首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Space weathering is an important surface process that occurs on the Moon and other airless bodies, especially those that have no magnetic field. The optical effects of the Moon's space weathering have largely been investigated in the laboratory for lunar samples and lunar analogues. However, duplication of pristine regolith on Earth is not possible. Here we report on space weathering from the unique perspective of the "Yutu" rover, which was part of the Chang'e-3(CE-3) mission, building on our previous work.Measurement of the visually undisturbed uppermost regolith as well as locations that have been affected by rocket exhaust from the spacecraft by the Visible-Near Infrared Spectrometer(VNIS) revealed that the returned samples provide biased information about the pristine lunar regolith. The uppermost surficial regolith is much more weathered than the regolith immediately below, and the finest fraction is rich in space weathered products. These materials are very dark and attenuated throughout the visible and near-infrared(VNIR) wavelengths, hence reducing the reflectance and masking the absorption features. The effects on the spectral slope caused by space weathering are wavelength-dependent: the visible and near-infrared continuum slope(VNCS) increases while the visible slope(VS) decreases. In the visible wavelengths, the optical effects of space weathering and Ti O_2 are identical: both reduce albedo and blue the spectra. This suggests that a new Ti O_2 abundance algorithm is needed. Optical maturity indices are related to composition and hence only locally meaningful. Since optical remote sensing can only sense the uppermost few microns of regolith and since this surface tends to be very weathered, the interpretation of surface composition using optical remote sensing data needs to be carefully evaluated. Sampling the uppermost surface is suggested.  相似文献   

2.
Abstract— The lunar soil characterization consortium, a group of lunar‐sample and remote‐sensing scientists, has undertaken the extensive task of characterization of the finest fractions of lunar soils, with respect to their mineralogical and chemical makeup. These compositional data form the basis for integration and modeling with the reflectance spectra of these same soil fractions. This endeavor is aimed at deciphering the effects of space weathering of soils on airless bodies with quantification of the links between remotely sensed reflectance spectra and composition. A beneficial byproduct is an understanding of the complexities involved in the formation of lunar soil. Several significant findings have been documented in the study of the <45 μm size fractions of selected Apollo 17 mare soils. As grain size decreases, the abundance of agglutinitic glass increases, as does the plagioclase, whereas the other minerals decrease. The composition of the agglutinitic glass is relatively constant for all size fractions, being more feldspathic than any of the bulk compositions; notably, TiO2 is substantially depleted in the agglutinitic glass. However, as grain size decreases, the bulk composition of each size fraction continuously changes, becoming more Al‐rich and Fe‐poor, and approaches the composition of the agglutinitic glasses. Between the smallest grain sizes (10–20 and < 10 μm), the IS/FeO values (amount of total iron present as nanophase Fe0) increase by greater than 100% (>2x), whereas the abundance of agglutinitic glass increases by only 10–15%. This is evidence for a large contribution from surface‐correlated nanophase Fe0 to the IS/FeO values, particularly in the <10 μm size fraction. The surface nanophase Fe0 is present largely as vapor‐deposited patinas on the surfaces of almost every particle of the mature soils, and to a lesser degree for the immature soils (Keller et al., 1999a). It is reasoned that the vapor‐deposited patinas may have far greater effects upon reflectance spectra of mare soils than the agglutinitic Fe0.  相似文献   

3.
Abstract— Using new techniques to examine the products of space weathering of lunar soils, we demonstrate that nanophase reduced iron (npFe0) is produced on the surface of grains by a combination of vapor deposition and irradiation effects. The optical properties of soils (both measured and modeled) are shown to be highly dependent on the cumulative amount of npFe0, which varies with different starting materials and the energetics of different parts of the solar system. The measured properties of intermediate albedo asteroids, the abundant S‐type asteroids in particular, are shown to directly mimic the effects predicted for small amounts of npFe0 on grains of an ordinary chondrite regolith. This measurement and characterization of space weathering products seems to remove a final obstacle hindering a link between the abundant ordinary chondrite meteorites and common asteroids.  相似文献   

