首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Mn‐Cr systematics in phosphates (sarcopside, graftonite, beusite, galileiite, and johnsomervilleite) in IIIAB iron meteorites were investigated by secondary ion mass spectrometry (SIMS). In most cases, excesses in 53Cr are found and δ53Cr is well correlated with Mn/Cr ratios, suggesting that 53Mn was alive at the time of IIIAB iron formation. The inferred Mn‐Cr “ages” are different for different phosphate minerals. This is presumably due to a combined effect of the slow cooling rates of IIIAB iron meteorites and the difference in the diffusion properties of Cr and Mn in the phosphates. The ages of sarcopside are the same for the IIIAB iron meteorites. Johnsomervilleite shows apparent old ages, probably because of a gain of Cr enriched in 53Cr during the closure process. Apparently, old Mn‐Cr ages reported in previous studies can also be explained in a similar way. Therefore, the IIIAB iron meteorites probably experienced identical thermal histories and thus derived from the core of a parent body. Thermal histories of the parent body of IIIAB iron meteorites that satisfy the Mn‐Cr chronology and metallographic cooling rates were constructed by computer simulation. The thermal history at an early stage (<10 Ma after CAI formation) is well determined, though later history may be more model‐dependent. It is suggested that relative timing of various events in the IIIAB parent body may be estimated with the aid of the thermal history. There is a systematic difference in Mn and Cr concentrations in various minerals (phosphates, sulfide, etc.) among the IIIAB iron meteorites, which seems to be mainly controlled by redox conditions.  相似文献   

2.
Abstract— A new mineral named galileiite, NaFe4(PO4)3, has been found within troilite nodules in iron meteorites of the IIIA and IIIB groups. the mineral is optically positive (ω = 1.72, ω = 1.75), colorless in transmitted light and pale amber in reflected light. Grains of galileiite are very small, generally 10 μm or less; rarely, grains are up to 30 μm. It is associated with Ca-free graftonite (or Ca-free sarcopside), chromite and, occasionally, schreibersite. Johnsomervilleite may occur within troilite nodules in the same meteorite as galileiite, but they have never been observed together in the same troilite nodule. Because of the small sample size, single crystal x-ray work was not successful; however, Gandolfi diffraction measurements were made. The three strongest diffraction peaks are 2.71 Å, 3.01 Å and 4.13 Å. On the basis of its composition and similar diffraction pattern, it is considered to be related to johnsomervilleite, fillowite and chladniite, all of which are rhombohedral and isostructural. Galileiite may also be rhombohedral, but that is yet to be demonstrated.  相似文献   

3.
Abstract— The IIIAB group is the largest of the magmatic iron meteorite groups and consequently is commonly used to test models of asteroid core crystallization. Simple fractional crystallization calculations appear to reproduce the general shape of the elemental trends observed in the IIIAB group when these trends are plotted vs. Ni, as is traditionally done. However, when the elemental trends are examined vs. another element (such as Ge vs. Ir), simple fractional crystallization fails to match a significant portion of the trend, specifically meteorites formed during the final stages of crystallization. Our simple mixing model, which attempts to account for the possibility of inhomogeneities in the molten metallic core, is able to reproduce the entire IIIAB trend observed. This model is a variant of simple fractional crystallization and involves mixing between a zone of liquid involved in the crystallization process and a second zone too far from the crystallizing solid to be actively involved in crystallization. This model does not suggest one unique solution for the method by which an asteroidal core crystallizes; rather it demonstrates that including the effects of mixing in the molten core can account for the observed IIIAB elemental trends, particularly the late-stage crystallizing members, which other models have difficulty explaining.  相似文献   

4.
Abstract– The single‐piece iron meteorite Javorje, with a mass of 4920 g, is the heaviest and largest meteorite found in the territory of Slovenia. The meteorite Javorje is a medium octahedrite with kamacite bandwidth of 0.85 ± 0.26 mm. The bulk composition of Ni (7.83 wt%), Co (0.48 wt%) and trace elements Ga (25 μg/g), Ge (47 μg/g), Ir (7.6 μg/g), As (5.8 μg/g), Au (0.47 μg/g), and Pt (13.4 μg/g) indicates that the meteorite Javorje belongs to the chemical group IIIAB. Mineral and bulk chemical compositions are consistent with other reported group IIIAB meteorites. The presence of numerous rhabdites, carlsbergite, sparse troilite, and chromite and abundance of daubréelites are in accordance with low‐Ni and low‐P IIIAB iron meteorites. The severely weathered surface and secondary weathering products in the interior of the meteorite suggest its high terrestrial age.  相似文献   

