首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zagami, a well characterized SNC meteorite, represents a reference sample to verify the feasibility of the non-destructive infrared micro-spectroscopy technique to extract spectral signatures from individual mineral phases in a meteorite sample. For the first time individual infrared spectra of the major mineral phases, in the 6000-600 cm−1 (1.67-16.7 μm) spectral interval, whose identification is confirmed by energy dispersive X-ray analysis and backscattered imaging, are measured. The signatures of the main mineral phases we identified in the Zagami chip are: (1) maskelynite characterized by broad and smooth SiO vibrational bands in the 1000 cm−1 spectral region; (2) crystalline pyroxenes showing well defined fine structures; and (3) an oxide mineral phase with an almost featureless and flat spectrum. In the part of the spectrum centered around 2 μm, by analyzing the different positions of the Fe2+ bands, we were able to discern the high-Ca from the low-Ca pyroxene phases. This result demonstrates that by means of the infrared micro-spectroscopy technique it is possible to retrieve directly the composition of pyroxenes in the En-Fs-Wo system, without relying on the use of deconvolution techniques. In addition IR signatures due to water and aliphatic hydrocarbons were observed to be more abundant in the pyroxenes than in maskelynite. This could be an indication that the organic and water signatures are due to indigenous compounds in Zagami rather than laboratory contamination, however, further investigations are necessary before this conclusion can be confirmed.  相似文献   

2.
We present results of laboratory near-infrared reflectance studies of a set of calcic pyroxenes with comparable calcium contents (Wo45-50) but variable iron content and oxidation states. This new dataset complements earlier published data (Cloutis and Gaffey, 1991, J. Geophys. Res. 96, 22809-28826, and references therein). In particular, our new spectra extend the scarce available spectral data on chemically analyzed Fe-rich high-Ca clinopyroxenes. We attempted to interpret the spectral behavior of our samples in terms of chemistry and coordination site occupancies. Tentatively, we conclude that Fe-rich calcic pyroxenes have very low contents of Fe2+ in the M2 sites and belong to the spectral type A lacking the 2-μm band. This may be due to high Ca and Mn contents in these pyroxenes. Fe-poor high-Ca pyroxenes are more spectrally variable. In general, they tend to belong to the spectral type B with two major bands near 1 and 2 μm, unless the samples have high Fe3+/Fe2+ ratios or are rich in Mn and Ca. Some of them (including unusual meteorite Angra dos Reis) are of type B despite very high Ca contents. We applied the Modified Gaussian Model (MGM) to characterize three major Fe2+ absorption bands in the 1-μm region of the spectra of Ca-rich pyroxenes. Only the band due to Fe2+ in the M1 coordination site near 1.15 μm may be potentially useful to estimate the Fe content in calcic pyroxenes on remotely-sensed surfaces of Solar System bodies. The spectral variability of basaltic meteorites (angrites) that are rich in calcic pyroxenes is also discussed. The presence of spectral type A calcic pyroxenes in these meteorites complicates unambiguous identification of olivine in asteroid spectra.  相似文献   

3.
4.
Abstract— Nakhla contains crystallized melt inclusions that were trapped in augite and olivine when these phases originally formed on Mars. Our study involved rehomogenization (slow‐heating and fast‐heating) experiments on multiphase melt inclusions in Nakhla augite. We studied melt inclusions trapped in augite because this phase re‐equilibrated with the external melt to a lesser extent than olivine and results could be directly compared with previous Nakhla melt inclusion studies. Following heating and homogenization of encapsulated melt inclusions, single mineral grains were mounted and polished to expose inclusions. Major element chemistry was determined by electron microprobe. The most primitive melt inclusion analyzed in Nakhla NA03 is basaltic and closely matches previously reported nakhlite parent melt compositions. MELTS equilibrium and fractional crystallization models calculated for NA03 and previous Nakhla parent melt estimates at QFM and QFM‐1 produced phase assemblages and compositions that can be compared to Nakhla. Of these models, equilibrium crystallization of NA03 at QFM‐1 produced the best match to mineral phases and compositions in Nakhla. In all models, olivine and augite co‐crystallize, consistent with the hypothesis that olivine is not xenocrystic but has undergone subsolidus re‐equilibration. In addition, measured melt inclusion compositions plot along the MELTS‐calculated liquid line of descent and may represent pockets of melt trapped at various stages during crystallization. We attempt to resolve discrepancies between previous estimates of the Nakhla parental melt composition and to reinterpret the results of a previous study of rehomogenized melt inclusions in Nakhla. Melt inclusions demonstrate that Nakhla is an igneous rock whose parent melt composition and crystallization history reflect planetary igneous processes.  相似文献   

