首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— We analyzed the noble gas isotopes in the Fe‐Ni metal and inclusions of the Saint‐Aubin iron meteorite, utilizing the stepwise heating technique to separate the various components of noble gases. The light noble gases in all samples are mostly cosmogenic, with some admixture from the terrestrial atmosphere. Total abundances of noble gases in metal are one of the lowest found so far in iron meteorites and the 4He/21Ne ratio is as high as 503, suggesting that the Saint‐Aubin iron meteorite was derived from a very large meteoroid in space. The exposure ages obtained from cosmogenic 3He were 9–16 Ma. Saint‐Aubin is very peculiar because it contains very large chromite crystals, which—like the metal—contain only cosmogenic and atmospheric noble gases. The noble gases in all the samples do not reveal any primordial components. The only exception is the 1000 °C fraction of schreibersite which contained about 5% of the Xe‐HL component. The Xe‐Q and the El Taco Xe components were not found and only the Xe‐HL is present in this fraction. Some presolar diamond, the only carrier for the HL component known today, must have been available during growth of the schreibersite. However, it is also possible that this excess is due to the addition of cosmogenic and fission components. In this case, all the primordial components are masked (or lost) by the later events such as cosmic‐ray irradiation, heating, and radioactive decay.  相似文献   

2.
Abstract– We have determined the elemental abundances and the isotopic compositions of noble gases in a bulk sample and an HF/HCl residue of the Saratov (L4) chondrite using stepwise heating. The Ar, Kr, and Xe concentrations in the HF/HCl residue are two orders of magnitude higher than those in the bulk sample, while He and Ne concentrations from both are comparable. The residue contains only a portion of the trapped heavy noble gases in Saratov; 40 ± 9% for 36Ar, 58 ± 12% for 84Kr, and 48 ± 10% for 132Xe, respectively. The heavy noble gas elemental pattern in the dissolved fraction is similar to that in the residue but has high release temperatures. Xenon isotopic ratios of the HF/HCl residue indicate that there is no Xe‐HL in Saratov, but Ne isotopic ratios in the HF/HCl residue lie on a straight line connecting the cosmogenic component and a composition between Ne‐Q and Ne‐HL. This implies that the Ne isotopic composition of Q has been changed by incorporating Ne‐HL (Huss et al. 1996) or by being mass fractionated during the thermal metamorphism. However, it is most likely that the Ne‐Q in Saratov is intrinsically different from this component in other meteorites. The evidence of this is a lack of correlation between the isotopic ratio of Ne‐Q and petrologic types of meteorites (Busemann et al. 2000). A neutron capture effect was observed in the Kr isotopes, and this process also affected the 128Xe/132Xe ratio. The 3He and 21Ne exposure ages for the bulk sample are 33 and 35 Ma, respectively.  相似文献   

3.
The isotopic composition of the noble gases of the new Martian meteorite, the Dhofar 019 shergottite, found in the desert in the territory of the Sultanate of Oman on January 24, 2001, was investigated. Stepwise thermal annealing with isotopic analysis of each of the noble-gas temperature fractions was employed to determine the component composition. The concentration of the trapped noble gases in the new Martian meteorite Dhofar 019 is relatively high, although it lies within the range of concentrations in known SNC meteorites. A characteristic feature of all the trapped noble gases is the presence of two main components: a low-temperature, probably terrestrial atmospheric, component, trapped during the weathering of the meteorite on Earth, and a high-temperature trapped Martian component. Owing to the different ratios of the quantities of the two components, the trapped neon, argon, krypton, and xenon differ markedly in the kinetics of their release. The isotopic composition of the noble gases varies accordingly. The trapped xenon was found to contain two Martian components. One of them, with typical ratios of 129Xe/132Xe and 132Xe/84Kr, is representative of xenon and krypton of the Martian atmosphere; the other, of gases of the Martian mantle. Variations of the isotopic compositions of helium, neon, and argon (and also, to a lesser extent, of krypton and xenon) during the thermal annealing of the Dhofar 019 meteorite clearly point to a large proportion of cosmogenic as well as trapped components. The concentration of cosmogenic neon and argon in the meteorite is unusually high. This corresponds to a maximum exposure age among other SNC meteorites: 20 million years. Estimates of the potassium–argon age (gas-retention age) yielded the figure of 560 million years, which is within the range of values obtained for SNC meteorites by other authors, who used the rubidium–strontium and the potassium–argon technique.  相似文献   