5.
Abstract— Instrumental neutron activation analysis (INAA) was used to determine Ni, Co, Cu, Ga, As, Au, W, Re and Ir in taenite lamellae isolated by acid dissolution from eight iron meteorites from groups IA, IIIAB and IVA. Taenite is enriched in Ni, Cu, Ga, As, Au, W, Re and Ir relative to kamacite, whereas taenite is depleted in Co. Taenite/kamacite partition ratios in slowly cooled IAB meteorites are farther from unity than those in rapidly cooled IVA meteorites. Taenite/kamacite partition ratios for Cu, Ir, Au and Co may be sensitive cooling rate indicators.  相似文献   

6.
Abstract— We report data on three new iron meteorites from Northern Chile and propose names. All are unnamed iron meteorites from the meteorite collection at the Universidad de La Serena. For two, the provenance is unknown; for the third, the presumed discovery site is in the countryside east of Iquique. The three meteorites have been analyzed by instrumental neutron activation analysis (INAA) and their structures examined with a binocular microscope. La Serena is a complete 663 g iron, a new member of group IIICD; it is not paired with any other iron. Elqui has a mass of 260 g; two faces are fractures, possibly produced by human actions, but fusion crust appears to be present on some of the remaining surface. It is a hexahedrite and a member of group IIAB, but its composition differs from that of all other Chilean hexahedrites. The third iron, Pozo Almonte, is a medium octahedrite member of group IIIAB, one of the most common meteorite groups. To find out whether it is paired, we assembled a full set of IIIAB iron meteorites from Northern Chile. Our compositional data show that Pozo Almonte is not paired with any other IIIAB iron, and that there are no pairings within the full set with the possible exception of Joel's Iron and Sierra Sandon, which differ only in their contents of Ir, 0.39 and 0.34 μg/g, respectively. However, Buchwald's (1975) structural observations rule out this possible pairing. We find appreciable differences in Cu, As and Au between the previously paired IIIAB irons Chañaral and Ilimaës and conclude that these should not be paired.  相似文献   

7.
Treysa and Delegate have compositions closely similar to those of IIIAB irons but plot above the IIIAB field on Ir‐Au diagrams; for this reason they are designated anomalous members of IIIAB. All refractory siderophiles share this anomaly. Wasson ( 1999 ) interpreted the large spread on IIIAB Ir‐Au diagrams to result from melt‐trapping and generated solid and liquid fractional crystallization tracks; almost all IIIAB irons fall between the tracks. In contrast, Treysa, Delegate, and three other irons (the Treysa quintet) plot beyond the liquid track. Ideal fractional crystallization cannot account for compositions that plot outside the region between the tracks. Possible explanations for the anomalous compositions of the Treysa quintet are that (1) these meteorites did not form in the IIIAB magma or (2) they formed by the mixing of early crystallized solids with a late liquid. The weight of the evidence including cosmic‐ray ages favor the second explanation. Although this explanation can account for positions plotting above the liquid track, it requires special circumstances. The infalling blocks must be assimilated and the resulting melt must crystallize quickly into pockets small enough (<1 m) to allow igneous gradients to be leveled by subsequent diffusion. The Treysa quintet shares the region beyond the liquid track with most main‐group pallasites (PMG), which may have also originated in the IIIAB body. It appears that Treysa, its relatives, and the PMG were formed in one or more impact events that mixed olivine and solid metal formed near the core‐mantle boundary with nearby magma. It is then necessary to cool the melt rapidly; the best way to achieve rapid cooling is by heat exchange with cooler solids. That the Treysa quintet and the PMG can be explained by the same processes operating on late IIIAB magma supports the conclusion that PMG formed on the IIIAB parent asteroid.  相似文献   

8.
A factor analysis has been performed on nickel and trace element data for iron meteorites. The technique shows that the present distribution of these elements is the result of three processes. These can be identified from the elements involved:
  • 1 Ga, Ge, Sb and Zn (condensation and accretion).
  • 2 Ni, Pd, Co and Cu (oxidation and sulphuration).
  • 3 Ir, Au, As, Re, Pt, Os, Ru and Cr (an igneous event).
The distribution of Mo, however, is not readily explicable in terms of these processes. Within the groups IAB and IIAB only one process is required for all elements, but in groups IIIAB and IVA the situation for Ga, Ge and Sb is more complex.  相似文献   

