首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partial melting and retrogression related to Variscan tectonic exhumation have been recognized in the high-grade metapelites of the Tatra Mountains, Western Carpathians. Staurolite and kyanite relics document an early stage of the prograde metamorphism at c. 600 °C and 9–10 kbar. An increase in temperature to >730 °C at 11–12 kbar resulted in partial melting and incipient migmatization in the stability field of kyanite. Further heating at decreasing pressure during the earliest stage of exhumation led to the dehydration-melting of muscovite and biotite at >750–800 °C and 6–10 kbar, producing garnet-bearing granite as leucosomes in migmatite. Subsequent cooling is documented by garnet resorption by biotite and sillimanite (a reversal of the prograde biotite dehydration-melting reaction). This was followed by nearly isothermal decompression to c. 4–5 kbar producing cordierite and some melt due to biotite decomposition. Later nearly isobaric cooling led to cordierite pinitization and formation of orthoamphibole, chlorite and carbonates. Densities of primary, monophase CO2–N2 inclusions (0.69–1.06 g cm?3) from the migmatite leucosome are consistent with the near-peak and retrograde conditions. Highly varying N2 contents (5–30 mol%) are thought to result from the nitrogen uptake in retrograde K-bearing minerals, or dilution by CO2 liberated during interaction of melt-derived water with metapelite graphite. The relatively high nitrogen content, not observed until now in migmatites, could have been inherited from the high-pressure metamorphism stage. It is assumed that the water-absent composition of fluid inclusions is not representative of the bulk water content (XH2O≤0.7), which was masked by mechanical separation of the CO2- and H2O-dominated immiscible phases, and/or by post-entrapment modifications of the fluid inclusions. Decompression and the final stage of exhumation were accomplished by top-to-the-south thrusting as well as west–east (orogen-parallel) extension. They were most probably related to regional uplift and gravitational collapse of thermally weakened Variscan crust.  相似文献   

2.
Anatectic migmatites in medium- to low-pressure granulite facies metasediments exposed in the Larsemann Hills, East Antarctica, contain leucosomes with abundant quartz and plagioclase and minor interstitial K-feldspar, and assemblages of garnet–cordierite–spinel–ilmenite–sillimanite. Qualitative modelling in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2, in conjunction with various PT calculations indicate that the high-grade retrograde evolution of the terrane was dominated by decompression from peak conditions of c. 7 kbar at c. 800 °C to 4–5 kbar at c. 750 °C. Extensive partial melting during decompression involved the replacement of biotite by the assemblage cordierite–garnet–spinel within the leucosomes. These leucosomes represent the site of partial melt generation, the cordierite–garnet–spinel–ilmenite assemblage representing the solid products and excess reactants from the melting reaction. The extraction and accumulation of this decompression-generated melt led to the formation of syntectonic pegmatites and extensive granitic plutons. Leucosome development and terrane decompression proceeded during crustal transpression, synchronous with upper crustal extension, during a progressive Early Palaeozoic collisional event. Subsequent retrograde evolution was characterized by cooling, as indicated by the growth of biotite replacing spinel and garnet, thin mantles of cordierite replacing spinel and quartz within metapelites, and garnet replacing orthopyroxene and hornblende within metabasites. P–T calculations on late mylonites indicate lower grade conditions of formation of c. 3.5 kbar at c. 650 °C, consistent with the development of late cooling textures.  相似文献   

3.
Large garnet poikiloblasts hosted by leucosome in metapelitic gneiss from Broken Hill reflect complex mineral–melt relationships. The spatial relationship between the leucosomes and the garnet poikiloblasts implies that the growth of garnet was strongly linked to the production of melt. The apparent difficulty of garnet to nucleate a large number of grains during the prograde breakdown of coexisting biotite and sillimanite led to the spatial focussing of melting reactions around the few garnet nuclei that formed. Continued reaction of biotite and sillimanite required diffusion of elements from where minerals were reacting to sites of garnet growth. This diffusion was driven by chemical potential gradients between garnet‐bearing and garnet‐absent parts of the rock. As a consequence, melt and peritectic K‐feldspar also preferentially formed around the garnet. The diffusion of elements led to the chemical partitioning of the rock within an overall context in which equilibrium may have been approached. Thus, the garnet‐bearing leucosomes record in situ melt formation around garnet porphyroblasts rather than centimetre‐scale physical melt migration and segregation. The near complete preservation of the high‐grade assemblages in the mesosome and leucosome is consistent with substantial melt loss. Interconnected networks between garnet‐rich leucosomes provide the most likely pathway for melt migration. Decimetre‐scale, coarse‐grained, garnet‐poor leucosomes may represent areas of melt flux through a large‐scale melt transfer network.  相似文献   

