首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The site of an impact event that spread ejecta in the form of tektites and microtektites over ~5 × 107 km2 of the southern Pacific and Indian Ocean area has not yet been discovered. A number of lines of evidence point toward a source in eastern Indochina. From an examination of a digital topographic data set and Landsat imagery, we identified four candidate structures in southern Laos, and we visited these sites in 1995 February. No evidence of impact origin of these structures could be found; flat-lying, undisturbed Mesozoic sedimentary rocks similar to those on Thailand's Khorat Plateau were found over the region. Small layered tektite fragments are relatively common in a lateritic horizon that is characterized by the presence of quartz pebbles. This scene is identical to the situation found several hundred kilometers to the southeast in Thailand. New tektite sites identified on this trip support a previous suggestion that there is a large region in southern NE Thailand and Laos that is rich in Muong Nong-type (layered) tektites but seemingly devoid of the splash-form type tektites.  相似文献   

2.
Abstract— We have analyzed the size, shape, composition, and spatial distribution of 6 kg of layered tektite fragments excavated from a 3 m × 3 m area near the town of Ban Huai Sai in northeast Thailand. Our analysis suggests that these fragments represent a single homogeneous mass that underwent fragmentation far in the past and has undergone little disturbance since its deposition. We have also studied the stratigraphic occurrence of layered tektites exposed in situ near the town of Ban Huai Om. Tektites were found along a disconformable paleo-erosion surface covered by recent aeolian sand, similar to other occurrences throughout Southeast Asia. This stratigraphic relationship provides little chronostratigraphic information and, thus, does not support a stratigraphic “age paradox” for the Australasian tektites. The present-day surface density of layered tektites in this area is 2 to 20 g/m2.  相似文献   

3.
Abstract— The size, shape, composition, and vesicle content of 6 kg of layered tektite fragments, excavated near the town of Huai Sai, Thailand, place some constraints on the formation of layered tektites. The mass, shape, and distribution of the fragments are not consistent with an origin as a “puddle” of impact melt but suggest that they were derived from a single equant block. The presence of vesicles up to 7 mm in mean diameter within the tektite fragments suggests that the material was too viscous to allow for significant gravity-driven flow. These results suggest that layered tektites may be analogous to lava bombs, which may have been stretched and deformed in flight but underwent little flow after landing. Rather than being a product of “unusual circumstances,” such as multiple impacts, layered tektites may differ from splash-form tektites only in initial temperature of formation, speed of ejection, and small differences in initial composition.  相似文献   

4.
Abstract— A 10.79-kg layered tektite from Hainan is the largest tektite from China, and the fifth largest reported to date. It together with a 1.9-kg Hainan tektite described by Yuan (1981) greatly extends the area of the Australasian field within which layered tektites having masses > 1 kg have been found.  相似文献   

5.
Abstract— In previous studies, intersample variation between compositions of different tektites from one particular group were studied and, in a few cases, major element variations within single tektites. No data for intra‐sample trace element variations existed. Thus, we sectioned a Muong Nong‐type tektite fragment from Vietnam and a splash‐form tektite fragment from the Philippines into eleven and six pieces, respectively, and analyzed the individual fragments for major and trace element contents. The compositions obtained agree well with those found in previous studies, supporting argument that tektites have been derived from terrestrial upper crustal sediments. Chemical variations within the tektite fragments are present, but do not show any systematic trends, probably reflecting incomplete mixing of parent rocks. The intra‐sample heterogeneity of the Muong Nong‐type tektite is more pronounced than that in the philippinite. For the Muong Nong‐type tektite, the intra‐sample variation in the trace element contents is higher than that for the major elements, again reflecting target rock properties. For the philippinite the intra‐sample variations mostly do not exceed the limits imposed by the precision of the analytical data, confirming that the splash form tektites are indeed well homogenized.  相似文献   

6.
The Australasian tektites are quench melt glass ejecta particles distributed over the Asian, Australian, and Antarctic regions, the source crater of which is currently elusive. New 40Ar/39Ar age data from four tektites: one each from Thailand, China, Vietnam, and Australia measured using three different instruments from two different laboratories and combined with published 40Ar/39Ar data yield a weighted mean age of 788.1 ± 2.8 ka (±3.0 ka, including all sources of uncertainties) (P = 0.54). This age is five times more precise compared to previous results thanks, in part, to the multicollection capabilities of the ARGUS VI noble gas mass spectrometer, which allows an improvement of almost fourfold on a single plateau age measurement. Diffusion experiments on tektites combined with synthetic age spectra and Monte Carlo diffusion models suggest that the minimum temperature of formation of the Thai tektite is between 2350 °C and 3950 °C, hence a strict minimum value of 2350 °C.  相似文献   

