首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Abstract— Mafic, Th-rich impact-melt breccias, most of which are identified with the composition known as low-K Fra Mauro (LKFM), are the most common rock type in the nonmare regoliths of the Apollo lunar landing sites. The origin of mafic impact-melt breccias bears on many lunar problems: the nature of the late meteoroid bombardment (cataclysm); the spatial distribution of KREEP, both near the surface and at depth; the ages of the major basins; and the composition of the early crust of the nearside lunar highlands. Thus, it is crucial that the origin of mafic impact-melt breccias be accurately understood. Because of both intra- and intersite differences in compositions of mafic impact-melt breccia samples, apparent differences in crystallization age, and differences in siderophile-element ratios, previous studies have argued that either (1) most mafic impact-melt breccias are the products of several large craters local to the site at which they were found but that some are of basin origin or that (2) they are all from the Imbrium (Apollos 14 and 15), Nectaris (Apollo 16), and Serenitatis (Apollo 17) basins. Here, we reconsider the hypothesis that virtually all of the Th-rich, mafic impact-melt breccias from the Apollo missions are products of the Imbrium impact. Ejecta deposit modeling based on modern crater scaling indicates that the Imbrium event produced ejecta deposits that average hundreds of meters thick or more at all Apollo highland sites, which is thicker than some previous estimates. Substantial amounts of Imbrium ejecta should have been sampled at every Apollo highland site. We suggest that the mafic impact-melt breccias may be the principal form of those ejecta. The Imbrium projectile impacted into Th-rich material that we regard as part of a unique, mafic, lunar geochemical province we call the High-Th Oval Region. Based on the surface distribution of Th, only basins within the High-Th Oval Region excavated Th-rich material; the Th concentrations of the highlands as observed by the Apollo orbiting γ-ray experiments are consistent with the estimates from ejecta modeling. Of the younger basin-forming impacts, only Imbrium was large enough to produce the copious amount of melt required by the ubiquitous presence of mafic impact-melt breccias in the Apollo-sampled regolith. The High-Th Oval Region still may have been molten or hot at shallow depths ~4 Ga ago when the Imbrium projectile struck. We reason that compositional heterogeneity of ejected melt breccia is to be expected under these circumstances. We argue that siderophile-element “fingerprints” of mafic impact-melt breccias are not inconsistent with production of all common types by a single projectile. We suggest that the narrow range of ages of 3.7–4.0 Ga for all successfully dated mafic impact-melt breccias may reflect a single event whose age is difficult to measure precisely, rather than a number of discrete impact events closely spaced in time, such that reported age variations among mafic impact-melt breccias reflect the ability to measure 40Ar/39Ar ages with greater precision than the accuracy with which measured portions of mafic impact-melt breccias have recorded the time of their formation.  相似文献   

2.
Abstract— We have analyzed nine highland lunar meteorites (lunaites) using mainly INAA. Several of these rocks are difficult to classify. Dhofar 081 is basically a fragmental breccia, but much of its groundmass features a glassy‐fluidized texture that is indicative of localized shock melting. Also, much of the matrix glass is swirly‐brown, suggesting a possible regolith derivation. We interpret Dar al Gani (DaG) 400 as an extremely immature regolith breccia consisting mainly of impact‐melt breccia clasts; we interpret Dhofar 026 as an unusually complex anorthositic impact‐melt breccia with scattered ovoid globules that formed as clasts of mafic, subophitic impact melt. The presence of mafic crystalline globules in a lunar material, even one so clearly impact‐heated, suggests that it may have originated as a regolith. Our new data and a synthesis of literature data suggest a contrast in Al2O3‐incompatible element systematics between impact melts from the central nearside highlands, where Apollo sampling occurred, and those from the general highland surface of the Moon. Impact melts from the general highland surface tend to have systematically lower incompatible element concentration at any given Al2O3 concentration than those from Apollo 16. In the case of Dhofar 026, both the bulk rock and a comparatively Al‐poor composition (14 wt% Al2O3, 7 μg/g Sm) extrapolated for the globules, manifest incompatible element contents well below the Apollo 16 trend. Impact melts from Luna 20 (57°E) distribute more along the general highland trend than along the Apollo 16 trend. Siderophile elements also show a distinctive composition for Apollo 16 impact melts: Ni/Ir averaging ?1.8x chondritic. In contrast, lunaite impact‐melt breccias have consistently chondritic Ni/Ir. Impact melts from Luna 20 and other Apollo sites show average Ni/Ir almost as high as those from Apollo 16. The prevalence of this distinctive Ni/Ir ratio at such widely separated nearside sites suggests that debris from one extraordinarily large impact may dominate the megaregolith siderophile component of a nearside region 2300 km or more across. Highland polymict breccia lunaites and other KREEP‐poor highland regolith samples manifest a strong anticorrelation between Al2O3 and mg. The magnesian component probably represents the chemical signature of the Mg‐suite of pristine nonmare rocks in its most “pure” form, unaltered by the major KREEP‐assimilation that is so common among Apollo Mg‐suite samples. The average composition of the ferroan anorthositic component is now well constrained at Al2O3 ?29–30 wt% (implying about 17–19 wt% modal mafic silicates), in good agreement with the composition predicted for flotation crust over a “ferroan” magma ocean (Warren 1990).  相似文献   