4.
Gravity results are displayed as a band of contours ≈60 km wide spanning 140° of frontside longitude. The contours traverse Grimaldi, Mare Procellarum, Copernicus, Apennines, Mare Serenitatis, Littrow, and Mare Crisium. Redundant gravity area previously mapped by Apollos 14, 15, 16, and the Apollo subsatellites are tabulated and show excellent consistency. Modeling of Grimaldi reveals a loading more than the known mascons and thus makes Grimaldi the smallest known mascon feature. Copernicus' gravity profile is best modeled with a mass defect for the basin and a mass excess for the rim. Mare Serenitatis has an irregular mass distribution with central gravity highs shifted approximately 3° in latitude.  相似文献   

5.
This is the first review of 3 Apollo experiments, which made the only direct measurements of dust on the lunar surface: (i) minimalist matchbox-sized 270 g Dust Detector Experiments (DDEs) of Apollo 11, 12, 14 and 15, produced 30 million Lunar Day measurements 21 July 1969–30 September, 1977; (ii) Thermal Degradation Samples (TDS) of Apollo 14, sprinkled with dust, photographed, taken back to Earth into quarantine and lost; and (iii) the 7.5 kg Lunar Ejecta and Meteoroids (LEAM) experiment of Apollo 17, whose original tapes and plots are lost. LEAM, designed to measure rare impacts of cosmic dust, registered scores of events each lunation most frequently around sunrise and sunset. LEAM data are accepted as caused by heavily-charged particles of lunar dust at speeds of <100 m/s, stimulating theoretical models of transporting lunar dust and adding significant motivation for returning to the Moon. New analyses here show some raw data are sporadic bursts of 1, 2, 3 or more events within time bubbles smaller than 0.6 s, not predicted by theoretical dust models but consistent with noise bits caused by electromagnetic interference (EMI) from switching of large currents in the Apollo 17 Lunar Surface Experiment Package (ALSEP), as occurred in pre-flight LEAM-acceptance tests. On the Moon switching is most common around sunrise and sunset in a dozen heavy-duty heaters essential for operational survival during 350 h of lunar night temperatures of minus 170 °C. Another four otherwise unexplained features of LEAM data are consistent with the “noise bits” hypothesis. Discoveries with DDE and TDS reported in 1970 and 1971, though overlooked, and extensive DDE discoveries in 2009 revealed strengths of adhesive and cohesive forces of lunar dust. Rocket exhaust gases during Lunar Module (LM) ascent caused dust and debris to (i) contaminate instruments 17 m distant (Apollo 11) as expected, and (ii) unexpectedly cleanse Apollo hardware 130 m (Apollo 12) and 180 m (Apollo 14) from LM. TDS photos uniquely document in situ cohesion of dust particles and their adhesion to 12 different test surfaces. This review finds the entire TDS experiment was contaminated, being inside the aura of outgassing from astronaut Alan Shepard's spacesuit, and applies an unprecedented caveat to all TDS discoveries. Published and further analyses of Apollo DDE, TDS and LEAM measurements can provide evidence-based guidance to theoretical analyses and to management and mitigation of major problems from sticky dust, and thus help optimise future lunar and asteroid missions, manned and robotic.  相似文献   

6.
E. Schneider  F. Hörz 《Icarus》1974,22(4):459-473
Approximately 6000 microcrates were investigated using binocular microscope techniques on Apollo 17 rocks 70215, 72215, 72235, 72395, 72435, 73216, 73218, 73275, 74275, 76135, 76136 and 79155. The crater populations observed have identical characteristics to those obtained from previous missions.Special emphasis was placed on assessing the influence of target properties on the observable crater populations. Although these properties cannot be quantitatively evaluated at present, the empirical results indicate that crater populations on glass, breccia, and crystalline rock surfaces may differ fundamentally. As a consequence, lunar surface exposure ages of individual rocks based on micrometeoroid craters may be subject to criticism.  相似文献   

