首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The discovery of 34 new stony meteorites is reported from those areas of the Nullarbor Region, Western Australia named after Mundrabilla, Forrest, Reid and Deakin sidings on the Trans Australian Railway line. The recoveries include 15 H-, and 15 L-group equilibrated (types 4–6) ordinary chondrites, two distinct H3 chondrites (Mundrabilla 003 and Forrest 003), a genomict H-group chondrite breccia (Reid 011) comprising types 3–6, and one structurally anomalous chondrite (Deakin 001). Seventy-eight distinct meteorites are now known from the region.  相似文献   

2.
Abstract— The Rumuruti meteorite shower fell in Rumuruti, Kenya, on 1934 January 28 at 10:43 p.m. Rumuruti is an olivine-rich chondritic breccia with light-dark structure. Based on the coexistence of highly recrystallized fragments and unequilibrated components, Rumuruti is classified as a type 3–6 chondrite breccia. The most abundant phase of Rumuruti is olivine (mostly Fa~39) with about 70 vol%. Feldspar (~14 vol%; mainly plagioclase), Ca-pyroxene (5 vol%), pyrrhotite (4.4 vol%), and pentlandite (3.6 vol%) are major constituents. All other phases have abundances below 1 vol%, including low-Ca pyroxene, chrome spinels, phosphates (chlorapatite and whitlockite), chalcopyrite, ilmenite, tridymite, Ni-rich and Ge-containing metals, kamacite, and various particles enriched in noble metals like Pt, Ir, arid Au. The chemical composition of Rumuruti is chondritic. The depletion in refractory elements (Sc, REE, etc.) and the comparatively high Mn, Na, and K contents are characteristic of ordinary chondrites and distinguish Rumuruti from carbonaceous chondrites. However, S, Se, and Zn contents in Rumuruti are significantly above the level expected for ordinary chondrites. The oxygen isotope composition of Rumuruti is high in δ17O (5.52 ‰) and δ18O (5.07 ‰). Previously, a small number of chondritic meteorites with strong similarities to Rumuruti were described. They were called Carlisle Lakes-type chondrites and they comprise: Carlisle Lakes, ALH85151, Y-75302, Y-793575, Y-82002, Acfer 217, PCA91002, and PCA91241, as well as clasts in the Weatherford chondrite. All these meteorites are finds from hot and cold deserts having experienced various degrees of weathering. With Rumuruti, the first meteorite fall has been recognized that preserves the primary mineralogical and chemical characteristics of a new group of meteorites. Comparing all chondrites, the characteristic features can be summarized as follows: (a) basically chondritic chemistry with ordinary chondrite element patterns of refractory and moderately volatile lithophiles but higher abundances of S, Se, and Zn; (b) high degree of oxidation (37–41 mol% Fa in olivine, only traces of Fe, Ni-metals, occurrence of chalcopyrite); (c) exceptionally high Δ17O values of about 2.7 for bulk samples; (d) high modal abundance of olivine (~70 vol%); (e) Ti-Fe3+?rich chromite (~5.5 wt% TiO2); (f) occurrence of various noble metal-rich particles; (g) abundant chondritic breccias consisting of equilibrated clasts and unequilibrated lithologies. With Rumuruti, nine meteorite samples exist that are chemically and mineralogically very similar. These meteorites are attributed to at least eight different fall events. It is proposed in this paper to call this group R chondrites (rumurutiites) after the first and only fall among these meteorites. These meteorites have a close relationship to ordinary chondrites. However, they are more oxidized than any of the existing groups of ordinary chondrites. Small, but significant differences in chemical composition and in oxygen isotopes between R chondrites and ordinary chondrites exclude formation of R chondrites from ordinary chondrites by oxidation. This implies a separate, independent R chondrite parent body.  相似文献   