7.
8.
Abstract— Elemental and isotopic compositions of the noble gases have been determined in six North American tektites (4 bediasites and 2 georgiaites) and one Ivory Coast tektite. Radiogenically produced 4He may explain the large 4He/36Ar ratios measured relative to air, despite significant diffusive losses. The Ne isotopic composition is enriched in 20Ne consistent with a single stage mass fractionation process. The enormous 20Ne/36Ar enrichments observed in all tektite samples, similar to those reported from other tektites and impact glasses, are attributed to atmospheric diffusion into the samples following solidification. The North American tektites show a systematic increase in 84Kr/36Ar and 132Xe/36Ar relative to air, with enrichments greater than those determined for any other tektite group or terrestrial samples other than shales. These enrichments are inconsistent with existing models of dissolving Kr and Xe in tektite glass without elemental fractionation at atmospheric pressures equivalent to ∼40 km altitude. The Kr and Xe isotopic compositions are indistinguishable from atmospheric within experimental uncertainty.  相似文献   

9.
Ten splash‐form tektites from the Australasian strewn field, with masses ranging from 21.20 to 175.00 g and exhibiting a variety of shapes (teardrop, ellipsoid, dumbbell, disk), have been imaged using a high‐resolution laser digitizer. Despite challenges due to the samples’ rounded shapes and pitted surfaces, the images were combined to create 3‐D tektite models, which captured surface features with a high fidelity (≈30 voxel mm?2) and from which volume could be measured noninvasively. The laser‐derived density for the tektites averaged 2.41 ± 0.11 g cm?3. Corresponding densities obtained via the Archimedean bead method averaged 2.36 ± 0.05 g cm?3. In addition to their curational value, the 3‐D models can be used to calculate the tektites’ moments of inertia and rotation periods while in flight, as a probe of their formation environment. Typical tektite rotation periods are estimated to be on the order of 1 s. Numerical simulations of air flow around the models at Reynolds numbers ranging from 1 to 106 suggest that the relative velocity of the tektites with respect to the air must have been <10 m s?1 during viscous deformation. This low relative velocity is consistent with tektite material being carried along by expanding gases in the early time following the impact.  相似文献   

10.
Abstract— Tektites are natural glasses formed from terrestrial material that was melted and displaced by the impact of an extraterrestrial body. The surface and near-surface compositions of tektite glass results from fractionation during impact and ejection, and/or postsolidification weathering. The first goal of this study was to characterise the surface and near-surface (in the order of tens of angstroms) chemical composition of two tektites by x-ray photoelectron spectroscopy (XPS), and to estimate the importance of weathering vs. fractionation during flying. In order to separate the chemical modification due to weathering from that due to fractionation during ballistic flight, we studied two samples from the Australasian tektite strewn field. One of them was collected in a hot desert area (Nullarbor Plain, Australia) and the other, in a humid climate (Thailand). Our study reveals the presence of well-developed leached layers in both tektites. In the Australian tektite, Si is depleted in the topmost layers (a few tens of angstroms). A more complex chemical zoning is defined in the tektite from Thailand. These leached layers are comparable to those observed in weathered glasses, and therefore we conclude that weathering is responsible for the chemical composition of the surface and near-surface compositions. The second goal was to investigate the chemical environment of O, N and C in the glass. The O peak was resolved into two bridging O components (Si-O-Si and Al-O-Si) that are comparable to O environments in artificial glasses. The binding energy of the C1s electron is typical for C-C and C-H bonds in hydrocarbons; minor organic acid components are also present. Nitrogen is only observed on the surface of the Thailand tektite. The binding energy of N1s is comparable to that of ammonia, and the surface enrichment in N is interpreted as due to sorption related to interactions between glass and fluid buffered by the organic material in the soil.  相似文献   