7.
Nine U-Th-Pb whole-rock analyses of selected brecciated materials from sample 72215 and one analysis of a pigeonite basalt clast from 72275 are presented. Both samples are from Boulder 1, Apollo 17. These data supplement previous Boulder 1 U-Th-Pb analyses of samples 72275 and 72255. U and Th concentrations indicate that most of the samples contain a moderate to large KREEP component. Samples containing the least KREEP are a noritic clast (72255,49; Civet Cat clast) and an anorthositic clast (72275,117). Evidence for the migration of Pb from Pb-rich matrix material into relatively Pb-poor clasts is presented for two clasts. Most of the Boulder 1 data define a linear trend that intersects concordia at ~ 3.9 and 4.4 b.y. when plotted on a U-Pb concordia diagram. The presence of one anorthositic clast distinctly off this trend indicates that a simple two-stage U-Pb evolution history is inadequate to explain all the data. Accordingly physical significance is only attached to the lower concordia intercept age of 3.9–4.0 b.y. The older concordia intercept age of ~ 4.4 b.y. is interpreted to reflect an averaging of events both older and younger than 4.4 b.y. The data suggest that significant differentiation and/or metamorphism occurred ~ 4.2 b.y. ago. The age of this event, however, is not accurately defined by these data.  相似文献   

8.
The thermal emission of the lunar surface has been mapped by an infrared scanner from lunar orbit. Samples from approximately 2.5 × 105 scans reveal the full range of lunar temperatures from 80 K to 400 K. The temperature resolution was 1 K with about ± 2 K absolute precision. Spatial resolution was approximately 2 km over most of the horizon-to-horizon scan. The total mapped area amounted to approximately 30% of the lunar surface. The data currently available confirms the large population of nighttime thermal anomalies in western Oceanus Procellarum predicted by Earthbased observations. Most of these ‘hot spots’ are associated with fresh impact features or boulder fields. Also seen in the data are ‘cold spots’ where  相似文献   

9.
The new US Vision for Space Exploration is briefly described, with particular emphasis on the place of lunar exploration. The value of humans in the exploration of the Moon is discussed, and it is argued that people offer significant advantages over robots for the purposes of scientific exploration. The Vision provides a new rationale for space activities, one aimed at both broadening our knowledge base and, in the longer term, of increasing prosperity by providing access to the material and energy resources of the Solar System.  相似文献   

10.
Lunar position differences between thirteen lunar craters in Mare Serenitatis were computed from VHF radar-imagery obtained by the Lunar Sounder instrument flown on the Apollo 17 Command Module. The radar-derived position differences agree with those obtained by conventional photogrammetric reductions of Apollo metric photography. This demonstrates the feasibility of using the Apollo Lunar Sounder data to determine the positions of lunar features along the Apollo 17 orbital tracks. This will be particularly useful for western limb and farside areas, where no Apollo metric camera pictures are available.This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Administration.  相似文献   

11.
Boulder 1, Station 2, Apollo 17 is a stratified boulder containing dark clasts and dark-rimmed light clasts set in a light-gray friable matrix. The gray to black clasts (GCBx and BCBx) are multigenerational, competent, high-grade metamorphic, and partially melted breccias. They contain a diverse suite of lithic clasts which are mainly ANT varieties, but include granites, basaltic-textured olivine basalts, troctolitic and spinel troctolitic basalts, and unusual lithologies such as KREEP norite, ilmenite (KREEP) microgabbro, and the Civet Cat norite, which is believed to be a plutonic differentiate. The GCBxs and BCBxs are variable in composition, averaging a moderately KREEPy olivine norite. The matrix consists of mineral fragments derived from the observed lithologies plus variable amounts of a component, unobserved as a clast-type, that approximates a KREEP basalt in composition, as well as mineral fragments of unknown derivation. The high-temperature GCBxs cooled substantially before their incorporation into the friable matrix of Boulder 1. The light friable matrix (LFBx) is texturally distinct from the competent breccia clasts and, apart from the abundant ANT clasts, contains clasts of a KREEPy basalt that is not observed in the competent breccias. The LFBx lacks such lithologies as the granites and the Civet Cat norite observed in the competent breccias and in detail is a distinct chemical as well as textural entity. We interpret the LFBx matrix as Serenitatis ejecta deposited in the South Massif, and the GCBx clasts as remnants of an ejecta blanket produced by an earlier impact. The source terrain for the Serenitatis impact consisted of the competent breccias, crustal ANT lithologies, and the KREEPy basalts, attesting to substantial lunar activity prior to the impact. The age of the older breccias suggests that the Serenitatis event is younger than 4.01±0.03 b.y.  相似文献   