4.
Pelitic hornfelses within the inner thermal aureole of the Etive igneous complex underwent limited partial melting, generating agmatic micro‐stromatic migmatites. In this study, observed volume proportions of vein leucosomes in the migmatites are compared with modelled melt volumes in an attempt to constrain the controls on melting processes. Petrogenetic modelling in the MnNCKFMASHT system was performed on the compositions of 15 analysed Etive pelite samples using THERMOCALC. Melt modes were calculated at 2.2 kbar (the estimated pressure in the southern Etive aureole) from solidus temperatures to 800 °C for both fluid‐absent and fluid‐present conditions. Volume changes accompanying fluid‐absent melting at 2.2 kbar were also calculated. P–T pseudosections reproduce the zonal sequence of the southern Etive aureole fairly well. The modelled solidus temperatures of silica‐rich pelitic compositions are close to 680 °C at 2.2 kbar and, in the absence of free fluid, melt modes in such compositions rise to between 12 and 29% at 800 °C, half of which is typically produced over the narrow reaction interval in which orthopyroxene first appears. Silica‐poor compositions have solidus temperatures of up to ~770 °C and yield <11.4% melt at 800 °C under fluid‐absent conditions. For conditions of excess H2O, modelled melt modes increase dramatically within ~13 °C of the solidus, in some cases to >60%; by 800 °C they range from 61 to 88% and from 29 to 74% in silica‐rich and silica‐poor compositions, respectively. Calculated volume changes for fluid‐absent melting are positive for all modelled compositions and reach 4.5% in some silica‐rich compositions by 800 °C. Orthopyroxene formation is accompanied by a volume increase of up to 1.48% over a temperature increase of as little as 2.7 °C, supporting the arguments for melt‐induced ‘hydrofracturing’ as a viable melt‐escape mechanism in low‐P metamorphism. Mineral assemblages in the innermost aureole support previous conclusions that partial melting took place predominantly under fluid‐absent conditions. However, vein leucosome proportions, estimated by image analysis, do not show the expected correlation with grade, and are locally greatly in excess of melt modes predicted by fluid‐absent models, particularly close to the melt‐in isograd. Melting of interlayered psammites, addition of H2O from interlayered melt‐free rocks, and metastable persistence of muscovite are ruled out as major causes of the excess melt anomaly. The most likely cause, we believe, is that local variations existed in the amount of fluid available at the onset of melting, promoted by focussing of fluid released by dehydration in the middle and outer aureole; however, some redistribution of melt by compaction‐driven flow through the vein channel network cannot be ruled out. The formation of melt‐filled fractures in the inner Etive aureole was assisted by stresses that caused extension at high angles to the igneous contact. The fractures were probably caused either by transient pressure reduction in the diorite magma chamber associated with a second phase of intrusion, or by sub‐solidus thermal contraction in the diorite pluton during the early stages of inner‐aureole cooling.  相似文献   

5.
Cordierite H2O and CO2 volatile saturation surfaces derived from recent experimental studies are presented for P–T conditions relevant to high‐grade metamorphism and used to evaluate fluid conditions attending partial melting and granulite formation. The volatile saturation surfaces and saturation isopleths for both H2O and CO2 in cordierite are strongly pressure dependent. In contrast, the uptake of H2O by cordierite in equilibrium with melts formed through biotite dehydration melting, controlled by the distribution of H2O between granitic melt and cordierite, Dw[Dw = wt% H2O (melt)/wt% H2O(Crd)], is mainly temperature dependent. Dw = 2.5–6.0 for the H2O contents (0.4–1.6 wt percentage) typical of cordierite formed through biotite dehydration melting at 3–7 kbar and 725–900 °C. This range in Dw causes a 15–30% relative decrease in the total wt% of melt produced from pelites. Cordierite in S‐type granites are H2O‐rich (1.3–1.9 wt%) and close to or saturated in total volatiles, signifying equilibration with crystallizing melts that achieved saturation in H2O. In contrast, the lower H2O contents (0.6–1.2 wt percentage) preserved in cordierite from many granulite and contact migmatite terranes are consistent with fluid‐absent conditions during anatexis. In several cases, including the Cooma migmatites and Broken Hill granulites, the cordierite volatile compositions yield aH2O values (0.15–0.4) and melt H2O contents (2.2–4.4 wt%) compatible with model dehydration melting reactions. In contrast, H2O leakage is indicated for cordierite from Prydz Bay, Antarctica that preserve H2O contents (0.5–0.3 wt%) which are significantly less than those required (1.0–0.8 wt%) for equilibrium with melt at conditions of 6 kbar and 860 °C. The CO2 contents of cordierite in migmatites range from negligible (< 0.1 wt%) to high (0.5–1.0 wt%), and bear no simple relationship to preserved cordierite H2O contents and aH2O. In most cases the cordierite volatile contents yield total calculated fluid activities (aH2O + aCO2) that are significantly less than those required for fluid saturation at the P–T conditions of their formation. Whether this reflects fluid absence, dilution of H2O and CO2 by other components, or leakage of H2O from cordierite is an issue that must be evaluated on a case‐by‐case basis.  相似文献   