9.
Abstract— Magmatic iron meteorites are generally agreed to represent metal that crystallized in asteroidal cores from a large pool of liquid. Estimates suggest that the metallic liquid contained significant amounts of S and P, both of which are incompatible and exert a strong effect on trace element partitioning. In tandem, S and P are also prone to cause immiscibility between sulfide liquid and P-rich metal liquid. The liquid immiscibility field occupies ~70% of the portion of the Fe-Ni-S-P system in which Fe is the first phase to crystallize. In spite of this, previous fractional crystallization models have taken into account only one liquid phase and have encountered significant discrepancies between the meteorite data and model values for the key elements Ni, Ir, Ga, Ge and Au at even moderate degrees of fractionation. For the first time, a model for trace element partitioning between immiscible liquids in the Fe-Ni-S-P system is presented in order to assess the effects on fractionation in magmatic iron meteorite groups. The onset of liquid immiscibility causes a significant change in the enrichment patterns of S and P in both liquids; so elements with contrasting partitioning behavior will show trends deviating clearly from one-liquid trends. A trend recorded in the solid metal will either be a smooth curve as long as equilibrium is maintained between the two liquids or the trend may diverge into a field limited by two extreme curves depending on the degree of disequilibrium. Bulk initial liquids for most magmatic groups have S/P (wt%) ratios well below 25. In these cases and due to the constitution of the Fe-Ni-S-P system, most of the metal will crystallize from the rapidly decreasing volume of metal liquid and only a subordinate amount from the sulfide liquid. Because of the strong extraction of P into the metal liquid, P will have a much larger influence on trace element partitioning than a low initial P content might suggest. My model calculations suggest that liquid immiscibility played a significant role during the solidification of the IIIAB parent body's core. The two-liquid model reproduces the IIIAB trends more closely than previous one-liquid models and can account for: (a) the general widening of the IIIAB trend with increasing Ni and decreasing Ir contents, (b) the occurrence of high-Ni members that are not strongly depleted in Ir, Ga and Ge; and (c) an upper limit at ~11 wt% Ni where the metal liquid was almost consumed.  相似文献   

10.
Abstract— We describe an analytical technique for measurements of Fe, Ni, Co, Mo, Ru, Rh, W, Re, Os, Ir, Pt, and Au in bulk samples of iron meteorites. The technique involves EPMA (Fe, Ni, Co) and LA‐ICP‐MS analyses of individual phases of iron meteorites, followed by calculation of bulk compositions based on the abundances of these phases. We report, for the first time, a consistent set of concentrations of Mo, Ru, Rh, Pd, W, Re, Os, Ir, Pt, and Au in the iron meteorites Arispe, Bennett County, Grant, Cape of Good Hope, Cape York, Carbo, Chinga, Coahuila, Duchesne, Gibeon, Henbury, Mundrabilla, Negrillos, Odessa, Sikhote‐Alin, and Toluca and the Divnoe primitive achondrite. The comparison of our LA‐ICP‐MS data for a number of iron meteorites with high‐precision isotope dilution and INAA data demonstrates the good precision and accuracy of our technique. The narrow ranges of variations of Mo and Pd concentrations within individual groups of iron meteorites suggest that these elements can provide important insights into the evolution of parent bodies of iron meteorites. Under certain assumptions, the Mo concentrations can be used to estimate mass fractions of the metal‐sulfide cores in the parent bodies of iron meteorites. It appears that a range of Pd variations within a group of iron meteorites can serve as a useful indicator of S content in the core of its parent body.  相似文献   

11.
An assemblage with FeNi metal, troilite, Fe‐Mn‐Na phosphate, and Al‐free chromite was identified in the metal‐troilite eutectic nodules in the shock‐produced chondritic melt of the Yanzhuang H6 meteorite. Electron microprobe and Raman spectroscopic analyses show that a few phosphate globules have the composition of Na‐bearing graftonite (Fe,Mn,Na)3(PO4)2, whereas most others correspond to Mn‐bearing galileiite Na(Fe,Mn)4(PO4)3 and a possible new phosphate phase of Na2(Fe,Mn)17(PO4)12 composition. The Yanzhuang meteorite was shocked to a peak pressure of 50 GPa and a peak temperature of approximately 2000 °C. All minerals were melted after pressure release to form a chondritic melt due to very high postshock heat that brought the chondrite material above its liquidus. The volatile elements P and Na released from whitlockite and plagioclase along with elements Cr and Mn released from chromite are concentrated into the shock‐produced Fe‐Ni‐S‐O melt at high temperatures. During cooling, microcrystalline olivine and pyroxene first crystallized from the chondritic melt, metal‐troilite eutectic intergrowths, and silicate melt glass finally solidified at about 950–1000 °C. On the other hand, P, Mn, and Na in the Fe‐Ni‐S‐O melt combined with Fe and crystallized as Fe‐Mn‐Na phosphates within troilite, while Cr combined with Fe and crystallized as Al‐free chromite also within troilite.  相似文献   