4.
Abstract– Noble gas isotopic compositions were measured for a eucritic pebble and bulk material of a silicate–metal mixture from the Vaca Muerta mesosiderite as well as pyroxene and plagioclase separated from the eucritic pebble by total melting and stepwise heating methods. Trapped noble gases were degassed completely by a high‐temperature thermal event, probably at the formation of the Vaca Muerta parent body (VMPB). The presence of fissiogenic Xe isotopes from extinct 244Pu in the bulk samples might be a result of rapid cooling from an early high‐temperature metamorphism. High concentrations of cosmogenic noble gases enabled us to determine precise isotopic ratios of cosmogenic Kr and Xe. Spallogenic Ne from Na and unique Ar isotopic compositions were observed. The 81Kr‐Kr exposure age of 168 ± 8 Myr for the silicate pebble is distinctly longer than the age of 139 ± 8 Myr for the bulk samples. The precursor of the pebble had been irradiated on the surface of the VMPB for more than 60 Myr (first stage irradiation), with subsequent incorporation into bulk materials approximately 4 Gyr ago. The Vaca Muerta meteorite was excavated from the VMPB 140 Myr ago (second stage irradiation). Relative diffusion rates among the cosmogenic Ar, Kr, and Xe based on data obtained by stepwise heating indicate that Kr and Xe can be partially retained in pyroxene and plagioclase under the condition that resets the K‐Ar system. This result supports the presence of fission Xe and of excess concentration of cosmogenic Kr, which could have survived the thermal event approximately 3.8 Gyr ago.  相似文献   

5.
Abstract— We present an isotope study of noble gases in Divnoe, an anomalous meteorite, and also Rb-Sr and K-Ar dating of this meteorite. The relatively young Rb-Sr age obtained (3.39 Ga) seems doubtful and, most probably, results from weathering or contamination. The ancient K-Ar age (4.67+0.20–0.40), together with clear excess of 129Xe, allows the suggestion of very early formation of the Divnoe meteorite. Concentrations and isotope ratios of noble gases in Divnoe are: 17.9 ≤ 3He ≤ 29.0 × 10?8; 20Ne = 6.22 × 10?8; 2.44 ≤ 36Ar ≤ 5.10 × 10?8; 130Xe = 41.3 × 10?12 cm3/g; 0.079 ≤ 3He/4He ≤ 0.193; 20Ne/22Ne = 0.860; 21Ne/22Ne = 0.927; 3.47 ≤ 40Ar/36Ar ≤ 9.47; 2.22 ≤ 36Ar/38Ar ≤ 3.27; 129Xe/132Xe = 1.09. The exposure age calculated from cosmogenic 3He, 21Ne, and 38Ar is 17.9 ± 0.9 Ma. On the basis of the isotope data for the noble gases and O, and abundances of K, Rb, and Sr, an attempt was made to estimate the relationship of Divnoe to other meteorite types. The O-isotope characteristics of Divnoe are clearly distinct from those of ordinary chondrites, acapulcoites/lodranites, and SNC meteorites (Petaev et al., 1994, Clayton, 1993). In plots of 136Xe vs. 129Xe/130Xe, the Divnoe data fall outside of the data fields for carbonaceous and enstatite chondrites. The light noble gas data, especially the 40Ar/38Ar ratio, and the 40Ar, 38Ar, 3He, and 4He contents of Divnoe differ significantly from those of all meteorite types except diogenites. The K, Rb, and Sr abundances in Divnoe are substantially lower than in most other meteorites. In the concentrations of these elements, as well as in the REE pattern, the Divnoe meteorite is similar only to diogenites. Divnoe probably should be treated as a restite remaining after partial melting of the chondritic mantle of a parent asteroid body.  相似文献   