3.
Low altitude line-of-sight gravity data obtained by CSM and LM radio tracking during several Apollo missions are used to construct an equispaced normalized vertical gravity net 30 km above selected lunar highland regions. Correlation of local vertical gravity anomalies with craters of different depth reveals a density increase with depth in the upper lunar highland crust. Crustal densities determined in this fashion are in good agreement with other, previously published crustal density values. The nature of the density increase implies a lunar crust consisting of fractured rather than competent rock.  相似文献   

4.
New crater size-shape data were compiled for 221 fresh lunar craters and 152 youthful mercurian craters. Terraces and central peaks develop initially in fresh craters on the Moon in the 0–10 km diameter interval. Above a diameter of 65 km all craters are terraced and have central peaks. Swirl floor texture is most common in craters in the size range 20–30 km, but it occurs less frequently as terraces become a dominant feature of crater interiors. For the Moon there is a correlation between crater shape and geomorphic terrain type. For example, craters on the maria are more complex in terms of central peak and terrace detail at any given crater diameter than are craters in the highlands. These crater data suggest that there are significant differences in substrate and/or target properties between maria and highlands. Size-shape profiles for Mercury show that central peak and terrace onset is in the 10–20 km diameter interval; all craters are terraced at 65 km, and all have central peaks at 45 km. The crater data for Mercury show no clear cut terrain correlation. Comparison of lunar and mercurian data indicates that both central peaks and terraces are more abundant in craters in the diameter range 5–75 km on Mercury. Differences in crater shape between Mercury and the Moon may be due to differences in planetary gravitational acceleration (gMercury=2.3gMoon). Also differences between Mercury and the Moon in target and substrate and in modal impact velocity may contribute to affect crater shape.  相似文献   

5.
Geology and stratigraphy of King crater, lunar farside   总被引:1,自引:0,他引:1  
Clementine and photographic data sets have been used to investigate the crustal stratigraphy and geology of King crater on the lunar farside (120°E, 5.5°N). Pre-existing topographic regimes or stress fields dominate many structures in the crater, which has excavated materials from depths of up to 14 km. The upper crust in the area is noritic anorthosite, grading to a more anorthositic signature with depth. A possible batholithic intrusion is also present in a 15-km-wide band, extending from the southern crater floor to at least 50 km north of King, and from near-surface levels down to at least the excavation depth of the crater. It is generally feldspathic, but is cut by mafic dykes now visible in the north wall. King also shows evidence for the presence of a cryptomare, exposed in regions of the peaks and in dark halo craters within the ejecta blanket. Localized olivine-bearing mineralogies are observed on the central peaks, suggesting isolated pockets of troctolitic mineralogies to have been present at 8- to 14-km depths. Copious volumes of crystalline melt produced from the impact event cover King’s floor to a maximum thickness of 30-60 m, and have pooled in a number of natural depressions outside of the main crater. The main pool in the pre-existing A1-Tusi crater has a minimum depth of 150 m. Domes on the crater floor are verified as nonvolcanic in origin, and did not act as a source for any of the lava-like materials in King.  相似文献   