3.
The analysis of water‐soluble organic compounds in meteorites provides valuable insights into the prebiotic synthesis of organic matter and the processes that occurred during the formation of the solar system. We investigated the concentration of aliphatic monoamines present in hot acid water extracts of the unaltered Antarctic carbonaceous chondrites, Dominion Range (DOM) 08006 (CO3) and Miller Range (MIL) 05013 (CO3), and the thermally altered meteorites, Allende (CV3), LAP 02206 (CV3), GRA 06101 (CV3), Allan Hills (ALH) 85002 (CK4), and EET 92002 (CK5). We have also reviewed and assessed the petrologic characteristics of the meteorites studied here to evaluate the effects of asteroidal processing on the abundance and molecular distributions of monoamines. The CO3, CV3, CK4, and CK5 meteorites studied here contain total concentrations of amines ranging from 1.2 to 4.0 nmol g?1 of meteorite; these amounts are 1–3 orders of magnitude below those observed in carbonaceous chondrites from the CI, CM, and CR groups. The low‐amine abundances for CV and CK chondrites may be related to their extensive degree of thermal metamorphism and/or to their low original amine content. Although the CO3 meteorites, DOM 08006 and MIL 05013, do not show signs of thermal and aqueous alteration, their monoamine contents are comparable to those observed in moderately/extensively thermally altered CV3, CK4, and CK5 carbonaceous chondrites. The low content of monoamines in pristine CO carbonaceous chondrites suggests that the initial amounts, and not asteroidal processes, play a dominant role in the content of monoamines in carbonaceous chondrites. The primary monoamines, methylamine, ethylamine, and n‐propylamine constitute the most abundant amines in the CO3, CV3, CK4, and CK5 meteorites studied here. Contrary to the predominance of n‐ω‐amino acid isomers in CO3 and thermally altered meteorites, there appears to be no preference for the larger n‐amines.  相似文献   

4.
We describe the geological, geomorphological, and paleoclimatic setting of the Sahara of North Africa in particular, focused on the main meteorite dense collection areas (DCA; Morocco, Algeria, Tunisia, and Libya). We report on the outcome of several meteorite recovery field expeditions in Morocco and Tunisia since 2008, by car and by foot, that applied systematic search methods. The number of meteorites collected is 41 ordinary chondrites and one brachinite. The statistics of unpaired ordinary chondrites indicates that H chondrites are more abundant (21) than L chondrites (12), while LL chondrites are rare (2). Our meteorite density estimates for Tunisia and Morocco are in the order of magnitude of 1 met km?2. An estimate of the total maximum number of meteorites that could be recovered from the Sahara is 780,000 meteorites. We selected 23 meteorites from Aridal, Bou Kra, Bir Zar, and Tieret DCAs for 14C dating. The results show a wide range of terrestrial ages from 0.4 to more than 40 kyr with a majority of meteorites showing ages between 0.4 and 20 kyr. The weathering degree of these meteorites is ranges from minor (W1) to strong (W4). The highest weathering grades result from repeated oscillations between high and low humidity in the Sahara. However, there appears to be no correlation between weathering grade and terrestrial age of meteorites.  相似文献   

5.
Abstract— The structural states of sodic plagioclase crystals of ~50 μm in size from three H6, two L6, and one LL6 chondritic meteorites have been determined by measuring the Δ131 parameter with a Gandolfi camera after analyzing chemical compositions. The temperature for each sodic plagioclase crystal has been determined by plotting the Δ131 parameter, corrected for the influence of K, on the relation diagram between the Δ131 parameter and the temperature of synthesis of sodic plagioclase by Smith (1972). The temperature obtained is assigned to the crystallization temperature of sodic plagioclase, and the maximum plagioclase temperature for each meteorite can be assumed to correspond to the maximum temperature attained by each meteorite during metamorphism. The maximum metamorphic temperatures estimated are 725–742 °C for the H6 chondrites, 808–820 °C for the L6 chondrites, and 800 °C for the LL6 chondrite. These temperatures are lower than those based on Ca contents of clinopyroxenes (Dodd, 1981; McSween et al., 1988) but are consistent with those based on Ca contents of orthopyroxenes (McSween and Patchen, 1989; Langenhorst et al., 1995; Jones, 1997). The K content of sodic plagioclase correlates with the temperature obtained from the structural state. This positive correlation suggests that sodic plagioclase has formed in the course of equilibration processes of alkali elements in prograde metamorphism (i.e., during heating processes). The results of this study (i.e., the maximum metamorphic temperature of the H6 chondrites is lower than that of the L6 chondrites by ~80 °C, and meteorites of the same chemical group show very similar maximum metamorphic temperatures) are in accordance with the predictions of calculations based on the 26Al heat source and the onion-shell structure model of the parent bodies.  相似文献   