6.
Marrocchi et al. (2005) reported that low‐temperature fractions of heavy noble gases were largely removed upon pyridine treatment of the Orgueil CI meteorite. As pyridine is known to induce the swelling of the macromolecular network of organic matter, they concluded that the low‐temperature phase Q is macromolecular organic carbon. However, Busemann et al. (2008) showed that pyridine had no significant effect on the noble gas contents for other very primitive meteorites, such as CM and CR. Therefore, we prepared an HF–HCl residue and the pyridine‐treated residue of Orgueil, and re‐examined the results of Marrocchi et al. (2005) by analyzing all noble gases. We confirmed that heavy noble gases are surely removed by the pyridine treatment, but the degree of the loss of heavy noble gases is generally small, and is even smaller for the lighter noble gases. Furthermore, we could not observe the evidence of Xe isotopic ratios by removing only phase Q after the pyridine treatment. We further prepared the HF–HCl residue and the pyridine‐treated residue of the Allende CV3 meteorite and performed noble gas analyses. For Allende, there is no significant change in the elemental abundances after the pyridine treatment. These results suggest that only Orgueil is special, and it is likely that the gas loss of the Orgueil residue is due to the loss of some kind of organic matter that was formed and that adsorbed the fractionated Q and HL gases during the aqueous alteration within the parent body of Orgueil.  相似文献   

7.
Abstract— In this paper, we present concentration and isotopic composition of the light noble gases He, Ne, and Ar as well as of 84Kr, 132Xe, and 129Xe in bulk samples of 33 Rumuruti (R) chondrites. Together with previously published data of six R chondrites, exposure ages are calculated and compared with those of ordinary chondrites. A number of pairings, especially between those from Northwest Africa (NWA), are suggested, so that only 23 individual falls are represented by the 39 R chondrites discussed here. Eleven of these meteorites, or almost 50%, contain solar gases and are thus regolithic breccias. This percentage is higher than that of ordinary chondrites, howardites, or aubrites. This may imply that the parent body of R chondrites has a relatively thick regolith. Concentrations of heavy noble gases, especially of Kr, are affected by the terrestrial atmospheric component, which resides in weathering products. Compared to ordinary chondrites, 129Xe/132Xe ratios of R chondrites are high.  相似文献   

8.
Abstract— Noble gases in two ureilites, Kenna and Allan Hills (ALH) 78019, were measured with two extraction methods: mechanical crushing in a vacuum and heating. Large amounts of noble gases were released by crushing, up to 26.5% of 132Xe from ALH 78019 relative to the bulk concentration. Isotopic ratios of the crush‐released Ne of ALH 78019 resemble those of the trapped Ne components determined for some ureilites or terrestrial atmosphere, while the crush‐released He and Ne from Kenna are mostly cosmogenic. The crush‐released Xe of ALH 78019 and Kenna is similar in isotopic composition to Q gas, which indicates that the crush‐released noble gases are indigenous and not caused by contamination from terrestrial atmosphere. In contrast to the similarities in isotopic composition with the bulk samples, light elements in the crush‐released noble gases are depleted relative to Xe and distinct from those of each bulk sample. This depletion is prominent especially in the 20Ne/132Xe ratio of ALH 78019 and the 36Ar/132Xe ratio of Kenna. The values of measured 3He/21Ne for the gases released by crushing are significantly higher than those for heating‐released gases. This suggests that host phases of the crush‐released gases might be carbonaceous because cosmogenic Ne is produced mainly from elements with a mass number larger than Ne. Based on our optical microscopic observation, tabular‐foliated graphite is the major carbon mineral in ALH 78019, while Kenna contains abundant polycrystalline graphite aggregates and diamonds along with minor foliated graphite. There are many inclusions at the edge and within the interior of olivine grains that are reduced by carbonaceous material. Gaps can be seen at the boundary between carbonaceous material and silicates. Considering these petrologic and noble gas features, we infer that possible host phases of crush‐released noble gases are graphite, inclusions in reduction rims, and gaps between carbonaceous materials and silicates. The elemental ratios of noble gases released by crushing can be explained by fractionation, assuming that the starting noble gas composition is the same as that of amorphous carbon in ALH 78019. The crush‐released noble gases are the minor part of trapped noble gases in ureilites but could be an important clue to the thermal history of the ureilite parent body. Further investigation is needed to identify the host phases of the crush‐released noble gases.  相似文献   