6.
The origin of the multiple concentric rings that characterize lunar impact basins, and the probable depth and diameter of the transient crater have been widely debated. As an alternative to prevailing “megaterrace” hypotheses, we propose that the outer scarps or mountain rings that delineate the topographic rims of basins—the Cordilleran at Orientale, the Apennine at Imbrium, and the Altai at Nectaris—define the transient cavities, enlarged relatively little by slumping, and thus are analogous to the rim crests of craters like Copernicus; inner rings are uplifted rims of craters nested within the transient cavity. The magnitude of slumping that occurs on all scarps is insufficient to produce major inner rings from the outer. These conclusions are based largely on the observed gradational sequence in lunar central uplifts:. from simple peaks through somewhat annular clusters of peaks, peak and ring combinations and double ring basins, culminating in multiring structures that may also include peaks. In contrast, belts of slump terraces are not gradational with inner rings. Terrestrial analogs suggest two possible mechanisms for producing rings. In some cases, peaks may expand into rings as material is ejected from their cores, as apparently occurred at Gosses Bluff, Australia. A second process, differential excavation of lithologically diverse layers, has produced nested experimental craters and is, we suspect, instrumental in the formation of terrestrial ringed impact craters. Peak expansion could produce double-ring structures in homogeneous materials, but differential excavation is probably required to produce multiring and peak-in-ring configurations in large lunar impact structures. Our interpretation of the representative lunar multiring basin Orientale is consistent with formation of three rings in three layers detected seismically in part of the Moon—the Cordillera (basin-bounding) ring in the upper crust, the composite Montes Rook ring in the underlying, more coherent “heald” crust, and an innermost, 320-km ring at the crust-mantle interface. Depth-diameter ratios of 110to115 are consistent with this interpretation and suggest that volumes of transient cavities and hence of basin ejecta may be considerably greater than commonly assumed.  相似文献   

7.
Chevrel  S. D.  Pinet  P. C.  Daydou  Y.  Feldman  W. C. 《Solar System Research》2002,36(6):458-459
In this paper, we present (1) a statistical analysis, based on a systematic clustering method, of a dataset integrating the global abundance maps of the three elements iron, titanium, and thorium derived from Clementine and Lunar Prospector and (2) a comparison of iron abundances between Clementine and Lunar Prospector. Homogeneous geologic units are compositionally characterized and spatially defined in relation to the major rock types sampled on the Moon. With the lowest abundances of Fe, Ti, and Th found on the Moon, the lunar highland terrains are quite homogeneous with two major large feldspathic units, one being slightly more mafic than the other. Two distinct regions with unique compositions are unambiguously identified: the Procellarum KREEP Terrane (PKT) and the South Pole–Aitken (SPA). The PKT, which includes all the units with Th abundances higher than 3.5 ppm (KREEP-rich materials), is delimited by an almost continuous ringlike unit. In particular, it includes the western nearside maria, except for Mare Humorum. With concentrations in Fe, Ti, and Th enhanced relative to the surrounding highlands, the South Pole–Aitken basin floor represents a large mafic anomaly on the far side, suggesting wide deposits of lower crust and possible mantle materials. However, due to indirect residual latitude effects in the CSR (Clementine spectral reflectance) measurements, iron abundances might have been overestimated in SPA, thus implying that crustal materials, rather than mantle materials, might represent the dominant contributor to the mafic component exposed on the basin floor.  相似文献   

8.
Abstract– Fragments of magnesian anorthositic granulite are found in the lunar highlands meteorites Allan Hills (ALH) A81005 and Dhofar (Dho) 309. Five analyzed clasts of meteoritic magnesian anorthositic granulite have Mg′ [molar Mg/(Mg + Fe)] = 81–87; FeO ≈ 5% wt; Al2O3 ≈ 22% wt; rare earth elements abundances ≈ 0.5–2 × CI (except Eu ≈ 10 × CI); and low Ni and Co in a non‐chondritic ratio. The clasts have nearly identical chemical compositions, even though their host meteorites formed at different places on the Moon. These magnesian anorthositic granulites are distinct from other highlands materials in their unique combination of mineral proportions, Mg′, REE abundances and patterns, Ti/Sm ratio, and Sc/Sm ratio. Their Mg′ is too high for a close relationship to ferroan anorthosites, or to have formed as flotation cumulates from the lunar magma ocean. Compositions of these magnesian anorthositic granulites cannot be modeled as mixtures of, or fractionates from, known lunar rocks. However, compositions of lunar highlands meteorites can be represented as mixtures of magnesian anorthositic granulite, ferroan anorthosite, mare basalt, and KREEP. Meteoritic magnesian anorthositic granulite is a good candidate for the magnesian highlands component inferred from Apollo highland impactites: magnesian, feldspathic, and REE‐poor. Bulk compositions of meteorite magnesian anorthositic granulites are comparable to those inferred for parts of the lunar farside (the Feldspathic Highlands Terrane): ~4.5 wt% FeO; ~28 wt% Al2O3; and Th <1 ppm. Thus, magnesian anorthositic granulite may be a widespread and abundant component of the lunar highlands.  相似文献   