12.
Abstract— Characteristics of the regolith of Cayley plains as sampled at the Apollo 16 lunar landing site are reviewed and new compositional data are presented for samples of <1 mm fines (“soils”) and 1–2 mm regolith particles. As a means of determining which of the many primary (igneous) and secondary (crystalline breccias) lithologic components that have been identified in the soil are volumetrically important and providing an estimate of their relative abundances, more than 3 × 106 combinations of components representing nearly every lithology that has been observed in the Apollo 16 regolith were systematically tested to determine which combinations best account for the composition of the soils. Conclusions drawn from the modeling include the following. At the site, mature soil from the Cayley plains consists of 64.5% ± 2.7% components representing “prebasin” materials: anorthosites, feldspathic breccias, and a small amount (2.6% ± 1.5% of total soil) of nonmare, mafic plutonic rocks, mostly gabbronorites. On average, these components are highly feldspathic, with average concentrations of 31–32% Al2O3 and 2–3% FeO and a molar Mg/(Mg + Fe) ratio of 0.68. The remaining 36% of the regolith is syn- and postbasin material: 28.8% ± 2.4% mafic impact-melt breccias (MIMBs, i.e., “LKFM” and “VHA basalts”) created at the time of basin formation, 6.0% ± 1.4% mare-derived material (impact and volcanic glass, crystalline basalt) with an average TiO2 concentration of 2.4%, and 1% postbasin meteoritic material. The MIMBs are the principal (80–90%) carrier of incompatible trace elements (rare earths, Th, etc.) and the carrier of about one-half of the siderophile elements and elements associated with mafic mineral phases (Fe, Mg, Mn, Cr, Sc). Most (71%) of the Fe in the present regolith derives from syn- and postbasin sources (MIMBs, mare-derived material, and meteorites). Thus, although the bulk composition of the Apollo 16 regolith is nominally that of noritic anorthosite, the noritic part (the MIMBs) and the anorthositic part (the prebasin components) are largely unrelated. There is compositional evidence that 3–4% of the soil is Th-rich material such as that occurring at the Apollo 14 site, and one fragment of this type was found among the small regolith particles studied here. If regolith such as that represented by the Apollo 16 ancient regolith breccias was a protolith of the present regolith, such regolith cannot exceed ~71% of the present regolith; the rest must be material added or redistributed since closure of the ancient regolith breccias. The postclosure material includes the mare-derived material and the Apollo-14-like component. Compositions of all mature surface soils from Apollo 16, even those collected 4 km apart on the Cayley plains, are very similar, which is in stark contrast to the wide compositional range of the lithologies of which the soil is composed. This uniformity indicates that the ratio of MIMBs to feldspathic prebasin components is not highly variable in the megaregolith over distances of a few kilometers, that there are no large, subsurface concentrations of “pure” mafic impact-melt breccia, and that the intimate mixing is inherent to the Cayley plains at a gross scale. Thus, the mixing of mafic impact-melt breccias and feldspathic prebasin components must have occurred during formation and deposition of the Cayley plains; such uniformity could not have been achieved by small postdeposition impacts into a stratified megaregolith. Using this conclusion as one constraint, and the known distribution of Th on the lunar surface as another, and the assumption that the Imbrium impact is primarily responsible for formation of the Cayley plains, arguments are presented that the Apollo 16 MIMBs derive from the Imbrium region, and, consequently, that one-fourth of the Apollo 16 regolith is primary Imbrium ejecta in the form of mafic impact-melt breccias.  相似文献   

13.
Space weathering and the interpretation of asteroid reflectance spectra   总被引:1,自引:0,他引:1  
Michael J. Gaffey 《Icarus》2010,209(2):564-574
Lunar-style space weathering is well understood, but cannot be extended to asteroids in general. The two best studied Asteroids (433 Eros and 243 Ida) exhibit quite different space weathering styles, and neither exhibits lunar-style space weathering. It must be concluded that at this time the diversity and mechanisms of asteroid space weathering are poorly understood. This introduces a significant unconstrained variable into the problem of analyzing asteroid spectral data. The sensitivity of asteroid surface material characterizations to space weathering effects - whatever their nature - is strongly dependent upon the choice of remote sensing methodology. The effects of space weathering on some methodologies such as curve matching are potentially devastating and at the present time essentially unmitigated. On other methodologies such as parametric analysis (e.g., analyses based on band centers and band area ratios) the effects are minimal. By choosing the appropriate methodology(ies) applied to high quality spectral data, robust characterizations of asteroid surface mineralogy can be obtained almost irrespective of space weathering. This permits sophisticated assessments of the geologic history of the asteroid parent bodies and of their relationships to the meteorites. Investigations of the diversity of space weathering processes on asteroid surfaces should be a fruitful area for future efforts.  相似文献   