9.
Abstract— We measured the noble gas isotopic abundances in lunar meteorite QUE 94269 and in bulk-, glass-, and crystal-phases of lunar meteorite QUE 94281. Our results confirm that QUE 94269 originated from the same meteorite fall as QUE 93069: both specimens yield the same signature of solar-particle irradiation and also the cosmogenic noble gases are in agreement within their uncertainities. Queen Alexandra Range 93069/94269 was exposed to cosmic rays in the lunar regolith for ~1000 Ma, and it trapped 3.5 × 10?4 cm3STP/g solar 36Ar, the other solar noble gases being present in proportions typical for the solar-particle irradiation. The bulk material of QUE 94281 contains about three times less cosmogenic and trapped noble gases than QUE 93069/94269 and the lunar regolith residence time corresponds to 400 ± 60 Ma. We show that in lunar meteorites the trapped solar 20Ne/22Ne ratio is correlated with the trapped ratio 40Ar/36Ar, that is, trapped 20Ne/22Ne may also serve as an antiquity indicator. The upper limits of the breccia compaction ages, as derived from the trapped ratio 40Ar/36Ar for QUE 93069/94269 and QUE 94281 are ~400 Ma and 800 Ma, respectively. We found very different regolith histories for the glass phase and the crystals separated from QUE 94281. The glass phase contains much less cosmogenic and solar noble gases than the crystals, in contrast to the glasses of lunar meteorite EET 87521, that were enriched in noble gases relative to the crystalline material. The QUE 94281 phases yield a 40K-40Ar gas retention age of 3770 Ma, which is in the range of that for lunar mare rocks.  相似文献   

10.
Abstract— Concentration and isotopic composition of the light noble gases as well as of 84Kr, 129Xe, and 132Xe have been measured in bulk samples of 60 carbonaceous chondrites; 45 were measured for the first time. Solar noble gases were found in nine specimens (Arch, Acfer 094, Dar al Gani 056, Graves Nunataks 95229, Grosnaja, Isna, Mt. Prestrud 95404, Yamato (Y) 86009, and Y 86751). These meteorites are thus regolith breccias. The CV and CO chondrites contain abundant planetary‐type noble gases, but not CK chondrites. Characteristic features of CK chondrites are high 129Xe/132Xe ratios. The petrologic type of carbonaceous chondrites is correlated with the concentration of trapped heavy noble gases, similar to observations shown for ordinary chondrites. However, this correlation is disturbed for several meteorites due to a contribution of atmospheric noble gases, an effect correlated to terrestrial weathering effects. Cosmic‐ray exposure ages are calculated from cosmogenic 21Ne. They range from about 1 to 63.5 Ma for CO, CV, and CK classes, which is longer than exposure ages reported for CM and CI chondrites. Only the CO3 chondrite Isna has an exceptionally low exposure age of 0.15 Ma. No dominant clusters are observed in the cosmic‐ray exposure age distribution; only for CV and CK chondrites do potential peaks seem to develop at ~9 and ~29 Ma. Several pairings among the chondrites from hot deserts are suggested, but 52 of the 60 investigated meteorites are individual falls. In general, we confirm the results of Mazor et al. (1970) regarding cosmic‐ray exposure and trapped heavy noble gases. With this study, a considerable number of new carbonaceous chondrites were added to the noble gas data base, but this is still not sufficient to obtain a clear picture of the collisional history of the carbonaceous chondrite groups. Obviously, the exposure histories of CI and CM chondrites differ from those of CV, CO, and CK chondrites that have much longer exposure ages. The close relationship among the latter three is also evident from the similar cosmic‐ray exposure age patterns that do not reveal a clear picture of major breakup events. The CK chondrites, however, with their wide range of petrologic types, form the only carbonaceous chondrite group which so far lacks a solar‐gas‐bearing regolith breccia. The CK chondrites contain only minute amounts of trapped noble gases and their noble gas fingerprint is thus distinguishable from the other groups. In the future, more analyses of newly collected CK chondrites are needed to unravel the genetic and historic evolution of this group. It is also evident that the problems of weathering and pairing have to be considered when noble gas data of carbonaceous chondrite are interpreted.  相似文献   

11.
Abstract— A glass separate from the LEW88516 shergottite was analyzed by step-wise combustion for N and noble gases to determine whether it contained trapped gas similar in composition to the martian atmosphere-like component previously observed in lithology C of EETA79001. Excesses of 40Ar and 129Xe were in fact observed in this glass, although the amounts of these excesses are ≤20% of those seen in the latter meteorite, and are comparable to the amounts seen in whole-rock analyses of LEW88516. The isotopic composition of N in LEW88516 does not show an enrichment in 15N commensurate with the amount of isotopically-heavy N expected from the noble gases excesses. One must posit some extreme assumptions about the nature of the N components present in LEW88516 in order to allow the presence of the trapped nitrogen component. Alternatively, the N has somehow been decoupled from the noble gases, and was either never present or has been lost.  相似文献   