9.
Material is ejected from impact craters in ballastic trajectories; it impacts first near the crater rim and then at progressively greater ranges. Ejecta from craters smaller than approximately 1 km is laid predominantly on top of the surrounding surface. With increasing crater size, however, more and more surrounding surface will be penetrated by secondary cratering action and these preexisting materials will be mixed with primary crater ejecta. Ejecta from large craters and especially basin forming events not only excavate preexisting, local materials, but also are capable of moving large amounts of material away from the crater. Thus mixing and lateral transport give rise to continuous deposits that contain materials from within and outside the primary crater. As a consequence ejecta of basins and large highland craters have eroded and mixed highland materials throughout geologic time and deposited them in depressions inside and between older crater structures.Because lunar mare surfaces contain few large craters, the mare regolith is built up by successive layers of predominantly primary ejecta. In contrast, the lunar highlands are dominated by the effects of large scale craters formed early in lunar history. These effects lead to thick fragmental deposits which are a mixture of primary crater material and local components. These deposits may also properly be named regolith though the term has been traditionally applied only to the relatively thin fine grained surficial deposit on mare and highland terranes generated during the past few billion year. We believe that the surficial highland regolith - generated over long periods of time - rests on massive fragmental units that have been produced during the early lunar history.  相似文献   

10.
A meteorite impact capable of creating a 200 km diameter crater can demagnetize the entire crust beneath, and produce an appreciable magnetic anomaly at satellite altitudes of ~400 km in case the pre-existing crust is magnetized. In this study we examine the magnetic field over all of the craters and impact-related Quasi-Circular Depressions (QCDs) with diameters larger than 200 km that are located on the highlands of Mars, excluding the Tharsis bulge, in order to estimate the mean magnetization of the highland crust. Using the surface topography and the gravity of Mars we first identify those QCDs that are likely produced by impacts. The magnetic map of a given crater or impact-related QCD is derived using the Mars Global Surveyor high-altitude nighttime radial magnetic data. Two extended ancient areas are identified on the highlands, the South Province and the Tempe Terra, which have large number of craters and impact-related QCDs but none of them has an appreciable magnetic signature. The primordial crust of these areas is not magnetized, or is very weakly magnetized at most. We examine some plausible scenarios to explain the weak magnetization of these areas, and conclude that no strong dynamo existed in the first ~100 Myr of Mars’ history when the newly formed primordial crust was cooling below the magnetic blocking temperatures of its minerals.  相似文献   