11.
Abstract— During Leg 150 of the Ocean Drilling Project (ODP), two sites (903C and 904A) were cored that have sediments of the same biostratigraphic age as the upper Eocene tektite-bearing ejecta layer at Deep Sea Drilling Project (DSDP) Site 612. Core 45X from ODP Site 904A (~4 km north of Site 612) contains a 5 cm thick tektite-bearing ejecta layer, and Core 56 from Site 903C (~8 km north-northwest of Site 904) contains a 2 cm thick layer of impact ejecta without any tektite or impact glass. Shocked quartz and feldspar grains, with multiple sets of planar deformation features (PDFs), and abundant coesite-bearing grains are present at both sites. The major oxide contents, trace element compositions, and rare earth element (REE) patterns of the Site 904 tektites are similar to those of the Site 612 tektites and to North American tektites (especially bediasites). The ?Sr and ?Nd values for one composite tektite sample from Site 904 fall within the range previously obtained for the Site 612 tektites, which defines a linear trend that, if extrapolated, would intersect the values obtained for North American tektites. The water contents of eight tektite fragments from Site 904 range from 0.017 to 0.098 wt%, and, thus, are somewhat higher than is typical for tektites. The heavy mineral assemblages of the 63–125 μm size fractions from the ejecta layers at Sites 612, 903, and 904 are all similar. Therefore, we conclude that the ejecta layer at all three sites is from the same impact event and that the tektites at Sites 904 and 612 belong to the North American tektite strewn field. Clinopyroxene-bearing (cpx) spherules occur below, or in the lower part of, the main ejecta layer at all three sites. At all three sites, the cpx spherules have been partly or completely replaced with pyrite that preserved the original crystalline textures. Site 612, 903, and 904 cpx spherules are similar to those found in the Caribbean Sea, Gulf of Mexico, central equatorial Pacific, western equatorial Pacific, and eastern Indian Ocean. The cpx event appears to have preceded the North American tektite event by 10–15 ka or less. The fining-upward sequence at all three sites and concentration of the denser, unmelted impact ejecta at the top of the tektite layer at Sites 612 and 904 suggest that the tektite-bearing ejecta layers are not the result of downslope redeposition and that the unmelted ejecta landed after the glass. Geographic variations in thickness of the tektite-bearing ejecta layer, the lack of carbonate clasts in the ejecta layer, and the low CaO content of the tektite glass suggest that the ejecta (including the tektite glass) were derived from the Chesapeake Bay structure rather than from the Toms Canyon structure. A sharp decline in microfossil abundances suggests that local environmental changes caused by the impact may have had adverse effects on benthic foraminifera, radiolaria, sponges, and fish as well as the planktic foraminifera.  相似文献   

12.
Abstract— A tektite, probably found in Cuba, was previously classified as belonging to the North American tektite strewn field on the basis of chemistry, age, isotopic, and petrographic characteristics. New major element analyses and trace element analyses show that the sample falls within the range of other North American tektites, and is close to the bediasite compositions. There are, however, some differences to normal georgiaites and bediasites. In a Na2O/K2O diagram the sample plots between the two distinct fields formed by georgiaites and bediasites. The rare earth elements and some lithophile trace elements are slightly enriched compared to bediasites, and much higher than in georgiaites. The discovery of tektite fragments from locations at Barbados and a DSDP site off the coast of New Jersey makes it likely that the North American strewn field is larger than previously thought, in agreement with microtektite distributions. Thus it is possible that the “Cuban” tektite really originated from Cuba.  相似文献   

13.
Abstract— We report electron microprobe determinations of the elemental compositions of 11 Australasian layered tektites and 28 Australasian microtektites; and ion microprobe determinations of the 41K/39K ratios of all 11 tektites and 13 of the microtektites. The elemental compositions agree well with literature values, although the average potassium concentrations measured here for microtektites, 1.1‐1.6 wt%, are lower than published average values, 1.9‐2.9 wt%. The potassium isotope abundances of the Australasian layered tektites vary little. The average value of δ41K, 0.02 ± 0.12%0 (1 s? mean), is indistinguishable from the terrestrial value (= 0 by definition) as represented by our standard, thereby confirming four earlier tektite analyses of Humayun and Koeberl (2004). In agreement with those authors, we conclude that evaporation has significantly altered neither the isotopic nor the elemental composition of Australasian layered tektites for elements less volatile than potassium. Although the average 41K/39K ratio of the microtektites, 1.1 ± 1.7%0 (1 s? mean), is also statistically indistinguishable from the value for the standard, the individual ratios vary over a very large range, from ?10.6 ± 1.4%0 to +13.8 ± 1.5%0 and at least three of them are significantly different from zero. We interpret these larger variations in terms of the evaporation of isotopically light potassium; condensation of potassium in the vapor plume; partial or complete stirring and quenching of the melts; and the possible uptake of potassium from seawater. That the average 41K/39K ratio of the microtektites equals the terrestrial value suggests that the microtektite‐forming system was compositionally closed with respect to potassium and less volatile elements. The possibility remains open that 41K/39K ratios of microtektites vary systematically with location in the strewn field.  相似文献   