12.
Abstract— Abundances and isotopic compositions of noble gases in metal and graphite of the Bohumilitz IAB iron meteorite were measured. The abundance ratios of spallogenic components in metal reveal a 3He deficiency which is due to the diffusive loss of parent isotopes, that is, tritium (Tilles, 1963; Schultz, 1967). The diffusive loss likely has been induced by thermal heating by the Sun during cosmic‐ray exposure (~160 Ma; Lavielle et al, 1999). Thermal process such as impact‐induced partial loss may have affected the isotopic composition of spallogenic Ne. The 129Xe/131Xe ratio of cosmogenic components in the metal indicates an enhanced production of epi‐thermal neutrons. The abundance ratios of spallogenic components in the graphite reveal that it contained small amounts of metal and silicates. The isotopic composition of heavy noble gases in graphite itself was obtained from graphite treated with HF/HCl. The isotopic composition of the etched graphite shows that it contains two types of primordial Xe (i.e., Q‐Xe and El Taco Xe). The isotopic heterogeneity preserved in the Bohumilitz graphite indicates that the Bohumilitz graphite did not experience any high‐temperature event and, consequently, must have been emplaced into the metal at subsolidus temperatures. This situation is incompatible with an igneous model as well as the impact melting models for the IAB‐IIICD iron meteorites as proposed by Choi et al. (1995) and Wasson et al (1980).  相似文献   

13.
Abstract— The Devgaon meteorite fell in India on February 12, 2001 and was immediately collected. It is an ordinary chondrite having a number of SiO2‐rich objects and some Ca, Al‐rich inclusions. Olivines (Fa17–19) are fairly equilibrated, while pyroxenes (Fs4–20) are unequilibrated. Occasionally, shock veins are visible, but the bulk rock sample is very weakly shocked (S2). Chondrules and chondrule fragments are abundant. Based on chemical and petrological features, Devgaon is classified as an H3.8 group chondrite. Several cosmogenic radionuclides ranging in half‐lives from 5.6 d (52Mn) to 7.3 times 105 yr (26Al), noble gases (He, Ne, Ar, Kr, and Xe), and particle track density have been measured. The track density in olivines from five spot samples varies between (4.6 to 9) × 106 cm?2 showing a small gradient within the meteorite. The light noble gases are dominated by cosmogenic and radiogenic components. Large amounts of trapped gases (Ar, Kr, and Xe) are present. In addition, (n, γ) products from Br and I are found in Kr and Xe, respectively. The average cosmic ray exposure age of 101 ± 8 Ma is derived based on cosmogenic 38Ar, 83Kr, and 126Xe. The track production rates correspond to shielding depths of about 4.9 to 7.8 cm, indicating that the stone suffered type IV ablation. Low 60Co, high (22Ne/21Ne)c, and large neutron produced excesses at 80Kr, 82Kr, and 128Xe indicate a complex exposure history of the meteoroid. In the first stage, a meter‐sized body was exposed for nearly 108 yr in the interplanetary space that broke up in ?50 cm‐sized fragments about a million years ago (stage 2), before it was captured by the Earth.  相似文献   

14.
Edward Anders 《Icarus》1975,24(3):363-371
The place of origin of stony meteorites can be determined from their trapped solar-wind gases. “Gas-rich” meteorites have only 10?3?10?4 the solar noble gas content and ?10?2?10?4 the surface exposure age of lunar soils. These differences suggest that the gas implantation took place between 1 and 8 AU from the Sun, in a region where the cratering rate was 102?103 times higher than at 1 AU. Both characteristics point to the asteroid belt. The predicted Ne20 content a gas-rich meteorite formed at 2.5 AU is 1.2 × 10?5 cc STP g?1, compared to an observed mean for H-chondrites of 0.5 × 10?5 cc STP g?1. The observed prevalence of gas-rich meteorites (40–100% among carbonaceous chondrites, 2–33% among other classes) requires that the parent body remained long enough in the asteroid belt to develop a substantial regolith. This condition can be met by asteroids (~ 10% of mass converted to regolith.in 4.5 × 109 yr), but not by short period comets (~0.04% converted in 107 yr). It appears that a cometary origin can be ruled out for all stony meteorite clases that have gas-rich members. This includes carbonaceous chondrites.  相似文献   