11.
MESSENGER’s Mercury Dual Imaging System (MDIS) obtained multispectral images for more than 80% of the surface of Mercury during its first two flybys. Those images have confirmed that the surface of Mercury exhibits subtle color variations, some of which can be attributed to compositional differences. In many areas, impact craters are associated with material that is spectrally distinct from the surrounding surface. These deposits can be located on the crater floor, rim, wall, or central peak or in the ejecta deposit, and represent material that originally resided at depth and was subsequently excavated during the cratering process. The resulting craters make it possible to investigate the stratigraphy of Mercury’s upper crust. Studies of laboratory, terrestrial, and lunar craters provide a means to bound the depth of origin of spectrally distinct ejecta and central peak structures. Excavated red material (RM), with comparatively steep (red) spectral slope, and low-reflectance material (LRM) stand out prominently from the surrounding terrain in enhanced-color images because they are spectral end-members in Mercury’s compositional continuum. Newly imaged examples of RM were found to be spectrally similar to the relatively red, high-reflectance plains (HRP), suggesting that they may represent deposits of HRP-like material that were subsequently covered by a thin layer (∼1 km thick) of intermediate plains. In one area, craters with diameters ranging from 30 km to 130 km have excavated and incorporated RM into their rims, suggesting that the underlying RM layer may be several kilometers thick. LRM deposits are useful as stratigraphic markers, due to their unique spectral properties. Some RM and LRM were excavated by pre-Tolstojan basins, indicating a relatively old age (>4.0 Ga) for the original emplacement of these deposits. Detailed examination of several small areas on Mercury reveals the complex nature of the local stratigraphy, including the possible presence of buried volcanic plains, and supports sequential buildup of most of the upper ∼5 km of crust by volcanic flows with compositions spanning the range of material now visible on the surface, distributed heterogeneously across the planet. This emerging picture strongly suggests that the crust of Mercury is characterized by a much more substantial component of early volcanism than represented by the phase of mare emplacement on Earth’s Moon.  相似文献   

12.
Abstract— The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near‐surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3–50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5–2.0 times deeper (≥5s?o difference) with >50% larger cavities (≥2s?o) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ?6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45–70% of their transient cavity volumes, while highland craters preserve only 25–50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9–12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through nonballistic emplacement processes and/or bulking. The observations require a modification of the scaling laws and are well fit using a scaling factor of ?1.4 between the transient crater surface diameter to the final crater rim diameter and excavation flow originating from one projectile diameter depth with Z = 2.7. The refined excavation model provides the first observationally constrained set of initial parameters for study of the formation of fluidized ejecta blankets on Mars.  相似文献   

13.
Lunar meteorite Northwest Africa (NWA) 5744 is a granulitic breccia with an anorthositic troctolite composition that may represent a distinct crustal lithology not previously described. This meteorite is the namesake and first‐discovered stone of its pairing group. Bulk rock major element abundances show the greatest affinity to Mg‐suite rocks, yet trace element abundances are more consistent with those of ferroan anorthosites. The relatively low abundances of incompatible trace elements (including K, P, Th, U, and rare earth elements) in NWA 5744 could indicate derivation from a highlands crustal lithology or mixture of lithologies that are distinct from the Procellarum KREEP terrane on the lunar nearside. Impact‐related thermal and shock metamorphism of NWA 5744 was intense enough to recrystallize mafic minerals in the matrix, but not intense enough to chemically equilibrate the constituent minerals. Thus, we infer that NWA 5744 was likely metamorphosed near the lunar surface, either as a lithic component within an impact melt sheet or from impact‐induced shock.  相似文献   

14.
Abstract– We present a case modeling study of impact crater formation in H2O‐bearing targets. The main goal of this work was to investigate the postimpact thermal state of the rock layers modified in the formation of hypervelocity impact craters. We present model results for a target consisting of a mixture of H2O‐ice and rock, assuming an ice/water content variable with depth. Our model results, combined with results from previous work using dry targets, indicate that for craters larger than about 30 km in diameter, the onset of postimpact hydrothermal circulation is characterized by two stages: first, the formation of a mostly dry, hot central uplift followed by water beginning to flow in and circulate through the initially dry and hot uplifted crustal rocks. The postimpact thermal field in the periphery of the crater is dependent on crater size: in midsize craters, 30–50 km in diameter, crater walls are not strongly heated in the impact event, and even though ice present in the rock may initially be heated enough to melt, overall temperatures in the rock remain below melting, undermining the development of a crater‐wide hydrothermal circulation. In large craters (with diameters more than 100 km or so), the region underneath the crater floor and walls is heated well above the melting point of ice, thus facilitating the onset of an extended hydrothermal circulation. These results provide preliminary constraints in characterizing the many water‐related features, both morphologic and spectroscopic, that high‐resolution images of Mars are now detecting within many Martian craters.  相似文献   