14.
Abstract— Impact glasses, tektites and some related basement rocks were analyzed for F, Cl, Br and I. The tektite and impact glasses show similar abundance patterns within the groups. Muong Nong-type tektites indicate that the halogens have been depleted in the order I > Br > Cl > F in their melt under oxidizing conditions. For Darwin Glass selective volatilization of F from the melt is a major depleting process. Cl, Br and I are lost to a lesser extent.  相似文献   

15.
Moldavites represent tektites derived from the Ries impact structure (~24 km diameter, ~15 Myr old) in southern Germany. Two new localities with parautochthonous moldavites in southwestern Poland were found. In these localities, fluvial sediments of the so‐called Gozdnicka formation host the moldavites. Characteristic tektite features, especially bubbles and inclusions of lechatelierite, are reported. The moldavites' size distribution and their abraded shapes indicate that they were redeposited from the nearby Lusatia substrewn field.  相似文献   

16.
Abstract– Tektites, natural silica‐rich glasses produced during impact events, commonly contain bubbles. The paper reviews published data on pressure and composition of a gas phase contained in the tektite bubbles and data on other volatile compounds which can be released from tektites by either high‐temperature melting or by crushing or milling under vacuum. Gas extraction from tektites using high‐temperature melting generally produced higher gas yield and different gas composition than the low‐temperature extraction using crushing or milling under vacuum. The high‐temperature extraction obviously releases volatiles not only from the bubbles, but also volatile compounds contained directly in the glass. Moreover, the gas composition can be modified by reactions between the released gases and the glass melt. Published data indicate that besides CO2 and/or CO in the bubbles, another carbon reservoir is present directly in the tektite glass. To clarify the problem of carbon content and carbon isotopic composition of the tektite glass, three samples from the Central European tektite strewn field—moldavites—were analyzed. The samples contained only 35–41 ppm C with δ13C values in the range from ?28.5 to ?29.9‰ VPDB. This indicates that terrestrial organic matter was a dominant carbon source during moldavite formation.  相似文献   

17.
Abstract— An examination of data collected over the last 30 years indicates that the percent of glass fragments vs. whole splash forms in the Cenozoic microtektite strewn fields increases towards the source crater (or source region). We propose that this is due to thermal stress produced when tektites and larger microtektites fall into water near the source crater while still relatively hot (>1150 °C). We also find evidence (low major oxide totals, frothing when melted) for hydration of most of the North American tektite fragments and microtektites found in marine sediments. High-temperature mass spectrometry indicates that these tektite fragments and microtektites contain up to 3.8 wt% H2O. The H2O-release behavior during the high-temperature mass-spectrometric analysis, plus high CI abundances (0.05 wt%), indicate that the North American tektite fragments and microtektites were hydrated in the marine environment (i.e., the H2O was not trapped solely on quenching from a melt). The younger Ivory Coast and Australasian microtektites do not exhibit much evidence of hydration (at least not in excess of 0.5 wt% H2O); this suggests that the degree of hydration increases with age. In addition, we find that some glass spherules (with <65 wt% SiO2) from the upper Eocene clinopyroxene-bearing spherule layer in the Indian Ocean have palagonitized rims. These spherules appear to have been altered in a similar fashion to the splash form K/T boundary spherules. Thus, our data indicate that tektites and microtektites that generally contain >65 wt% SiO2 can undergo simple hydration in the marine environment, while impact glasses (with <65 wt% SiO2) can also undergo palagonitization.  相似文献   