6.
The H2O and CO2 content of cordierite was analysed in 34 samples from successive contact metamorphic zones of the Etive thermal aureole, Scotland, using Fourier‐transform infrared spectroscopy (FTIR). The measured volatile contents were used to calculate peak metamorphic H2O and CO2 activities. Total volatile contents are compared with recently modelled cordierite volatile saturation surfaces in order to assess the extent of fluid‐present v. fluid‐absent conditions across the thermal aureole. In the middle aureole, prior to the onset of partial melting, calculated aH2O values are high, close to unity, and measured volatile contents intersect modelled H2O–CO2 saturation curves at the temperature of interest, suggesting that fluid‐present conditions prevailed. Total volatile contents and aH2O steadily decrease beyond the onset of partial melting, consistent with the notion of aH2O being buffered to lower values as melting progresses once free hydrous fluid is exhausted. All sillimanite zone samples record total volatile contents that are significantly lower than modelled H2O–CO2 saturation surfaces, implying that fluid‐absent conditions prevailed. The lowest recorded aH2O values lie entirely within part of the section where fluid‐absent melting reactions are thought to have dominated. Samples within 30 m of the igneous contact appear to be re‐saturated, possibly via a magmatically derived fluid. In fluid‐absent parts of the aureole, cordierite H2O contents yield melt–H2O contents that are compatible with independently determined melt–H2O contents. The internally consistent cordierite volatile data and melt–H2O data support the conclusion that the independent P–T estimates applied to the Etive rocks were valid and that measured cordierite volatile contents are representative of peak metamorphic values. The Etive thermal aureole provides the most compelling evidence, suggesting that the cordierite fluid monitor can be used to accurately assess the fluid conditions during metamorphism and partial melting in a thermal aureole.  相似文献   

7.
The Fosdick migmatite–granite complex in West Antarctica records evidence for two high‐temperature metamorphic events, the first during the Devonian–Carboniferous and the second during the Cretaceous. The conditions of each high‐temperature metamorphic event, both of which involved melting and multiple melt‐loss events, are investigated using phase equilibria modelling during successive melt‐loss events, microstructural observations and mineral chemistry. In situ SHRIMP monazite and TIMS Sm–Nd garnet ages are integrated with these results to constrain the timing of the two events. In areas that preferentially preserve the Devonian–Carboniferous (M1) event, monazite grains in leucosomes and core domains of monazite inclusions in Cretaceous cordierite yield an age of c. 346 Ma, which is interpreted to record the timing of monazite growth during peak M1 metamorphism (~820–870 °C, 7.5–11.5 kbar) and the formation of garnet–sillimanite–biotite–melt‐bearing assemblages. Slightly younger monazite spot ages between c. 331 and 314 Ma are identified from grains located in fractured garnet porphyroblasts, and from inclusions in plagioclase that surround relict garnet and in matrix biotite. These ages record the growth of monazite during garnet breakdown associated with cooling from peak M1 conditions. The Cretaceous (M2) overprint is recorded in compositionally homogeneous monazite grains and rim domains in zoned monazite grains. This monazite yields a protracted range of spot ages with a dominant population between c. 111 and 96 Ma. Rim domains of monazite inclusions in cordierite surrounding garnet and in coarse‐grained poikiloblasts of cordierite yield a weighted mean age of c. 102 Ma, interpreted to constrain the age of cordierite growth. TIMS Sm–Nd ages for garnet are similar at 102–99 Ma. Mineral equilibria modelling of the residual protolith composition after Carboniferous melt loss and removal of inert M1 garnet constrains M2 conditions to ~830–870 °C and ~6–7.5 kbar. The modelling results suggest that there was growth and resorption of garnet during the M2 event, which would facilitate overprinting of M1 compositions during the M2 prograde metamorphism. Measured garnet compositions and Sm–Nd diffusion modelling of garnet in the migmatitic gneisses suggest resetting of major elements and the Sm–Nd system during the Cretaceous M1 overprint. The c. 102–99 Ma garnet Sm–Nd ‘closure’ ages correspond to cooling below 700 °C during the rapid exhumation of the Fosdick migmatite–granite complex.  相似文献   

8.
Orthopyroxene‐rich quartz‐saturated granulites of the Strangways Range, Arunta Block, central Australia, record evidence of two high‐grade metamorphic events. Initial granulite facies metamorphism (M1, at c. 1.7 Ga) involved partial melting and migmatization culminating in conditions of 8.5 kbar and 850 °C. Preservation of the peak M1 mineral assemblages from these conditions indicates that most of the generated melt was lost from these rocks at or near peak metamorphic conditions. Subsequent reworking (M2, at c. 1.65 Ga) is characterized by intense deformation, the absence of partial melting and the development of orthopyroxene–sillimanite ± gedrite‐bearing mineral assemblages. Gedrite is only present in cordierite‐rich lithologies where it preferentially replaces M1 cordierite porphyroblasts. Pseudosection calculations indicate that M2 occurred at subsolidus fluid‐absent conditions (aH2o ~ 0.2) at 6–7.5 kbar and 670–720 °C. The mineral assemblages in the reworked rocks are consistent with closed system behaviour with respect to H2O subsequent to M1 melt loss. M2 reworking was primarily driven by increased temperature from the stable geotherm reached after cooling from M1 and deformation‐induced recrystallization and re‐equilibration, rather than rehydration from an externally derived fluid. The development of the M2 assemblages is strongly dependent on the intensity of deformation, not only for promoting equilibration, but also for equalizing the volume changes that result from metamorphic reactions. Calculations suggest that the protoliths of the orthopyroxene‐rich granulites were cordierite–orthoamphibole gneisses, rather than pelites, and that the unusual bulk compositions of these rocks were inherited from the protoliths. Melt loss is insufficient to account for the genesis of these rocks from more typical pelitic compositions. In quartz‐rich gneisses, however, melt loss along the M1 prograde path was able to modify the bulk rock composition sufficiently to stabilize peak metamorphic assemblages different from those that would have otherwise developed.  相似文献   