5.
Abstract— Quantitative petrographic analysis, using the crystal size distribution (CSD) method, provides a novel approach for examining the crystallization histories of basaltic shergottites. Grain number densities at different sizes are plotted against grain size, and the resulting curve relates to the geologic processes involved with the crystallization of the grain population. Most basaltic shergottites are dominated by pigeonite and augite; and because plagioclase is primarily interstitial, and therefore constrained in its growth by the surrounding pyroxenes, we limited our size measurements to the pyroxene phases. The groundmasses of Elephant Moraine (EET) A79001 lithology A and Dar al Gani (DaG) 476 are fine grained with cumulus pyroxene and interstitial plagioclase glass. Their simple linear CSD plots record a single stage of pyroxene crystallization under steady‐state conditions of continuous nucleation and growth. The textures of Queen Alexandra Range (QUE) 94201 and EETA79001 lithology B are quite different from the other shergottites, with intergrown pyroxene and plagioclase. Likewise, their CSD plots are also distinct, with curved trends that suggest a lack of large grains, most likely because of interference between simultaneously growing silicate phases. However, the CSD plot shapes are smooth, also implying a single stage of growth. Shergotty and Zagami, with coarser cumulus textures, display CSD plots that are generally linear over most grain sizes. This implies that conditions of nucleation and growth were dominant during formation of the pyroxene populations. Both plots, however, also display kinks, implying multiple stages of growth. A similar kink is also visible in a CSD plot of only the Mg‐rich cores of Shergotty pyroxenes, which suggests the feature represents changes in conditions during core crystallization, rather than an event coincident with the change in composition to the Fe‐rich rims. The plot may be interpreted as representing two stages of core growth with an intervening short hiatus of nucleation, with continued crystallization associated with ascent of the magma. Eruption onto the surface probably triggered the compositional change to Fe‐rich rims. The CSD analysis of products from a controlled crystallization study agree with experimental and petrologic estimates that cooling rates for Zagami were on the order of a few tenths of a degree per hour. Growth rates derived from these cooling rates suggest crystallization of Shergotty and Zagami pyroxenes occurred over a period of a few weeks to months.  相似文献   

6.
Abstract— Understanding the fundamental crystal chemical controls on visible and near‐infrared reflectance spectra of pyroxenes is critical to quantitatively assessing the mineral chemistry of pyroxenes viewed by remote sensing. This study focuses on the analysis of spectroscopic measurements of a comprehensive set of synthetic Mg‐Fe pyroxenes from the visible through the near‐infrared (0.3–2.6 μm) to address the constraints of crystal structure and Fe2+ content on spin‐forbidden and spin‐allowed crystal field absorptions in Ca‐free orthopyroxenes. The chemistry and oxidation state of the synthetic pyroxenes are characterized. Coordinated Mössbauer spectroscopy is used to determine site occupancy of Fe2+ in the M1 and M2 crystallographic sites. Properties of visible and near‐infrared absorption bands of the synthetic pyroxenes are quantified using the modified Gaussian model. The 1 and 2 μm spin‐allowed crystal field absorption bands move regularly with increasing iron content, defining a much tighter trend than observed previously. A spin‐allowed crystal field absorption band at 1.2 μm is explicitly verified, even at low total iron contents, indicating that some portion of Fe2+ resides in the M1 site. The 1.2 μm band intensifies and shifts to longer wavelengths with increasing iron content. At visible wavelengths, spin‐forbidden crystal field absorptions are observed in all iron‐bearing samples. The most prominent absorption near 506 nm, attributed to iron in the M2 site, shifts to slightly longer wavelengths with iron content. The purity and extent of this pyroxene series allows visible wavelength absorption bands to be directly assigned to specific transitions of Fe2+ in the M1 and M2 sites.  相似文献   

7.
The Sutter's Mill meteorite fell in northern California on April 22, 2012. Several fragments of the meteorite were recovered, some of them shortly after the fall, others several days later after a heavy rainstorm. In this work, we analyzed several samples of four fragments―SM2, SM12, SM20, and SM30―from the Sutter's Mill meteorite with two infrared (IR) microscopes operating in the 4000–650 cm?1 (2.5–15.4 μm) range. Spectra show absorption features associated with minerals such as olivines, phyllosilicates, carbonates, and possibly pyroxenes, as well as organics. Spectra of specific minerals vary from one particle to another within a given stone, and even within a single particle, indicating a nonuniform mineral composition. Infrared features associated with aliphatic CH2 and CH3 groups associated with organics are also seen in several spectra. However, the presence of organics in the samples studied is not clear because these features overlap with carbonate overtone bands. Finally, other samples collected within days after the rainstorm show evidence for bacterial terrestrial contamination, which indicates how quickly meteorites can be contaminated on such small scales.  相似文献   

