in elevated melt H2O and K2O and chemical potential gradient for these components across the leucosome/mafic residuum contact. The combination of all of these processes accurately explains the composition of the K2O‐poor leucosomes. These findings have important implications for our understanding of melt segregation in the lower crust and minimum melt residency time which, according to the chemical modelling, is <5 years. We demonstrate that in some migmatitic granulites, the leucosomes constitute a type of felsic refractory residuum, rather than evidence of failed magma extraction. This provides a new insight into the ways that source heterogeneity may control anatexis.  相似文献   

15.
C. Dietl  H. de Wall  F. Finger 《Lithos》2010,116(3-4):321-339
Tube-like schlieren structures occur at the boundary between two units of the Fürstenstein Intrusive Complex, the Tittling and the Saldenburg granites. We have analysed the magnetic fabrics, petrographic variation and geochemistry of key examples of these structures in order to test the hypothesis that they originated as granitic microdiapirs. The rims of the schlieren structures have high magnetic susceptibility compared to their interiors and surrounding granite due to the enrichment of biotite ± opaques. The low anisotropy that characterizes the AMS fabric is probably caused by magmatic flow. Hypersolidus microfabrics support this interpretation. Magnetic fabric orientation within the schlieren structures differs significantly from the NE–SW-trending magnetic foliation generally observed within the hosting Tittling granite. A steeply plunging magnetic lineation and a NNE–SSW girdle distribution of the magnetic foliation poles within the schlieren structures are consistent with the conical geometry of the schlieren structures evolved during the rise of the magma. Based on geochemistry, granite in the schlieren structures is interpreted to be differentiated melt expelled from the Tittling granite mush that formed after early crystallization of plagioclase. We suggest that the schlieren structures are pockets of residual melt of the Tittling granite that were mobilized buoyantly due to a thermal input from the neighbouring Saldenburg granite. The mafic rims of the schlieren structures formed as a result of early crystallization and subsequent accumulation due of the Bagnold effect. The results of the magnetic and geochemical investigations allow us to interpret the schlieren structures as diapiric in nature and consequently as “within-chamber diapirs” (sensu Weinberg et al., 2001).  相似文献   

16.
This microstructural and anisotropy of magnetic susceptibility study of the internal structures of the Hercynian Néouvielle granite pluton (100 km2) provides new data indicating that the pluton was emplaced during the main Hercynian tectonic event recognized in the Pyrenees. It also provides new data about the later Alpine deformation localized along narrow mylonitic bands. These bands acted as reverse faults and have not rotated the Hercynian structures that define the main part of the pluton. The pluton is composed of two structural domains: the northern half of the pluton displays a beak shape in map view, with subhorizontal E-W trending lineations of magmatic origin; the southern half is semi-circular and displays rather steeply northward plunging lineations corresponding to magmatic and high temperature (HT) solid-state microstructures. These features are associated with magma deformation during emplacement. Magma deformation corresponds, in the northern half of the pluton, to an E-W strike-slip deformation recognized in the enveloping pelitic metasediments of Carboniferous age and, in the southern half of the pluton, to southward overthrusting recognized in the enveloping quartzites of Devonian age. Juxtaposition in a single granite body of transcurrent and compressive domains is viewed as a strain partitioning in the magma. This strain partitioning is linked to both the transpressive character of the main regional deformation event and the rheological contrast between the pelitic country rocks and quartzose country rocks.  相似文献   

17.
Evidence of melting is presented from the Western Gneiss Region (WGR) in the core of the Caledonian orogen, Western Norway and the dynamic significance of melting for the evolution of orogens is evaluated. Multiphase inclusions in garnet that comprise plagioclase, potassic feldspar and biotite are interpreted to be formed from melt trapped during garnet growth in the eclogite facies. The multiphase inclusions are associated with rocks that preserve macroscopic evidence of melting, such as segregations in mafic rocks, leucosomes and pegmatites hosted in mafic rocks and in gneisses. Based on field studies, these lithologies are found in three structural positions: (i) as zoned segregations found in high‐P (ultra)mafic bodies; (ii) as leucosomes along amphibolite facies foliation and in a variety of discordant structures in gneiss; and (iii) as undeformed pegmatites cutting the main Caledonian structures. Segregations post‐date the eclogite facies foliation and pre‐date the amphibolite facies deformation, whereas leucosomes are contemporaneous with the amphibolite facies deformation, and undeformed pegmatites are post‐kinematic and were formed at the end of the deformation history. The geochemistry of the segregations, leucosomes and pegmatites in the WGR defines two trends, which correlate with the mafic or felsic nature of the host rocks. The first trend with Ca‐poor compositions represents leucosome and pegmatite hosted in felsic gneiss, whereas the second group with K‐poor compositions corresponds to segregation hosted in (ultra)mafic rocks. These trends suggest partial melting of two separate sources: the felsic gneisses and also the included mafic eclogites. The REE patterns of the samples allow distinction between melt compositions, fractionated liquids and cumulates. Melting began at high pressure and affected most lithologies in the WGR before or during their retrogression in the amphibolite facies. During this stage, the presence of melt may have acted as a weakening mechanism that enabled decoupling of the exhuming crust around the peak pressure conditions triggering exhumation of the upward‐buoyant crust. Partial melting of both felsic and mafic sources at temperatures below 800 °C implies the presence of an H2O‐rich fluid phase at great depth to facilitate H2O‐present partial melting.  相似文献   