6.
Meteoritical Bulletin 108 contains 2141 meteorites including 12 falls (Aguas Zarcas, Benenitra, Jalangi, Komaki, Ksar El Goraane, Mhabes el Hamra, Natun Balijan, Oued Sfayat, Shidian, Taqtaq‐e Rasoul, Tocache, Viñales), with 1640 ordinary chondrites, 149 carbonaceous chondrites, 134 HED achondrites, 45 lunar meteorites, 38 ureilites, 27 iron meteorites, 23 Martian meteorites, 22 primitive achondrites, 19 Rumuruti chondrites, 15 mesosiderites, 10 enstatite chondrites, 7 ungrouped achondrites, 4 pallasites, 4 ungrouped chondrites, and 4 angrites. Nine hundred and nine meteorites are from Africa, 747 from Antarctica, 279 from South America, 148 from Asia, 29 from North America, 18 from Oceania, 6 from Europe (including 2 from Russia), and 5 from unknown locations.  相似文献   

7.
Meteoritical Bulletin 107 contains 2714 meteorites including 16 falls (Aba Panu, Ablaketka, Andila, Gueltat Zemmour, Hamburg, Karimati, Mahbas Arraid, Mangui, Mazichuan, Mukundpura, Ozerki, Parauapebas, Renchen, San Pedro de Urabá, Sokoto, Tintigny), with 2226 ordinary chondrites, 168 HED achondrites, 132 carbonaceous chondrites (including 41 CM, 34 CV, 26 CO, 21 CK, 4 CR, 5 ungrouped), 43 ureilites, 30 iron meteorites (including 2 ungrouped), 29 lunar meteorites, 22 Martian meteorites, 16 primitive achondrites (including 3 brachinites), 12 Rumuruti chondrites, 9 enstatite chondrites, 7 ungrouped achondrites, 6 pallasites, 5 mesosiderites, 3 enstatite achondrites, 3 ungrouped chondrites, and 2 angrites. 1569 meteorites are from Antarctica, 835 from Africa, 206 from South America, 62 from Asia, 21 from North America, 11 from unknown locations, 8 from Europe (including one from Russia), and 1 from Oceania.  相似文献   

8.
Abstract— The Meteoritical Bulletin No. 80 lists data for 178 meteorites. Noteworthy are 3 HED meteorites (ALH 88102, Hammadah al Hamra (HaH) 059, and Monticello); 3 ureilites (HaH 064, HaH 126, and Dar al Gani (DaG) 084); 4 irons (Baygorria (IAB), Ste. Croix (IIIAB), Sargiin Gobi (IAB), and Tarahumara (IIE)); an unusual metal-rich meteorite (Vermillion); 8 carbonaceous chondrites (HaH 043 (C03), HaH 073 (C4), DaG 055 (C3) and 5 C03 chondrites (probably paired) from DaG); an R chondrite (DaG 013); and 6 unequilibrated ordinary chondrites (ALH 88105 (L3), Camel Donga 016 (L3), HaH 093 (LL3.9), HaH 096 (LL(L)3), Richfield (LL3.7), and Sarir Quattusah (LL(L)3)). Three recent falls of ordinary chondrites (Coleman (LL5), St. Robert (H5), and Tsukuba (H5-6)) are described.  相似文献   

9.
One of the most productive and well‐sampled dense collection areas for meteorites on Earth is the “Franconia strewn field” in Mohave County, Arizona, which since 2002 has yielded hundreds of meteorites in an ellipsoidal area approximately 5 × 16 km across. Based on petrographic, mineral‐chemical, and terrestrial age data, we conclude that among 14 meteorites examined, there are at least 6 and possibly 8 distinct meteorites represented, which fell over a period of approximately 0–20 kyr ago. These include equilibrated H‐chondrites such as Franconia (H5) and Buck Mountains (BM) 001 (H6); H3–6 breccias such as Buck Mountains Wash and BM 004; and L6 chondrites such as BM 002 and BM 003 (which may be paired), Palo Verde Mine, and BM 005. To confidently pair such meteorites often requires thorough petrographic examination, mineral‐chemical analyses, and terrestrial ages. We estimate that 50 ± 10% of the larger specimens in this area are paired, yielding a relatively high value of approximately 2.3–2.9 distinct meteorites km?2. The meteorite flux estimated for Franconia area is higher than the flux inferred from contemporary fireball data for larger masses. We suggest that one large H3–6 meteoroid fell in the area, most likely that of Buck Mountains Wash approximately 4 kyr ago, which produced an elliptical strewn field with masses generally increasing toward one end, and which raised the meteorite productivity in the recovery area.  相似文献   