9.
Low‐pressure crystal‐liquid equilibria in pelitic compositions are important in the formation of low‐pressure, high‐temperature migmatites and in the crystallization of peraluminous leucogranites and S‐type granites and their volcanic equivalents. This paper provides data from vapour‐present melting of cordierite‐bearing pelitic assemblages and augments published data from vapour‐present and vapour‐absent melting of peraluminous compositions, much of which is at higher pressures. Starting material for the experiments was a pelitic rock from Morton Pass, Wyoming, with the major assemblage quartz‐K feldspar‐biotite‐cordierite, approximately in the system KFMASH. A greater range in starting materials was obtained by addition of quartz and sillimanite to aliquots of this rock. Sixty‐one experiments were carried out in cold‐seal apparatus at pressures of 1–3.5 kbar (particularly 2 kbar) and temperatures from 700 to 840 °C, with and without the addition of water. In the vapour‐present liquidus relations at 2 kbar near the beginning of melting, the sequence of reactions with increasing temperature is: Qtz + Kfs + Crd + Sil + Spl + V = L; Qtz + Kfs + Crd + Spl + Ilm + V = Bt + L; and Qtz + Bt + V = Crd + Opx + Ilm + L. Vapour‐absent melting starts at about 800 °C with a reaction of the form Qtz + Bt = Kfs + Crd + Opx + Ilm + L. Between approximately 1–3 kbar the congruent melting reaction is biotite‐absent, and biotite is produced by incongruent melting, in contrast to higher‐pressure equilibria. Low pressure melts from pelitic compositions are dominated by Qtz‐Kfs‐Crd. Glasses at 820–840 °C have calculated modes of approximately Qtz42Kfs46Crd12. Granites or granitic leucosomes with more than 10–15% cordierite should be suspected of containing residual cordierite. The low‐pressure glasses are quite similar to the higher‐pressure glasses from the literature. However, XMg increases from about 0.1–0.3 with increasing pressure from 1 to 10 kbar, and the low‐temperature low‐pressure glasses are the most Fe‐rich of all the experimental glasses from pelitic compositions.  相似文献   

10.
A sequence of psammitic and pelitic metasedimentary rocks from the Mopunga Range region of the Arunta Inlier, central Australia, preserves evidence for unusually low pressure (c. 3 kbar), regional‐scale, upper amphibolite and granulite facies metamorphism and partial melting. Upper amphibolite facies metapelites of the Cackleberry Metamorphics are characterised by cordierite‐andalusite‐K‐feldspar assemblages and cordierite‐bearing leucosomes with biotite‐andalusite selvages, reflecting P–T conditions of c. 3 kbar and c. 650–680 °C. Late development of a sillimanite fabric is interpreted to reflect either an anticlockwise P–T evolution, or a later independent higher‐P thermal event. Coexistence of andalusite with sillimanite in these rocks appears to reflect the sluggish kinematics of the Al2SiO5 polymorphic inversion. In the Deep Bore Metamorphics, 20 km to the east, dehydration melting reactions in granulite facies metapelites have produced migmatites with quartz‐absent sillimanite‐spinel‐cordierite melanosomes, whilst in semipelitic migmatites, discontinuous leucosomes enclose cordierite‐spinel intergrowths. Metapsammitic rocks are not migmatised, and contain garnet–orthopyroxene–cordierite–biotite–quartz assemblages. Reaction textures in the Deep Bore Metamorphics are consistent with a near‐isobaric heating‐cooling path, with peak metamorphism occurring at 2.6–4.0 kbar and c. 750800 °C. SHRIMP U–Pb dating of metamorphic zircon rims in a cordierite‐orthopyroxene migmatite from the Deep Bore Metamorphics yielded an age of 1730 ± 7 Ma, whilst detrital zircon cores define a homogeneous population at 1805 ± 7 Ma. The 1730 Ma age is interpreted to reflect the timing of high‐T, low‐P metamorphism, synchronous with the regional Late Strangways Event, whereas the 1805 Ma age provides a maximum age of deposition for the sedimentary precursor. The Mopunga Range region forms part of a more extensive low‐pressure metamorphic terrane in which lateral temperature gradients are likely to have been induced by localised advection of heat by granitic and mafic intrusions. The near‐isobaric Palaeoproterozoic P–T–t evolution of the Mopunga Range region is consistent with a relatively transient thermal event, due to advective processes that occurred synchronous with the regional Late Strangways tectonothermal event.  相似文献   