12.
13.
Abstract— The (compositionally) closely related iron meteorite groups IIIE and IIIAB were originally separated based on differences in kamacite bandwidth, the presence of carbides only in the IIIE group, and marginally resolvable differences on the Ga‐Ni and Ge‐Ni diagrams. A total of six IIIE iron meteorites have been analyzed for C and N using secondary ion mass spectrometry, and three of these have also been analyzed for N, Ne, and Ar by stepped combustion. We show that these groups cannot be resolved on the basis of N abundances or isotopic compositions but that they are marginally different in C‐isotopic composition and nitride occurrence. Cosmic‐ray exposure age distributions of the IIIE and IIIAB iron meteorites seem to be significantly different. There is a significant N‐isotopic range among the IIIE iron meteorites. A negative correlation between δ15N and N concentration suggests that the increase in s?15N resulted from diffusional loss of N.  相似文献   

14.
Abstract— Approximately 275 mineral species have been identified in meteorites, reflecting diverse redox environments, and, in some cases, unusual nebular formation conditions. Anhydrous ordinary, carbonaceous and R chondrites contain major olivine, pyroxene and plagioclase; major opaque phases include metallic Fe-Ni, troilite and chromite. Primitive achondrites are mineralogically similar. The highly reduced enstatite chondrites and achondrites contain major enstatite, plagioclase, free silica and kamacite as well as nitrides, a silicide and Ca-, Mg-, Mn-, Na-, Cr-, K- and Ti-rich sulfides. Aqueously altered carbonaceous chondrites contain major amounts of hydrous phyllosilicates, complex organic compounds, magnetite, various sulfates and sulfides, and carbonates. In addition to kamacite and taenite, iron meteorites contain carbides, elemental C, nitrides, phosphates, phosphides, chromite and sulfides. Silicate inclusions in IAB/IIICD and IIE iron meteorites consist of mafic silicates, plagioclase and various sulfides, oxides and phosphates. Eucrites, howardites and diogenites have basaltic to orthopyroxenitic compositions and consist of major pyroxene and calcic plagioclase and several accessory oxides. Ureilites are made up mainly of calcic, chromian olivine and low-Ca clinopyroxene embedded in a carbonaceous matrix; accessory phases include the C polymorphs graphite, diamond, lonsdaleite and chaoite as well as metallic Fe-Ni, troilite and halides. Angrites are achondrites rich in fassaitic pyroxene (i.e., Al-Ti diopside); minor olivine with included magnesian kirschsteinite is also present. Martian meteorites comprise basalts, lherzolites, a dunite and an orthopyroxenite. Major phases include various pyroxenes and olivine; minor to accessory phases include various sulfides, magnetite, chromite and Ca-phosphates. Lunar meteorites comprise mare basalts with major augite and calcic plagioclase and anorthositic breccias with major calcic plagioclase. Several meteoritic phases were formed by shock metamorphism. Martensite (α2-Fe,Ni) has a distorted body-centered-cubic structure and formed by a shear transformation from taenite during shock reheating and rapid cooling. The C polymorphs diamond, lonsdaleite and chaoite formed by shock from graphite. Suessite formed in the North Haig ureilite by reduction of Fe and Si (possibly from olivine) via reaction with carbonaceous matrix material. Ringwoodite, the spinel form of (Mg,Fe)2SiO4, and majorite, a polymorph of (Mg,Fe)SiO3 with the garnet structure, formed inside shock veins in highly shocked ordinary chondrites. Secondary minerals in meteorite finds that formed during terrestrial weathering include oxides and hydroxides formed directly from metallic Fe-Ni by oxidation, phosphates formed by the alteration of schreibersite, and sulfates formed by alteration of troilite.  相似文献   