10.
Abstract— Meteoritical Bulletin No. 82 lists information for 974 new meteorites, including 521 finds from Antarctica, 401 finds from the Sahara, 21 finds from the Nullarbor region of Australia, and 7 falls (Ban Rong Du, Burnwell, Fermo, Jalanash, Juancheng, Monahans (1998), and Silao). Many rare types of meteorites are reported: counting pairing groups as one, these include one CR chondrite, two CK chondrites, two CO chondrites, four CV chondrites, one CH chondrite or Bencubbin-like, six C2 (unclassified) chondrites, two EH chondrites, two EL chondrites, three R chondrites, thirty unequilibrated ordinary chondrites, one un-grouped chondrite, three eucrites, six howardites, one diogenite, eleven ureilites, nine iron meteorites, one mesosiderite, two brachinites, one lodranite, one winonaite, and two lunar meteorites (Dar al Gani 400 and EET 96008). All italicized abbreviations refer to addresses tabulated at the end of this document.  相似文献   

11.
Abstract– Xenoliths are inclusions of a given meteorite group embedded in host meteorites of a different group. Xenoliths with dimensions between a few μm and about 1 mm (microxenoliths) are “meteorite‐trapped” analogues of micrometeorites collected on the Earth. However, they have the unique features of sampling the zodiacal cloud (1) at more ancient times than those sampled by micrometeorites and (2) at larger distances from the Sun (corresponding to the asteroid Main Belt) than that sampled by micrometeorites (1 AU). Herein we describe a systematic search for new xenoliths and microxenoliths in H chondrites, aimed at determining their abundance in these ordinary chondrites, analyzing their mineralogy, and searching for possible correlations with host meteorite properties. Sixty‐six sections from 40 meteorites have been analyzed. Twenty‐four new xenoliths have been discovered. About 87% of them are microxenoliths (i.e., <1 mm), only three are >1 mm in their largest dimension. All the newly discovered xenoliths and microxenoliths are composed of carbonaceous chondritic material. Hence, the zodiacal cloud was dominated by carbonaceous material even in past epochs. All the new xenoliths and microxenoliths have been found in regolith breccias. Hydrous‐phase‐rich xenoliths and microxenoliths in H4 and H5 chondrites attest that their embedding happened after the end of the thermal metamorphism. All these data suggest that xenoliths and microxenoliths were embedded when their host meteorites were part of the parent body regolith. This, combined with the H chondrite impact age distribution, attests that the embedding may have happened as early as 3.5 Gyr ago.  相似文献   

12.
Abstract— In this paper we report petrological and chemical data of the unusual chondritic meteorites Yamato (Y)‐792947, Y‐93408 and Y‐82038. The three meteorites are very similar in texture and chemical composition, suggesting that they are pieces of a single fall. The whole‐rock oxygen isotopes and the chemical compositions are indicative of H chondrites. In addition, the mineralogy, and the abundances of chondrule types, opaque minerals and matrices suggest that these meteorites are H3 chondrites. They were hardly affected by thermal and shock metamorphism. The degree of weathering is very low. We conclude that these are the most primitive H chondrites, H3.2–3.4 (S1), known to date. On the other hand, these chondrites contain extraordinarily high amounts of refractory inclusions, intermediate between those of ordinary and carbonaceous chondrites. The distribution of the inclusions may have been highly heterogeneous in the primitive solar nebula. The mineralogy, chemistry and oxygen isotopic compositions of inclusions studied here are similar to those in CO and E chondrites.  相似文献   

13.
Hot and cold deserts have been thoroughly searched for meteorites in the past decades, which has led to a large inventory of classified meteorites. H‐ and L‐chondrites are the most abundant meteorites in all collections, and many authors used the H/L ratio as a characteristic parameter in comparing meteorite populations. H/L ratios (after pairing) vary from 0.90 in observed falls up to 1.74 in El Médano (Atacama Desert). In this study, we investigate the H/L ratio of 965 unpaired H‐ and L‐chondrites collected in Oman and compare this population with observed falls and other hot desert collections. We find a mass dependence of the H/L ratio among hot desert finds and identify mechanisms such as fragmentation during weathering and fall that have an impact on the H/L ratio. We employ the Kolmogorov–Smirnov and Mann–Whitney U statistical tests to compare the mass distributions of H‐ and L‐chondrites and to test the relationship between the similarity of mass distributions and the H/L ratio. We conclude that the variations of the H/L ratios observed in various populations are a sampling artifact resulting from secondary effects and observational bias, expressed in differences of the H and L mass distributions which are not observed in falls, and not due to variations in H/L of the meteorite flux. The H/L ratio of 0.90 observed among recent falls is considered as most representative for the overall meteorite flux, at least since the Late Pleistocene.  相似文献   