15.
Global acquisition of infrared spectra and high-resolution visible and infrared imagery has enabled the placement of compositional information within stratigraphic and geologic context. Mare Serpentis, a low albedo region located northwest of Hellas Basin, is rich in spectral and thermophysical diversity and host to numerous isolated exposures of in situ rocky material. Most martian surfaces are dominated by fine-grained particulate materials that bear an uncertain compositional and spatial relationship to their source. Thus location and characterization of in situ rock exposures is important for understanding the origin of highland materials and the processes which have modified those materials. Using spectral, thermophysical and morphologic information, we assess the local and regional stratigraphy of the Mare Serpentis surface in an effort to reconstruct the geologic history of the region. The martian highlands in Mare Serpentis are dominated by two interspersed surface units, which have distinct compositional and thermophysical properties: (1) rock-dominated surfaces relatively enriched in olivine and pyroxene, and depleted in high-silica phases, and (2) sediment or indurated material depleted in olivine and pyroxene, with relatively higher abundance of high-silica phases. This is a major, previously unrecognized trend which appears to be pervasive in the Mare Serpentis region and possibly in other highland areas. The detailed observations have led us to form two hypotheses for the relationship between these two units: either (1) they are related through a widespread mechanical and/or chemical alteration process, where less-mafic plains materials are derived from the mafic bedrock, but have been compositionally altered in the process of regolith formation, or (2) they are stratigraphically distinct units representing separate episodes of upper crust formation. Existing observations suggest that the second scenario is more likely. In this scenario, plains materials represent older, degraded, and possibly altered, “basement” rock, whereas the rocky exposures represent later additions to the crust and are probably volcanic in origin. These hypotheses should be further testable with decimeter-resolution imagery and meter-resolution short wavelength infrared spectra.  相似文献   

16.
Approximately 180 glasses in each of three Apollo 15 soils have been analyzed for nine elements. Cluster analysis techniques allow the recognition of preferred glass compositions that are equated with parent rock compositions Green glass rich in Fe and Mg, poor in Al and Ti may be derived from deep seated pyroxenitic material now present at the Apennine Front. Fra Mauro basalt (KREEP) is most abundant in the LM soil and is tentatively identified as ray material from the Aristillus-Autolycus area. Highland basalt (anorthositic gabbro), believed to be derived from the lunar highlands, has the same composition as at other landing sites, but is less abundant. The Apennine Front is probably not true highland material but may contain a substantial amount of material with the composition of Fra Mauro basalt, but lacking the high-K content. Glasses with mare basalt compositions are present in the soils and four subgroups are recognized, one of which is compositionally equivalent to the large Apollo 15 basalt samples  相似文献   

17.
Peak-ring basins represent an impact-crater morphology that is transitional between complex craters with central peaks and large multi-ring basins. Therefore, they can provide insight into the scale dependence of the impact process. Here the transition with increasing crater diameter from complex craters to peak-ring basins on Mercury is assessed through a detailed analysis of Eminescu, a geologically recent and well-preserved peak-ring basin. Eminescu has a diameter (∼125 km) close to the minimum for such crater forms and is thus representative of the transition. Impact crater size-frequency distributions and faint rays indicate that Eminescu is Kuiperian in age, geologically younger than most other basins on Mercury. Geologic mapping of basin interior units indicates a distinction between smooth plains and peak-ring units. Our mapping and crater retention ages favor plains formation by impact melt rather than post-impact volcanism, but a volcanic origin for the plains cannot be excluded if the time interval between basin formation and volcanic emplacement was less than the uncertainty in relative ages. The high-albedo peak ring of Eminescu is composed of bright crater-floor deposits (BCFDs, a distinct crustal unit seen elsewhere on Mercury) exposed by the impact. We use our observations to assess predictions of peak-ring formation models. We interpret the characteristics of Eminescu as consistent with basin formation models in which a melt cavity forms during the impact formation of craters at the transition to peak ring morphologies. We suggest that the smooth plains were emplaced via impact melt expulsion from the central melt cavity during uplift of a peak ring composed of BCFD-type material. In this scenario the ringed cluster of peaks resulted from the early development of the melt cavity, which modified the central uplift zone.  相似文献   