11.
Open‐system behaviour through fluid influx and melt loss can produce a variety of migmatite morphologies and mineral assemblages from the same protolith composition. This is shown by different types of granulite facies migmatite from the contact aureole of the Ceret gabbro–diorite stock in the Roc de Frausa Massif (eastern Pyrenees). Patch, stromatic and schollen migmatites are identified in the inner contact aureole, whereas schollen migmatites and residual melanosomes are found as xenoliths inside the gabbro–diorite. Patch and schollen migmatites record D1 and D2 structures in folded melanosome and mostly preserve the high‐T D2 in granular or weakly foliated leucosome. Stromatic migmatites and residual melanosomes only preserve D2. The assemblage quartz–garnet–biotite–sillimanite–cordierite±K‐feldspar–plagioclase is present in patch and schollen migmatites, whereas stromatic migmatites and residual melanosomes contain a sub‐assemblage with no sillimanite and/or K‐feldspar. A decrease in X Fe (molar Fe/(Fe + Mg)) in garnet, biotite and cordierite is observed from patch migmatites through schollen and stromatic migmatites to residual melanosomes. Whole‐rock compositions of patch, schollen and stromatic migmatites are similar to those of non‐migmatitic rocks from the surrounding area. These metasedimentary rocks are interpreted as the protoliths of the migmatites. A decrease in the silica content of migmatites from 63 to 40 wt% SiO2 is accompanied by an increase in Al2O3 and MgO+FeO and by a depletion in alkalis. Thermodynamic modelling in the NCKFMASHTO system for the different types of migmatite provides peak metamorphic conditions ~7–8 kbar and 840 °C. A nearly isothermal decompression history down to 5.5 kbar was followed by isobaric cooling from 840 °C through 690 °C to lower temperatures. The preservation of granulite facies assemblages and the variation in mineral assemblages and chemical composition can be modelled by ongoing H2O‐fluxed melting accompanied by melt loss. The fluids were probably released by the crystallizing gabbro–diorite, infiltrating the metasedimentary rocks and fluxing melting. Release of fluids and melt loss were probably favoured by coeval deformation (D2). The amount of melt remaining in the system varied considerably among the different types of migmatite. The whole‐rock compositions of the samples, the modelled compositions of melts at the solidus at 5.5 kbar and the residues show a good correlation.  相似文献   

12.
Spinel–cordierite symplectites partially replacing andalusite occur in metapelitic rocks within the cores of several country rock diapirs that have ascended into the upper levels of layered mafic/ultramafic rocks in the Bushveld Complex. We investigate the petrogenesis of these symplectites in one of these diapirs, the Phepane dome. Petrographic evidence indicates that at conditions immediately below the solidus the rocks were characterized by a cordierite‐, biotite‐ and K‐feldspar‐rich matrix and 5–10 mm long andalusite porphyroblasts surrounded by biotite‐rich fringes. Phase relations in the MnNCKFMASHT model system constrain the near‐solidus prograde path to around 3 kbar and imply that andalusite persisted metastably into the sillimanite + melt field, where the fringing relationship between biotite and andalusite provided spatially restricted equilibrium domains with silica‐deficient effective bulk compositions that focused suprasolidus reaction. MnNCKFMASHT pseudosections that model these compositional domains suggest that volatile phase‐absent melting reactions consuming andalusite and biotite initially produced a moat of cordierite surrounding andalusite; reaction progressed until all quartz was consumed. Spinel is predicted to grow with cordierite at around 720 °C. Formation of the aluminous solid products was strongly controlled by the receding edge of andalusite grains, with symplectites forming at the andalusite‐cordierite moat interface. Decompression due to melt‐assisted diapiric rise of the floor rocks into the overlying mafic/ultramafic rocks occurred close to the thermal peak. Re‐crossing of the solidus at P = 1.5–2 kbar, T > 700 °C resulted in preservation of the symplectites. Two features of the silica‐deficient domains inhibited resorption of spinel. First, the cordierite moat armoured the symplectites from reaction with crystallizing melt in the outer part of the pseudomorphs. Second, an up‐T step in the solidus at low‐P, which may be in excess of 100 °C higher than the quartz‐saturated solidus, resulted in high‐T crystallization of melt on decompression. Even in metapelitic rocks where melt is retained, preservation of spinel is favoured by decompression.  相似文献   