14.
Meteoritical Bulletin 103 contains 2582 meteorites including 10 falls (Ardón, Demsa, Jinju, Kri?evci, Kuresoi, Novato, Tinajdad, Tirhert, Vicência, Wolcott), with 2174 ordinary chondrites, 130 HED achondrites, 113 carbonaceous chondrites, 41 ureilites, 27 lunar meteorites, 24 enstatite chondrites, 21 iron meteorites, 15 primitive achondrites, 11 mesosiderites, 10 Martian meteorites, 6 Rumuruti chondrites, 5 ungrouped achondrites, 2 enstatite achondrites, 1 relict meteorite, 1 pallasite, and 1 angrite, and with 1511 from Antarctica, 588 from Africa, 361 from Asia, 86 from South America, 28 from North America, and 6 from Europe. Note: 1 meteorite from Russia was counted as European. The complete contents of this bulletin (244 pages) are available on line. Information about approved meteorites can be obtained from the Meteoritical Bulletin Database (MBD) available on line at http://www.lpi.usra.edu/meteor/ .  相似文献   

15.
Abstract— Quantifying the peak temperatures achieved during metamorphism is critical for understanding the thermal histories of ordinary chondrite parent bodies. Various geothermometers have been used to estimate equilibration temperatures for chondrites of the highest metamorphic grade (type 6), but results are inconsistent and span hundreds of degrees. Because different geothermometers and calibration models were used with different meteorites, it is unclear whether variations in peak temperatures represent actual ranges of metamorphic conditions within type 6 chondrites or differences in model calibrations. We addressed this problem by performing twopyroxene geothermometry, using QUILF95, on the same type 6 chondrites for which peak temperatures were estimated using the plagioclase geothermometer (Nakamuta and Motomura 1999). We also calculated temperatures for published pyroxene analyses from other type 6 H, L, and LL chondrites to determine the most representative peak metamorphic temperatures for ordinary chondrites. Pyroxenes record a narrow, overlapping range of temperatures in H6 (865–926 °C), L6 (812–934 °C), and LL6 (874–945 °C) chondrites. Plagioclase temperature estimates are 96–179 °C lower than pyroxenes in the same type 6 meteorites. Plagioclase estimates may not reflect peak metamorphic temperatures because chondrule glass probably recrystallized to plagioclase prior to reaching the metamorphic peak. The average temperature for H, L, and LL chondrites (~900 °C), which agrees with previously published oxygen isotope geothermometry, is at least 50 °C lower than the peak temperatures used in current asteroid thermal evolution models. This difference may require minor adjustments to thermal model calculations.  相似文献   

16.
Meteoritical Bulletin 111 contains the 3094 meteorites approved by the Nomenclature Committee of the Meteoritical Society in 2022. It includes 11 falls (Antonin, Botohilitano, Cranfield, Golden, Great Salt Lake, Longde, Msied, Ponggo, Qiquanhu, Tiglit, Traspena), with 2533 ordinary chondrites, 165 HED, 123 carbonaceous chondrites (including 4 ungrouped), 82 lunar meteorites, 28 Rumuruti chondrites, 27 iron meteorites, 23 ureilites, 22 mesosiderites, 22 Martian meteorites, 21 primitive achondrites (one ungrouped), 17 ungrouped achondrites, 13 pallasites, 7 enstatite achondrites, 6 enstatite chondrites, and 5 angrites. Of the meteorites classified in 2022, 1787 were from Antarctica, 1078 from Africa, 180 from South America, 34 from Asia, 6 from North America, 4 from Europe, and 1 from Oceania.  相似文献   

17.
Meteoritical Bulletin 100 contains 1943 meteorites including 8 falls (Boumdeid [2011], Huaxi, Ko?ice, Silistra, So?tmany, Sutter's Mill, Thika, Tissint), with 1575 ordinary chondrites, 139 carbonaceous chondrites, 96 HED achondrites, 25 ureilites, 18 primitive achondrites, 17 iron meteorites, 15 enstatite chondrites, 11 lunar meteorites, 10 mesosiderites, 10 ungrouped achondrites, 8 pallasites, 8 Martian meteorites, 6 Rumuruti chondrites, 3 enstatite achondrites, and 2 angrites, and with 937 from Antarctica, 592 from Africa, 230 from Asia, 95 from South America, 44 from North America, 36 from Oceania, 6 from Europe, and 1 from an unknown location. This will be the last Bulletin published in the current format. Information about approved meteorites can be obtained from the Meteoritical Bulletin Database (MBD) available online at http://www.lpi.usra.edu/meteor/  相似文献   