18.
Abstract— One hundred and thirteen Australasian tektites from Vietnam (Hanoi, Vinh, Dalat, and Saigon areas) were analyzed for their major and trace element contents. The tektites are either of splash form or Muong Nong‐type. The splash‐form tektites have SiO2 contents ranging from 69.7 to 76.8 wt%, whereas Muong Nong‐type tektites, which are considerably larger than splash‐form tektites and have a blocky and chunky appearance, have slightly higher silica contents in the range of 74–81 wt%. Major‐element relationships, such as FeO versus major oxides, Na2O versus K2O, and oxide ratio plots, were used to distinguish the different groups of the tektites. In addition, correlation coefficients have been calculated for each tektite group of this study. Many chemical similarities are noted between Hanoi and Vinh tektites from the north of Vietnam, except that the Hanoi tektites contain higher contents of CaO than Vinh; the higher content of CaO might be due to some carbonate parent material. Both Dalat and Saigon tektites have nearly similar composition, whereas the bulk chemistries of the tektites from Hanoi and Vinh appear different from those of Saigon and Dalat. There are differences, especially in the lower CaO and Na2O and higher MgO, FeO, for the tektites of Dalat and Saigon in comparison to that of Hanoi tektites. Furthermore, the Dalat and Saigon tektites show enrichments by factors of 3 and 2 for the Ni and Cr contents, respectively, compared to those of Hanoi and Vinh. The difference in chemistry between the North Vietnam tektites (Hanoi, Vinh) to that of South Vietnam tektites (Saigon, Dalat) of this study indicate that the parent material was heterogeneous and possibly mixing between different source rocks took place. Muong Nong‐type tektites are enriched in the volatile elements such as Br, Zn, As, and Sb compared to the average splash‐form tektites of this study. The chemical compositions of the average splash‐form and Muong Nong‐type tektites of this study closely resemble published data for average splash‐form and Muong Nong‐type indochinites, indicating that they have the same source. The trace element ratios Ba/Rb (2.7), Th/U (5.2), Th/Sc (1.3), Th/Sm (2.2), and the rare earth element (REE) abundances of this study show close similarities to those of average upper continental crust.  相似文献   

19.
Abstract— Three samples of Darwin Glass, an impact glass found in Tasmania, Australia at the edge of the Australasian tektite strewn field were dated using the 40Ar/39Ar single‐grain laser fusion technique, yielding isochron ages of 796–815 ka with an overall weighted mean of 816 ± 7 ka. These data are statistically indistinguishable from those recently reported for the Australasian tektites from Southeast Asia and Australia (761–816 ka; with a mean weighted age of 803 ± 3 ka). However, considering the compositional and textural differences and the disparity from the presumed impact crater area for Australasian tektites, Darwin Glass is more likely to have resulted from a distinct impact during the same period of time.  相似文献   

20.
Abstract— Australasian microtektites were discovered in Ocean Drilling Program (ODP) Hole 1143A in the central part of the South China Sea. Unmelted ejecta were found associated with the microtektites at this site and with Australasian microtektites in Core SO95–17957–2 and ODP Hole 1144A from the central and northern part of the South China Sea, respectively. A few opaque, irregular, rounded, partly melted particles containing highly fractured mineral inclusions (generally quartz and some K feldspar) and some partially melted mineral grains, in a glassy matrix were also found in the microtektite layer. The unmelted ejecta at all three sites include abundant white, opaque grains consisting of mixtures of quartz, coesite, and stishovite, and abundant rock fragments which also contain coesite and, rarely, stishovite. This is the first time that shock‐metamorphosed rock fragments have been found in the Australasian microtektite layer. The rock fragments have major and trace element contents similar to the Australasian microtektites and tektites, except for higher volatile element contents. Assuming that the Australasian tektites and microtektites were formed from the same target material as the rock fragments, the parent material for the Australasian tektites and microtektites appears to have been a fine‐grained sedimentary deposit. Hole 1144A has the highest abundance of microtektites (number/cm2) of any known Australasian microtektite‐bearing site and may be closer to the source crater than any previously identified Australasian microtektite‐bearing site. A source crater in the vicinity of 22° N and 104° E seems to explain geographic variations in abundance of both the microtektites and the unmelted ejecta the best; however, a region extending NW into southern China and SE into the Gulf of Tonkin explains the geographic variation in abundance of microtektites and unmelted ejecta almost as well. The size of the source crater is estimated to be 43 ± 9 km based on estimated thickness of the ejecta layer at each site and distance from the proposed source. A volcanic ash layer occurs just above the Australasian microtektite layer, which some authors suggest is from a supereruption of the Toba caldera complex. We estimate that deposition of the ash occurred ?800 ka ago and that it is spread over an area of at least 3.7 times 107 km2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号