13.
Low‐P granulite facies metapelitic migmatites in the Wuluma Hills, Strangways Metamorphic Complex, Arunta Block, preserve evidence of polyphase deformation and migmatite formation which is of the same age of the c. 1730 Ma Wuluma granite. Mineral equilibria modelling of garnet‐orthoproxene‐cordierite‐bearing assemblages using thermocalc is consistent with peak S3 conditions of 6.0–6.5 kbar and 850–900 °C. The growth of orthopyroxene and garnet was primarily controlled by biotite breakdown during partial melting reactions. Whereas orthopyroxene in the cordierite‐biotite mesosome shows enrichment of heavy‐REE (HREE) relative to medium‐REE (MREE), orthopyroxene in adjacent garnet‐bearing leucosome shows depletion of HREE relative to MREE. There is no appreciable difference in major element contents of minerals common to both the mesosome and leucosome. The REE variations can be satisfactorily explained by decoupling of major element and REE partitioning, in the context of appropriate phase‐equilibria modelling of a prograde path at ~6 kbar. Sparse garnet nucleii formed at ~760 °C, along with concentrated leucosome development and preferentially partitioned HREE. Further heating to ~800 °C at constant or subtly increasing pressure conditions additionally stabilized orthopyroxene and decreased the garnet mode. Orthopyroxene in the leucosome inherited an REE pattern consequent to the partial consumption of garnet, it being distinct from the REE pattern in mesosome orthoproxene that was mostly controlled by biotite breakdown. Such within‐sample variability in the enrichment of heavy REE indicates that caution needs to be exercised in the application of common elemental partitioning coefficients in spatially complex metamorphic rocks.  相似文献   

14.
Mineral textures in metapelitic granulites from the northern Prince Charles Mountains, coupled with thermodynamic modelling in the K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) model system, point to pressure increasing with increasing temperature on the prograde metamorphic path, followed by retrograde cooling (i.e. an anticlockwise P–T path). Textural evidence for the increasing temperature part of the path is given by the breakdown of garnet and biotite to form orthopyroxene and cordierite in sillimanite‐absent rocks, and through the break‐down of biotite and sillimanite to form spinel, cordierite and garnet in more aluminous assemblages. This is equated to the advective addition of heat from the regional emplacement of granitic and charnockitic magmas dated at c. 980 Ma. A subsequent increase in pressure, inferred from the break‐down of spinel and quartz to sillimanite, cordierite and garnet in aluminous rocks, is attributed to crustal thickening related to upright folding dated at 940–910 Ma. The terrane attained peak metamorphic temperatures of c. 880 °C at pressures of c. 6.0–6.5 kbar during this event. Subsequent cooling is inferred from the localised breakdown of cordierite and garnet to form biotite and sillimanite that developed in the latter stages of the same event. The textural observations described are interpreted via the application of P–T and P–T–X pseudosections. The latter show that most rock compositions preserve only fragments of the overall P–T path; a result of different rock compositions undergoing mineral assemblage changes, or changes in mineral modal abundance, on different sections of the P–T path. The results also suggest that partial melting during granulite facies metamorphism, coupled with melt loss and dehydration, initiated a switch from pervasive ductile, to discrete ductile/brittle deformation, during retrograde cooling.  相似文献   

15.
The exposed residual crust in the Eastern Ghats Province records ultrahigh temperature (UHT) metamorphic conditions involving extensive crustal anatexis and melt loss. However, there is disagreement about the tectonic evolution of this late Mesoproterozoic–early Neoproterozoic orogen due to conflicting petrological, structural and geochronological interpretations. One of the petrological disputes in residual high Mg–Al granulites concerns the origin of fine‐grained mineral intergrowths comprising cordierite + K‐feldspar ± quartz ± biotite ± sillimanite ± plagioclase. These intergrowths wrap around porphyroblast phases and are interpreted to have formed by the breakdown of primary osumilite in the presence of melt trapped in the equilibration volume by the melt percolation threshold. The pressure (P)–temperature (T) evolution of four samples from three localities across the central Eastern Ghats Province is constrained using phase equilibria modelling in the chemical system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO). Results of the modelling are integrated with published geochronological results for these samples to show that the central Eastern Ghats Province followed a common P–T–t history. This history is characterized by peak UHT metamorphic conditions of 945–955 °C and 7.8–8.2 kbar followed by a slight increase in pressure and close‐to‐isobaric cooling to the conditions of the elevated solidus at 940–900 °C and 8.5–8.3 kbar. In common with other localities from the Eastern Ghats Province, the early development of cordierite before osumilite and the peak to immediate post‐peak retrograde reaction between osumilite and melt to produce the intergrowth features requires that the prograde evolution was one of contemporaneous increasing pressure with increasing temperature. This counter‐clockwise (CCW) evolution is evaluated for one sample using inverse phase equilibria modelling along a schematic P–T path of 150 °C kbar?1 starting from the low P–T end of the prograde P–T path as constrained by the phase equilibria modelling. The inverse modelling is executed by step‐wise down temperature reintegration of sufficient melt into the residual bulk chemical composition at the P–T point of the 1 mol.% melt isopleth at each step, representing the melt remaining on grain boundaries after each prograde drainage event, to reach the melt connectivity transition (MCT) of 7 mol.%. The procedure is repeated until a plausible protolith composition is recovered. The result demonstrates that clastic sedimentary rocks that followed a CCW P–T evolution could have produced the observed mineral assemblages and microstructures preserved in the central Eastern Ghats Province. This study also highlights the role of melt during UHT metamorphism, particularly its importance to both chemical and physical processes along the prograde and retrograde segments of the P–T path. These processes include: (i) an increase in diffusive length scales during the late prograde to peak evolution, creating equilibration volumes larger than a standard thin section; (ii) the development of retrograde mineral assemblages, which is facilitated if some melt is retained post‐peak; (iii) the presence of melt as a weakening mechanism and the advection of heat by melt, allowing the crust to thicken; and (iv) the effect of melt loss, which makes the deep crust both denser and stronger, and reduces heat production at depth, limiting crustal thickening and facilitating the transition to close‐to‐isobaric cooling.  相似文献   