15.
Northwest Africa (NWA) 7325 is an anomalous achondrite that experienced episodes of large-degree melt extraction and interaction with melt under reducing conditions. Its composition led to speculations about a Mercurian origin and provoked a series of studies of this meteorite. We present the noble gas composition, and results of 40Ar/39Ar and 129I-129Xe studies of whole rock splits of NWA 7325. The light noble gases are dominated by cosmogenic isotopes. 21Ne and 38Ar cosmic-ray exposure ages are 25.6 and 18.9 Ma, respectively, when calculated with a nominal whole rock composition. This 38Ar age is in reasonable agreement with a cosmic-ray exposure age of 17.5 Ma derived in our 40Ar/39Ar dating study. Due to the low K-content of 19 ± 1 ppm and high Ca-content of approximately 12.40 ± 0.15 wt%, no reliable 40Ar/39Ar age could be determined. The integrated age strongly depends on the choice of an initial 40Ar/36Ar ratio. An air-like component is dominant in lower temperature extractions and assuming air 40Ar/36Ar for the trapped component results in a calculated integrated age of 3200 ± 260 (1σ) Ma. This may represent the upper age limit for a major reheating event affecting the K-Ar system. Results of 129I-129Xe dating give no useful chronological information, i.e., no isochron is observed. Considering the highest 129Xe*/128XeI ratio as equivalent to a lower age limit, we calculate an I-Xe age of about 4536 Ma. In addition, elevated 129Xe/132Xe ratios of up to 1.65 ± 0.18 in higher temperature extractions indicate an early formation of NWA 7325, with subsequent disturbance of the I-Xe system.  相似文献   

16.
M. Ozima  Y.N. Miura 《Icarus》2004,170(1):17-23
Surface-correlated noble gases in lunar soils are primarily implanted SW (solar wind) noble gases. However, they also include apparently orphan radiogenic 40Ar, 129Xe, and 244Pu-derived fission Xe in excess of plausible primordial solar origin. These orphan radiogenic components are usually assigned a lunar origin, in a scenario in which radiogenic noble gases produced in the lunar interior were degassed into the transient atmosphere and then re-implanted to the lunar surface together with SW. There are some quantitative difficulties with this scenario, however, and it requires special constraints on the degassing history of the Moon that have not emerged from more general thermal history models. We therefore urge consideration of alternative hypotheses. As a possible source for the orphan radiogenic noble gases, we have examined planetary pollution of the Sun, as suggested by studies of extrasolar planetary systems (e.g., Murray et al., 2001, Astrophys. J. 555, 801-815; Israelian et al., 2001, Nature 411, 163-166). Pollution of the Sun by 2M (two Earth mass) planetary materials (Murray et al., 2001, Astrophys. J. 555, 801-815) is likely not significant for Ar but could be important to account for orphan Xe in the Moon.  相似文献   

17.
Abstract— We have measured Ne, Ar, Kr and Xe in Si2O3 “smokes” that were condensed on Al substrates, vapor-deposited with various mixtures of CH4, NH3, H2O and noble gases at 10 K and subsequently irradiated with 1 MeV protons to simulate conditions during grain mantle formation in interstellar clouds. The noble gases were analyzed using conventional stepwise heating and static noble gas mass spectrometry. Neither Ne nor Ar is retained by the samples upon warming to room temperature, but Xe is very efficiently trapped and retained. Kr is somewhat less effectively retained, typically depleted by factors of about 10–20 relative to Xe. Isotopic fractionation favoring the heavy isotopes of Xe and Kr of about 5–10‰/amu is observed. Correlations between the specific chemistry of the vapor deposition and heavy noble gas retention are most likely the result of competition by the various species for irradiation-produced trapping sites. The concentration of Xe retained by some of these smokes exceeds that observed in phase Q of meteorites and, like phase Q, they do not seem to be carriers of the light noble gases. Such artificially prepared material may, therefore, offer clues concerning the incorporation of the heavy planetary noble gases in meteoritic material and the nature of phase Q.  相似文献   