15.
Abstract The Manitouwabing meteorite whose trace constituents have not been previously quantified was analysed for Au, As, Ga, Ge, Ir, Ni, Os, Pd, Pt, Rh and Ru. Our data confirm that it belongs to subgroup IIIA of the IIIAB group and on the basis of the much higher concentrations of As, Ir, Os, Pt, Rh and Ru, it is not paired with Madoc as had previously been proposed.  相似文献   

16.
Abstract— Jones (1994) demonstrated that fractional crystallization of IIIAB iron meteorites may result in a log Au vs. log Ni plot of constant slope even though kAu and kNi change. Jones' example is a special case, however, and does not necessarily describe behavior by other elements or in other metallic magmas.  相似文献   

17.
We combined high‐resolution and space‐resolved elemental distribution with investigations of magnetic minerals across Fe,Ni‐alloy and troilite interfaces for two nonmagmatic (Morasko and Mundrabilla) IAB group iron meteorites and an octahedrite found in 1993 in Coahuila/Mexico (Coahuila II) preliminarily classified on Ir and Au content as IIAB group. The aim of this study was to elucidate the crystallization and thermal history using gradients of the siderophile elements Ni, Co, Ge, and Ga and the chalcophile elements Cr, Cu, and Se with a focus on magnetic minerals. The Morasko and Coahuila II meteorite show a several mm‐thick carbon‐ and phosphorous‐rich transition zone between Fe,Ni‐alloy and troilite, which is characterized by magnetic cohenite and nonmagnetic or magnetic schreibersite. At Morasko, these phases have a characteristic trace element composition with Mo enriched in cohenite. In both Morasko and Coahuila II, Ni is enriched in schreibersite. The minerals have crystallized from immiscible melts, either by fractional crystallization and C‐ and P‐enrichment in the melt, or by partial melting at temperatures slightly above the eutectic point. During crystallization of Mundrabilla, the field of immiscibility was not reached. Independent of meteorite group and cooling history, the magnetic mineralogy (daubreelite, cohenite and/or schreibersite, magnetite) is very similar to the troilite (and transition zone) for all three investigated iron meteorites. If these minerals can be separated from the metal, they might provide important information about the early solar system magnetic field. Magnetite is interpreted as a partial melting or a terrestrial weathering product of the Fe,Ni‐alloy under oxidizing conditions.  相似文献   

18.
The Whitecourt meteorite impact crater, Alberta, Canada is a rare example of a well‐preserved small impact structure, with which thousands of meteorite fragments are associated. As such, this crater represents a unique opportunity to investigate the effect of a low‐energy impact event on an impacting iron bolide. Excellent documentation of meteorite fragment locations and characteristics has generated a detailed distribution map of both shrapnel and regmaglypted meteorite types. The meteorites' distribution, and internal and external characteristics support a low‐altitude breakup of the impactor which caused atmospherically ablated (regmaglypted) meteorites to fall close to the crater and avoid impact‐related deformation. In contrast, shrapnel fragments sustained deformation at macro‐ and microscales resulting from the catastrophic disruption of the impactor. The impactor was significantly fragmented along pre‐existing planes of weakness, including kamacite lamellae and inclusions, resulting in a bias toward low‐mass (<100 g) fragments. Meteorite mineralogy was investigated and the accessory minerals were found to be dominated by sulfides and phosphides with rare carlsbergite, consistent with other low‐Ni IIIAB iron meteorites. Considerations of the total mass of meteoritic material recovered at the site relative to the probable fraction of the impactor that was preserved based on modeling suggests that the crater was formed by a higher velocity, lower mass impactor than previously inferred.  相似文献   

19.
Two new iron meteorites from Western Australia are described: Cosmo Newberry — a 2.156 kg meteorite of unusual spiky shape, and Gnowangerup — a 33.6 kg pear-shaped meteorite. X-ray fluorescence spectrometry shows that Cosmo Newberry can be classified in Group IIA, whilst Gnowangerup is a member of Group IIIAB. Neither iron can be associated with any other Western Australian meteorite.  相似文献   

20.
Two individual specimens (total weight 15.7 kg) of a new medium octahedrite were found near Ellicott, El Paso County, Colorado. The find is only 1.2 km from the find (in 1890) of the Franceville medium octahedrite. Ellicott and Franceville are distinct meteorites, the latter exhibiting pronounced differences in shock features, kamacite band width, and Ni, Ga, Ge, and Ir contents. Ellicott is a group IA iron while Franceville is in group IIIA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号