14.
The surprisingly low S/Si ratio of Asteroid 433 Eros measured by the NEAR Shoemaker spacecraft probably reflects a surface depletion rather than a bulk property of the asteroid. The sulfur X-ray signal originates at a depth <10 μm in the regolith. The most efficient process for vaporizing minerals at the heliocentric distance of Eros are sputtering by solar wind ions and hypervelocity impacts. These are the same processes that account for the changes in optical properties of asteroids attributed to “space weathering” of lunar surface materials, although the relative importance of sputtering and impacts need not be the same for the Moon and asteroids. Troilite, FeS, which is the most important sulfide mineral in meteorites, and presumably on S-type asteroids like Eros, can be vaporized by much less energy than other major minerals, and will therefore be preferentially lost. Within 106 years either process can remove sulfide from the top 10-100 μm of regolith. Sulfur will be lost into space and some sulfur will migrate to deeper regolith layers. We also consider other possible mechanisms of surficial sulfur depletion, such as mineral segregation in the regolith and perhaps even incipient melting. Although we consider solar wind sputtering the most likely cause of the sulfur depletion on Eros, we cannot entirely rule out other processes as causes of the sulfur deficiency. Laboratory simulations of the relevant processes can address some of the open questions. Simulations will have to be carried out in such a way that potential sulfur loss processes as well as resurfacing can be studied simultaneously, requiring a large and complex environmental chamber.  相似文献   

15.
The Apollo 17 ALSE VHF radar provided imagery and continuous profiling data around the Moon during two revolutions. The imagery data are used to derive depth and diameter measurements of small craters (diameter <30 km). The profiling data are used to study the topography of a few large craters: the bulged floors in Hevelius, Neper, and Aitken; central peaks in Neper and Buisson; and the depressed floor of Maraldi. The same data provided accurate (better than 25 m) profiles of Mare Crisium and Mare Serenitatis.  相似文献   

16.
17.
The ion-sputtering (IS) process is active in many planetary environments in the solar system where plasma precipitates directly on the surface (for instance, Mercury, Moon and Europa). In particular, solar wind sputtering is one of the most important agents for the surface erosion of a near-Earth object (NEO), acting together with other surface release processes, such as photon stimulated desorption (PSD), thermal desorption (TD) and micrometeoroid impact vaporization (MIV). The energy distribution of the IS-released neutrals peaks at a few eVs and extends up to hundreds of eVs. Since all other release processes produce particles of lower energies, the presence of neutral atoms in the energy range above 10 eV and below a few keVs (sputtered high-energy atoms (SHEA)) identifies the IS process. SHEA easily escape from the NEO, due to NEO's extremely weak gravity. Detection and analysis of SHEA will give important information on surface-loss processes as well as on surface elemental composition. The investigation of the active release processes, as a function of the external conditions and the NEO surface properties, is crucial for obtaining a clear view of the body's present loss rate as well as for getting clues on its evolution, which depends significantly on space weather.In this work, an attempt to analyze processes that take place on the surface of these small airless bodies, as a result of their exposure to the space environment, has been realized. For this reason, a new space weathering model (space weathering on NEO-SPAWN) is presented. Moreover, an instrument concept of a neutral-particle analyzer specifically designed for the measurement of neutral density and the detection of SHEA from a NEO is proposed.  相似文献   