18.
Abstract— Antarctic meteorite Queen Alexandra Range (QUE) 94201 is a 12 g basaltic achondrite dominated by plagioclase (now maskelynite) and zoned low‐ and high‐Ca pyroxene. Petrologic, geochemical, and isotopic analyses indicate that it is related to previously described basaltic and Iherzolitic shergottites, which are a group of igneous meteorites that are believed to be from Mars. Unlike previous shergottites, however, QUE 94201 represents a bulk melt rather than a cumulate fraction, meaning it can be used to infer magmatic source regions and the compositions of other melts on Mars. This melt has much more Fe and P than basaltic melts produced on Earth and formed at a much lower oxygen fugacity. This has altered the crystallization sequence of the melt, removing olivine from the liquidus to produce a plagioclase and 2‐pyroxene assemblage. If the high‐phosphorus and low‐oxygen fugacity conditions represented by QUE 94201 are common in magmatic regions of Mars, then olivine may be rare in marrian basalts. No solar cosmic ray effects were seen in the concentrations of 10Be, 26A1, and 36C1 with depth in the meteorite, implying at least 3 cm of ablation during entry to Earth. Significant excesses of neutron capture noble gas isotopes (80,82Kr and 128,131Xe) suggest that the QUE 94201 sample came from a depth >22 cm in a meteoroid of at least that radius. The meteorite also has very low 21Ne/22Ne, which would often be interpreted to mean little ablation (contradicting above evidence) but, in this case, appears to reflect a very low abundance of Mg (the principal target element for Ne) in the meteorite, consistent with our bulk chemical analyses. The meteorite has a terrestrial 36C1 age of 0.29 ± 0.05 Myr and a 10Be exposure age of 2.6 ± 0.5 Myr in a 47π geometry, implying an ejection age of 2.9 ± 0.5 Myr.  相似文献   

19.
Noble gases and nitrogen were measured in two adjacent samples each from the Raghunathpura (IIAB) and the Nyaung (IIIAB) iron meteorite falls. Light noble gases in both the meteorites were of pure cosmogenic origin. Using (3He/4He)c ratios and the production systematic of Ammon et al. ( 2009 ), we estimated the sample depth and meteoroid size for Nyaung (~8 cm depth in a ~15 cm radius object) and Raghunathpura (~12–14 cm depth in a ~25 cm object). We derived cosmic ray exposure ages of 1710 ± 256 Ma (for Nyaung, the highest reported so far for the IIIAB group) and 224 ± 34 Ma (for Raghunathpura). Variable amounts of trapped Kr and Xe were found in both meteorites. The phase Q‐like elemental ratio (84Kr/132Xe) suggests that the trapped component is of indigenous origin, and most likely hosted in the heterogeneously distributed micro‐inclusions of troilite/schreibersite. Trapped phase Q component is being reported for the first time, for a IIAB iron meteorite. Both meteorites showed light isotopic composition for nitrogen, and need at least two N components to explain the observed N isotopic systematic. Variable amounts of trapped noble gases and the presence of more than one N component suggest that the magmatic process that formed the parent body of these meteorites either could not completely homogenize or completely degas all the phases.  相似文献   

20.
Abstract— Ar‐rich noble gases, the so‐called “subsolar” noble gases, are a major component of heavy primordial noble gases in unequilibrated ordinary chondrites and some classes of anhydrous carbonaceous chondrites, whereas they are almost absent in hydrous carbonaceous chondrites that suffered extensive aqueous alteration. To understand the effects of aqueous alteration on the abundance of Ar‐rich noble gases, we performed an aqueous alteration experiments on the Ningqiang type 3 carbonaceous chondrite that consists entirely of anhydrous minerals and contains Ar‐rich noble gases. Powdered samples and deionized neutral water were kept at 200 °C for 10 and 20 days, respectively. Mineralogical analyses show that, during the 10‐day alteration, serpentine and hematite formed at the expense of olivine, low‐Ca pyroxene, and sulfide. Noble gas analyses show that the 10‐day alteration of natural Ningqiang removed 79% of the primordial 36Ar, 68% of the 84Kr, and 60% of the 132Xe, but only 45% of the 4He and 53% of the primordial 20Ne. Calculated elemental ratios of the noble gases removed during the 10‐day alteration are in the range of those of Ar‐rich noble gases. These results indicate that Ar‐rich noble gases are located in materials that are very susceptible to aqueous alteration. In contrast, heavy primordial noble gases remaining in the altered samples are close to Q gas in elemental and isotope compositions. This indicates that phase Q is much more resistant to aqueous alteration than the host phases of Ar‐rich noble gases. In the 20‐day sample, the mineralogical and noble gas signatures are basically similar to those of the 10‐day sample, indicating that the loss of Ar‐rich noble gases was completed within the 10‐day alteration. Our results suggest that almost all of the Ar‐rich noble gases were lost from primitive asteroids during early, low‐temperature aqueous alteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号