16.
Differentiation of the continental crust is the result of complex interactions between a large number of processes, which govern partial melting of the deep crust, magma formation and segregation, and magma ascent to significantly higher crustal levels. The anatectic metasedimentary rocks exposed in the Southern Marginal Zone of the Limpopo Belt represent an unusually well‐exposed natural laboratory where the portion of these processes that operate in the deep crust can be directly investigated in the field. The formation of these migmatites occurred via absent incongruent melting reactions involving biotite, which produced cm‐ to m‐scale, K2O‐poor garnet‐bearing stromatic leucosomes, with high Ca/Na ratios relative to their source rocks. Field investigation combined with geochemical analyses, and phase equilibrium modelling designed to investigate some aspects of disequilibrium partial melting show that the outcrop features and compositions of the leucosomes suggest several steps in their evolution: (1) Melting of a portion of the source, with restricted plagioclase availability due to kinetic controls, to produce a magma (melt + entrained peritectic minerals in variable proportions relative to melt); (2) Segregation of the magma at near peak metamorphic conditions into melt accumulation sites (MAS), also known as future leucosome; (3a) Re‐equilibration of the magma with a portion of the bounding mafic residuum via chemical diffusion (H2O, K2O), which triggers the co‐precipitation of quartz and plagioclase in the MAS; (3b) Extraction of melt‐dominated magma to higher crustal levels, leaving peritectic minerals entrained from the site of the melting reaction, and the minerals precipitated in the MASs to form the leucosome in the source. The key mechanism controlling this behaviour is the kinetically induced restriction of the amount of plagioclase available to the melting reaction. This results in elevated melt H2O and K2O and chemical potential gradient for these components across the leucosome/mafic residuum contact. The combination of all of these processes accurately explains the composition of the K2O‐poor leucosomes. These findings have important implications for our understanding of melt segregation in the lower crust and minimum melt residency time which, according to the chemical modelling, is <5 years. We demonstrate that in some migmatitic granulites, the leucosomes constitute a type of felsic refractory residuum, rather than evidence of failed magma extraction. This provides a new insight into the ways that source heterogeneity may control anatexis.  相似文献   

17.
The grain‐ and outcrop‐scale distribution of melt has been mapped in anatectic rocks from regional and contact metamorphic environments and used to infer melt movement paths. At the grain scale, anatectic melt is pervasively distributed in the grain boundaries and in small pools; consequently, most melt is located parallel to the principal fabric in the rock, typically a foliation. Short, branched arrays of linked, melt‐bearing grain boundaries connect melt‐depleted parts of the matrix to diffuse zones of melt accumulation (protoleucosomes), where magmatic flow and alignment of euhedral crystals grown from the melt developed. The distribution of melt (leucosome) and residual rocks (normally melanocratic) in outcrop provides different, but complementary, information. The residual rocks show where the melt came from, and the leucosomes preserve some of the channels through which the melt moved, or sites where it pooled. Different stages of the melt segregation process are recorded in the leucosome–melanosome arrays. Regions where melting and segregation had just begun when crystallization occurred are characterized by short arrays of thin, branching leucosomes with little melanosome. A more advanced stage of melting and segregation is marked by the development of residual rocks around extensive, branched leucosome arrays, generally oriented along the foliation or melting layer. Places where melting had stopped, or slowed down, before crystallization began are marked by a high ratio of melanosome to leucosome; because most of the melt has drained away, very few leucosomes remain to mark the melt escape path — this is common in melt‐depleted granulite terranes. Many migmatites contain abundant leucosomes oriented parallel to the foliation; mostly, these represent places where foliation planes dilated and melt drained from the matrix via the branched grain boundary and larger branched melt channel (leucosome) arrays collected. Melt collected in the foliation planes was partially, or fully, expelled later, when discordant leucosomes formed. Leucosomes (or veins) oriented at high angles to the foliation/layering formed last and commonly lack melanocratic borders; hence they were not involved in draining the matrix of the melting layer. Discordant leucosomes represent the channels through which melt flowed out of the melting layer.  相似文献   