18.
Analysis of terrain in the Apollo 16 Descartes landing region shows a series of features that form a stratigraphic sequence which dominates the history and petrogenesis at the site. An ancient 150 km diam crater centered on the Apollo 16 site is one of the earliest recognizable major structures. Nectaris ejecta was concentrated in a regional low at the base of the back slope of the Nectaris basin to form the Descartes Mountains. Subsequently, a 60 km diam crater formed in the Descartes Mountains centered about 25 km to the west of the site. This crater dominates the geology and petrogenetic history of the site. Stone and Smoky Mountains represent the degraded terraced crater walls, and the dark matrix breccias and metaclastic rocks derived from North and South Ray craters represent floor fallback breccias from this cratering event. Subsequent major cratering occurred in the region (Dollond B, etc.) prior to the Imbrium and Orientale basin-forming events but had minor effect on the site. Based on this interpretation, contributions from Imbrium at the Apollo 16 site are minor and those from Orientale negligible. The petrology of the Apollo 16 rocks supports this stratigraphic and process model of a local crater-dominated history for this region.  相似文献   

19.
Lunar mare basalts provide insights into the compositional diversity of the Moon's interior. Basalt fragments from the lunar regolith can potentially sample lava flows from regions of the Moon not previously visited, thus, increasing our understanding of lunar geological evolution. As part of a study of basaltic diversity at the Apollo 12 landing site, detailed petrological and geochemical data are provided here for 13 basaltic chips. In addition to bulk chemistry, we have analyzed the major, minor, and trace element chemistry of mineral phases which highlight differences between basalt groups. Where samples contain olivine, the equilibrium parent melt magnesium number (Mg#; atomic Mg/[Mg + Fe]) can be calculated to estimate parent melt composition. Ilmenite and plagioclase chemistry can also determine differences between basalt groups. We conclude that samples of approximately 1–2 mm in size can be categorized provided that appropriate mineral phases (olivine, plagioclase, and ilmenite) are present. Where samples are fine‐grained (grain size <0.3 mm), a “paired samples t‐test” can provide a statistical comparison between a particular sample and known lunar basalts. Of the fragments analyzed here, three are found to belong to each of the previously identified olivine and ilmenite basalt suites, four to the pigeonite basalt suite, one is an olivine cumulate, and two could not be categorized because of their coarse grain sizes and lack of appropriate mineral phases. Our approach introduces methods that can be used to investigate small sample sizes (i.e., fines) from future sample return missions to investigate lava flow diversity and petrological significance.  相似文献   

20.
Abstract— We present combined multi‐spectral imager (MSI) (0.95 μm) and near‐infrared spectrometer (NIS) (0.8–2.4 μm) observations of Psyche crater on S‐type asteroid 433 Eros obtained by the Near‐Earth Asteroid Rendezvous (NEAR)—Shoemaker spacecraft. At 5.3 km in diameter, Psyche is one of the largest craters on Eros which exhibit distinctive brightness patterns consistent with downslope motion of dark regolith material overlying a substrate of brighter material. At spatial scales of 620 m/ spectrum, Psyche crater wall materials exhibit albedo contrasts of 32–40% at 0.946 μm. Associated spectral variations occur at a much lower level of 4–8% (±2–4%). We report results of scattering model and lunar analogy investigations into several possible causes for these albedo and spectral trends: grain size differences, olivine, pyroxene, and troilite variations, and optical surface maturation. We find that the albedo contrasts in Psyche crater are not consistent with a cause due solely to variations in grain size, olivine, pyroxene or lunar‐like optical maturation. A grain size change sufficient to explain the observed albedo contrasts would result in strong color variations that are not observed. Olivine and pyroxene variations would produce strong band‐correlated variations that are not observed. A simple lunar‐like optical maturation effect would produce strong reddening that is not observed. The contrasts and associated spectral variation trends are most consistent with a combination of enhanced troilite (a dark spectrally neutral component simulating optical effects of shock) and lunar‐like optical maturation. These results suggest that space weathering processes may affect the spectral properties of Eros materials, causing surface exposures to differ optically from subsurface bedrock. However, there are significant spectral differences between Eros' proposed analog meteorites (ordinary chondrites and/or primitive achondrites), and Eros' freshest exposures of subsurface bright materials. After accounting for all differences in the measurement units of our reflectance comparisons, we have found that the bright materials on Eros have reflectance values at 0.946 μm consistent with meteorites, but spectral continua that are much redder than meteorites from 1.5 to 2.4 μm. Most importantly, we calculate that average Eros surface materials are 30–40% darker than meteorites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号