18.
Migmatitic rocks developed in metagraywackes during the Variscan orogeny in the Aiguilles-Rouges Massif (western Alps). Partial melting took place 320 Ma ago in a 500 m-wide vertical shear zone. Three leucosome types have been recognised on the basis of size and morphology: (1) large leucosomes > 2 cm wide and > 40 cm long lacking mafic selvage, but containing cm-scale mafic enclaves; (2) same as 1 but with thick mafic selvage (melanosome); (3) small leucosomes < 2 cm and < 40 cm) with thin dark selvages (stromatic migmatites). Types 1 + 2 have mineralogical and chemical compositions in keeping with partial melting experiments. But Type 3 leucosomes have identical plagioclase composition (An19–28) to neighbouring mesosome, both in terms of major- and trace-elements. Moreover, whole-rock REE concentrations in Type 3 leucosomes are only slightly lower than those in the mesosomes, unlike predicted by partial melting experiments. The main chemical differences between all leucosome types can be related to the coupled effect of melt segregation and late chemical reequilibration.

Mineral assemblages and thermodynamic modelling on bulk-rock composition restrict partial melting to  650 °C at 400 MPa. The large volume of leucosome (20 vol.%) thus generated requires addition of 1 wt.% external water. Restriction of extensive migmatization to the shear zone, without melting of neighbouring metapelites, also points to external fluid circulation within the shear zone as the cause of melting.  相似文献   


19.
An exposure of sillimanite-rich, strongly deformed, stromatic,K-feldspar-bearing migmatites in the Monashee Terrane west ofRevelstoke, British Columbia, has been examined to determinethe process of migmatization and to evaluate whether the systemwas open or closed during leucosome formation. An anatecticorigin for the migmatites is supported by: (1) the minimum meltcomposition of the leucosomes; (2) textures suggesting a fluidbehavior of the leucosomes and local pegmatitic textures; and(3) P–T estimates (720–820C; 75–9 kbar)above vaporabsent melting conditions of muscovitt + quartz. To establish whether melt was extracted or added during migmatization,measured volume percents of leucosome were compared with estimatesof melt production modeled by muscovite + quartz dehydrationmelting. Quantitative estimates of volume percent of leucosomeat present in the outcrop are between 20 and 30%. The amountof melt produced from the model muscovite dehydration meltingreaction is constrained by measured modal percent of sillimanite(15–25%) in the outcrop and is dependent on modal proportionof muscovite in the unmelted protolith and the melt water contentUsing a muscovite-rich protolith and a melt water content of4 wt%, complete dehydration melting of muscovite results ina production of 54 vol % melt and 25 vol % sillmanite, indicatinga melt loss of 29 vol %. A melt water content of 6 wt% resultsin production of 41 vol % melt and 23 vol % sillimanite, indicatinga melt loss of 16 vol %. Melt loss may have occurred by meltmovement along foliation planes during flattening, during formationof shear bands or locally along subvertical fractures. Spatialproximity of the outcrop to the Monashee dcollement suggeststhat thrusting was localized to zones of high melt production,which in turn facilitated melt migration. KEY WORDS: migmatites; British Columbia; Monashee Tarrane; anatexis; melt extraction *Corresponding author. Present address: Department of Earth and Planetary Sciences, The Univenity of New Mexico, Albuquerque, NM 817131, USA  相似文献   

20.
 Equilibration between melt and solid is inhibited by rapid melt extraction and by restricted equilibration (armouring, slow dissolution). When segregation occurs by channelised migration along high-porosity pathways, melt migration is more rapid than trace element diffusion rates in silicates and faster than accessory phase dissolution rates. Evidence for channelised flow and deformation-enhanced melt segregation into boudin necks, fractures and micro-shears at low melt fractions is present in the Moine Kirtomy Migmatitie Suite (KMS) in Sutherland, Scotland. Melt migration distances are on a metre to tens of metres scale. Concordant leucosomes in stromatic migmatities in the KMS have low Zr contents, low LREE (light rare-earth element) and H (heavy) REE contents and positive Eu anomalies. REE patterns of this type can be produced by removal of leucosome before complete equilibration with source due to the inhibited dissolution of LREE- and HREE-bearing accessory phases in water-undersaturated melts. Melting in the KMS, however, occurred at or near the wet granite solidus, leaving biotite as a residual phase. Detailed back-scattered electron imaging shows that REE-bearing accessory phases remained as residual phases, and were concentrated in the melanosome and at the melanosome-leucosome boundary. Irregularly shaped patches of diatexite contain a small proportion of excess Zr, consistent with entrainment of melanosome-schlieren enriched in zircon. These data indicate that deformation-enhanced melt extraction led to the rapid migration of small melt fractions from the melting site on a time-scale less than that required to saturate the melt in Zr. Leucosomes were thus prevented from equilibrating with accessory phases before extraction. Received: 12 July 1995 / Accepted: 4 March 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号