18.
CO2–CH4 fluid inclusions are present in anatectic layer-parallel leucosomes from graphite-bearing metasedimentary rocks in the Skagit migmatite complex, North Cascades, Washington. Petrological evidence and additional fluid inclusion observations indicate, however, that the Skagit Gneiss was infiltrated by a water-rich fluid during high-temperature metamorphism and migmatization. CO2-rich fluid inclusions have not been observed in Skagit metasedimentary mesosomes or melanosomes, meta-igneous migmatites, or unmigmatized rocks, and are absent from subsolidus leucosomes in metasedimentary migmatites. The observation that CO2-rich inclusions are present only in leucosomes interpreted to be anatectic based on independent mineralogical and chemical criteria suggests that their formation is related to migmatization by partial melting. Although some post-entrapment modification of fluid inclusion composition may have occurred during decompression and deformation, the generation of the CO2-rich fluid is attributed to water-saturated partial melting of graphitic metasedimentary rocks by a reaction such as biotite + plagioclase + quartz + graphite ± Al2SiO5+ water-rich fluid = garnet + melt + CO2–CH4. The presence of CO2-rich fluid inclusions in leucosomes may therefore be an indication that these leucosomes formed by anatexis. Based on the inferences that (1) an influx of fluid triggered partial melting, and (2) some episodes of fluid inclusion trapping are related to migmatization by anatexis, it is concluded that a free fluid was present at some time during high-temperature metamorphism. The infiltrating fluid was a water-rich fluid that may have been derived from nearby crystallizing plutons. Because partial melting took place at pressures of at least 5 kbar, abundant free fluid may have been present in the crust during orogenesis at depths of at least 15 km.  相似文献   

19.
Textural relations, thermobarometry and petrogenetic grid considerations in the syn-tectonic granitoid massif and the enveloping metasedimentary gneisses at Salur are consistent with a counter-clockwise PT t path for the rocks. The low-P/high-T prograde sector is documented by the pre- to syn-D1 cordierite±orthopyroxene±garnet±spinel–bearing metatexite leucosomes in metapelites. Heating and loading of the rocks (syn- to post-D1) resulted in the formation of garnet+orthopyroxene± cordierite-bearing diatexites, and decomposition of cordierite in metatexite leucosomes to orthopyroxene+sillimanite+biotite+quartz symplectites. Near-peak temperature, 850 °C at 8.0 kbar, was reached syn- to post-D2. Post-peak cooling resulted in the stabilization of coronal grossular and anorthite+calcite symplectites at the expense of scapolite+wollastonite+calcite assemblages in calc-silicate gneisses, and the resetting of cation exchange temperatures at 700–750 °C. Near-isothermal decompression at c. 700–750 °C is manifested by the decomposition of garnet porphyroblasts in the granitoid gneisses to plagioclase+orthopyroxene/ilmenite/biotite two-phase coronas and restabilization of cordierite at garnet margins in metapelites. Subsequent low-P, near-isobaric cooling led to the overprinting of granulite facies assemblages by muscovite+calcite assemblages, and further resetting of cation exchange thermometers to lower temperatures c. 600 °C. The tectonothermal evolution of the Salur gneiss complex vis-a-vis the Eastern Ghats Belt is therefore consistent with high degrees of lower crustal melting, followed by prograde heating of the cover rocks due to magma invasion synchronous with crustal compression, and finally thermal relaxation over a protracted period punctuated by tectonic/erosional denudation of the thickened crust.  相似文献   

20.
ABSTRACT The metasedimentary sequence of the Deep Freeze Range (northern Victoria Land, Antarctica) experienced high-T/low-F metamorphism during the Cambro-Ordovician Ross orogeny. The reaction Bt + Sil + Qtz = Grt + Crd + Kfs + melt was responsible for the formation of migmatites. Peak conditions were c. 700–750° C, c. 3.5–5 kbar and xH2Oc. 0.5). Distribution of fluid inclusions is controlled by host rock type: (1) CO2-H2O fluid inclusions occur only in graphite-free leucosomes; (2) CO2–CH4± H2O fluid inclusions are the most common type in leucosomes, and in graphite-bearing mesosomes and gneiss; and (3) CO2–N2–CH4 fluid inclusions are observed only in the gneiss, and subordinately in mesosomes. CO2–H2O mixtures (41% CO2, 58% H2O, 1% Nad mol.%) are interpreted as remnants of a synmig-matization fluid; their composition and density are compatible P–T–aH2O conditions of migmatization (c. 750° C, c. 4 kbar, xH2Oc. 0.5). CO2-H2O fluid in graphite-free leucosomes cannot originate via partial melting of graphite-bearing mesosomes in a closed system; this would have produced a mixed CO2–CH4 fluid in the leucosomes by a reaction such as Bt + Sil + Qtz + C ± H2O = Grt + Crd + Kfs + L + CO2+ CH4. We conclude that an externally derived oxidizing CO2-H2O fluid was present in the middle crust and initiated anatexis. High-density CO2-rich fluid with traces of CH4 characterizes the retrograde evolution of these rocks at high temperatures and support isobaric cooling (P–T anticlockwise path). In unmigmatized gneiss, mixed CO2–N2–CH4 fluid yields isochores compatible with peak metamorphic conditions (c. 700–750° C, c. 4–4.5 kbar); they may represent a peak metamorphic fluid that pre-dated the migmatization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号