18.
Abstract— Concentration and isotopic composition of the light noble gases as well as of 84Kr, 129Xe, and 132Xe have been measured in bulk samples of 60 carbonaceous chondrites; 45 were measured for the first time. Solar noble gases were found in nine specimens (Arch, Acfer 094, Dar al Gani 056, Graves Nunataks 95229, Grosnaja, Isna, Mt. Prestrud 95404, Yamato (Y) 86009, and Y 86751). These meteorites are thus regolith breccias. The CV and CO chondrites contain abundant planetary‐type noble gases, but not CK chondrites. Characteristic features of CK chondrites are high 129Xe/132Xe ratios. The petrologic type of carbonaceous chondrites is correlated with the concentration of trapped heavy noble gases, similar to observations shown for ordinary chondrites. However, this correlation is disturbed for several meteorites due to a contribution of atmospheric noble gases, an effect correlated to terrestrial weathering effects. Cosmic‐ray exposure ages are calculated from cosmogenic 21Ne. They range from about 1 to 63.5 Ma for CO, CV, and CK classes, which is longer than exposure ages reported for CM and CI chondrites. Only the CO3 chondrite Isna has an exceptionally low exposure age of 0.15 Ma. No dominant clusters are observed in the cosmic‐ray exposure age distribution; only for CV and CK chondrites do potential peaks seem to develop at ~9 and ~29 Ma. Several pairings among the chondrites from hot deserts are suggested, but 52 of the 60 investigated meteorites are individual falls. In general, we confirm the results of Mazor et al. (1970) regarding cosmic‐ray exposure and trapped heavy noble gases. With this study, a considerable number of new carbonaceous chondrites were added to the noble gas data base, but this is still not sufficient to obtain a clear picture of the collisional history of the carbonaceous chondrite groups. Obviously, the exposure histories of CI and CM chondrites differ from those of CV, CO, and CK chondrites that have much longer exposure ages. The close relationship among the latter three is also evident from the similar cosmic‐ray exposure age patterns that do not reveal a clear picture of major breakup events. The CK chondrites, however, with their wide range of petrologic types, form the only carbonaceous chondrite group which so far lacks a solar‐gas‐bearing regolith breccia. The CK chondrites contain only minute amounts of trapped noble gases and their noble gas fingerprint is thus distinguishable from the other groups. In the future, more analyses of newly collected CK chondrites are needed to unravel the genetic and historic evolution of this group. It is also evident that the problems of weathering and pairing have to be considered when noble gas data of carbonaceous chondrite are interpreted.  相似文献   

19.
Abstract— We determined the mineralogical and chemical characteristics and the He, Ne, and Ar isotopic abundances of 2 meteorites that fell in China and of 2 meteorites that were recovered by the 15th Chinese Antarctic Research Expedition. Guangmingshan (H5), Zhuanghe (H5), and Grove Mountain (GRV) 98002 (L5) yield cosmic ray exposure (CRE) ages of 68.7 ± 10.0 Ma, 3.8 ± 0.6 Ma, and 17.0 ± 2.5 Ma, respectively. These ages are within the range typically observed for the respective meteorite types. GRV 98004 (H5) had an extremely short parent body‐Earth transfer time of 0.052 ± 0.008 Ma. Its petrography and mineral chemistry are indistinguishable from other typical H5 chondrites. Only 3 other meteorites exist with similarly low CRE ages: Farmington (L5), Galim (LL6), and ALH 82100 (CM2). We show that several asteroids in Earth‐crossing orbits, or in the main asteroid belt with orbits close to an ejection resonance, are spectrally matching candidates and may represent immediate precursor bodies of meteorites with CRE ages ≤0.1 Ma.  相似文献   

20.
Abstract— Thallium has been quantified in 50 iron meteorites and 6 chondrites using a combination of solvent extraction and graphite furnace atomic absorption spectrometry. The accuracy of the data was checked by analysis of two iron meteorites by laser-excited ICP mass spectrometry. The Tl abundance values for irons appear to be the first recorded and show that the Tl content allows for taxonomic separation of several groups on Tl vs. Ni abundance plots. The Tl content of irons is inversely correlated with abundances of platinum group metals such as Ir, Pt, and Rh and, in this respect, behaves like Pd and As that favour sulphur-rich phases in meteorites. Analysis of carbonaceous chondrites showed a 30-fold enrichment of Tl compared with ordinary chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号