18.
Nathalia Alzate 《Icarus》2011,211(2):1274-1283
Central pit craters are common on Mars, Ganymede and Callisto, and thus are generally believed to require target volatiles in their formation. The purpose of this study is to identify the environmental conditions under which central pit craters form on Ganymede. We have conducted a study of 471 central pit craters with diameters between 5 and 150 km on Ganymede and compared the results to 1604 central pit craters on Mars (diameter range 5-160 km). Both floor and summit pits occur on Mars whereas floor pits dominate on Ganymede. Central peak craters are found in similar locations and diameter ranges as central pit craters on Mars and overlap in location and at diameters <60 km on Ganymede. Central pit craters show no regional variations on either Ganymede or Mars and are not concentrated on specific geologic units. Central pit craters show a range of preservation states, indicating that conditions favoring central pit formation have existed since crater-retaining surfaces have existed on Ganymede and Mars. Central pit craters on Ganymede are generally about three times larger than those on Mars, probably due to gravity scaling although target characteristics and resolution also may play a role. Central pits tend to be larger relative to their parent crater on Ganymede than on Mars, probably because of Ganymede’s purer ice crust. A transition to different characteristics occurs in Ganymede’s icy crust at depths of 4-7 km based on the larger pit-to-crater-diameter relationship for craters in the 70-130-km-diameter range and lack of central peaks in craters larger than 60-km-diameter. We use our results to constrain the proposed formation models for central pits on these two bodies. Our results are most consistent with the melt-drainage model for central pit formation.  相似文献   

19.
Abstract Two types of texturally and compositionally similar breccias that consist largely of fragmental debris from meteorite impacts occur at the Apollo 16 lunar site: Feldspathic fragmental breccias (FFBs) and ancient regolith breccias (ARBs). Both types of breccia are composed of a suite of mostly feldspathic components derived from the early crust of the Moon and mafic impact-melt breccias produced during the time of basin formation. The ARBs also contain components, such as agglutinates and glass spherules, indicating that the material of which they are composed occurred at the surface of the Moon as fine-grained regolith prior to lithification of the breccias. These components are absent from the FFBs, suggesting that the FFBs might be the protolith of the ARBs. However, several compositional differences exist between the two types of breccia, making any simple genetic relationship implausible. First, clasts of mafic impact-melt breccia occurring in the FFBs are of a different composition than those in the ARBs. Also the feldspathic “prebasin” components of the FFBs have a lower average Mg/Fe ratio than the corresponding components of the ARBs; the average composition of the plagioclase in the FFBs is more sodic than that of the ARBs; and there are differences in relative abundances of rare earth elements. The two breccia types also have different provenances: the FFBs occur primarily in ejecta from North Ray crater and presumably derive from the Descartes Formation, while the ARBs are restricted to the Cayley plains. Together these observations suggest that although some type of fragmental breccia may have been a precursor to the ARBs, the FFBs of North Ray crater are not a significant component of the ARBs and, by inference, the Cayley plains. The average compositions of the prebasin components of the two types of fragmental breccia are generally similar to the composition of the feldspathic lunar meteorites. With 30–31% Al2O3, however, they are slightly richer in plagioclase than the most feldspathic lunar meteorites (~29% Al2O3), implying that the crust of the early central nearside of the Moon contained a higher abundance of highly feldspathic anorthosite than typical lunar highlands, as inferred from the lunar meteorites. The ancient regolith breccias, as well as the current surface regolith of the Cayley plains, are more mafic than (1) prebasin regoliths in the Central Highlands and (2) regions of highlands presently distant from nearside basins because they contain a high abundance (~30%) of mafic impact-melt breccias produced during the time of basin formation that is absent from other regoliths.  相似文献   

20.
《Icarus》1987,71(1):19-29
From counts of postbasin craters larger than 30 km in diameter, lying within or near to seven giant front face lunar basins, relative ages for the basins may be obtained. These relative ages correlate well with absolute basin ages found from viscosity arguments in R. B. Baldwin (1987, Icarus 70, □□□-□□□). From crater counts the basins are in the following sequence of increasing relative age: Orientale, Imbrium, Crisium, Serenitatis, Nectaris, Humorum, and the unnamed basin lying between Werner and the Altai ring. The absolute ages from Baldwin (1987) range from 3.80 to 4.30 × 109 years while a correlation with the relative ages of this paper yields a range of 3.79 to 4.27 × 109 years. The discrepancy is largely due to Serenitatis where the debris from Imbrium has presumably buried some post-Serenitatis craters. From both sets of data there is no evidence that a “Terminal Lunar Cataclysm” ever occured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号