8.
Abstract— We studied micro Raman spectroscopy of amphiboles and pyroxenes in the martian meteorites Zagami and Lewis Cliff (LEW) 88516. The obtained Raman spectra of the amphiboles are similar to those of kaersutite, reconfirming the previous studies that they are kaersutitic amphiboles enriched in Ca, Al, and Ti. Even though actinolite belongs to the same amphibole group (calcic amphibole) as kaersutite, the Raman spectra of terrestrial actinolite are distinct from those of kaersutite, probably reflecting complex amphibole crystal structures. The Al‐Ti‐rich pyroxene observed in the magmatic inclusions within LEW 88516 olivine is compositionally similar to kaersutite but shows Raman spectra nearly identical to the regular pyroxene rather than amphibole. In contrast to amphibole, this will be due to relatively simple crystal structures of pyroxene. Thus, the Raman spectra of Al‐Ti‐rich phases in the martian meteorites are distinct between kaersutite and Al‐Ti‐rich pyroxene, and this study demonstrates that micro Raman spectroscopy is one of the best tools to perform mineralogical characterization of mineral phases in martian meteorites.  相似文献   

9.
Faint absorption bands in the visible range of the smoothed vestoid spectra have been found. The bands centered near 505, 530, and 550 nm are attributed to ferrous iron in low-calcium pyroxene and are typical for pyroxene-bearing vestoid surfaces. In accordance with characteristics of the faint absorption bands around 600 and 650 nm the studied vestoid spectra can be sorted into five types. Since the same absorptions are also seen in the laboratory spectra of the minerals and meteorites, which appear to be similar to vestoid material, spectral types of the vestoids can be related to their surface compositions. Regolith of the Type-I vestoids consists of pure low-calcium pyroxenes. Minor amount of olivine along with pyroxene appear to be on the Type-II vestoids whereas the mixtures of low-calcium pyroxene with minor chromite define the Type-III and -IV. The causes for the fifth spectral type in terms of minor mineral phases are unclear now. Simulation of the spectra of vestoids was employed to estimate content of olivine (∼6-12 vol%) and chromite (∼12-30 vol%) on their surfaces.  相似文献   

10.
An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called “optimal” because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038 Kristina, 4147 Lennon, and 5143 Heracles. Probably there are other spectrally active materials along with pyroxenes on the surfaces of these asteroids.  相似文献   

11.
P. Vernazza  F. DeMeo  M. Birlan  S. Erard 《Icarus》2010,209(1):125-114
We present resolved near-infrared spectra of Mercury scanning 70% of the surface in latitude and longitude from three separate observations, allowing us to perform a compositional investigation of its surface. By scanning the surface we find that all spectra in our sample are remarkably similar suggesting overall compositional homogeneity. We do, however, observe a slope difference between the spectra. These slope changes are most likely due to differences in the emission angle over different parts of the surface. We confirm the presence of a 1.1 μm feature that had been previously detected (Warell, J. et al. [2006]. Icarus 180, 281-291) and attributed to Ca-rich clinopyroxene. Finally, we investigated Mercury’s surface composition by comparing its spectrum with ground-based lunar spectra, lunar soil spectra collected in the laboratory, and analysis with a simple linear mixing model using various minerals as end-members. The result of this compositional investigation reveals that Mercury’s surface composition is likely to be quite different from the Moon’s. While low-Ca iron-rich pyroxenes are main surface components on the Moon (abundance varying from ∼5% to ∼35%), their abundance on Mercury may not exceed 5%. We also find that a Ca-rich clinopyroxene (in the hedenbergite-diopside series) is likely to be a main component of Mercury’s surface whereas this mineral is almost absent on the Moon. Our analysis also suggests the possible presence of olivine. We find that Mercury’s slope is less red than that of the Moon, in agreement with results from MESSENGER (McClintock, W.E., and 12 colleagues [2008]. Science 321, 62-65), and composition rather than variation of space weathering is likely the cause of this difference.  相似文献   

12.
Measurements have been made of the polarized absorption spectra (360-2200 nm.) of compositionally zoned pyroxene minerals in rocks 10045, 10047 and 10058 and olivines in rocks 10020 and 10022. Specimens in the form of petrographic thin sections were mounted on polarizing microscopes equipped with three-axis universal stage attachments and inserted into a Cary 17 spectrophotometer. The Apollo 11 pyroxenes with relatively high Ti/Fe ratios were chosen initially to investigate the presence of crystal field spectra of Fe2+ and Ti3+ ions in the minerals.Broad intense bands at about 1000 and 2100 nm. arise from spin-allowed, polarization-dependent transitions in Fe2+ ions in pyroxenes. Several weak sharp peaks occur in the visible region. Peaks at 402, 425, 505, 550 and 585 nm. represent spin-forbidden transitions in Fe2+ ions, while broader bands at 460–470 nm. and 650–660 nm. are attributed to Ti3+ ions. Charge transfer bands, which in terrestrial pyroxenes often extend into the visible region, are displaced to shorter wavelengths in lunar pyroxenes. This feature correlates with the absence of Fe3+ ions in these minerals. The magnitudes of the intensity ratios: band 465 nm. (Ti3+) to band 1000 nm. (Fe2+) are similar to Ti/Fe ratios from lunar pyroxene bulk chemical analyses, suggesting that an appreciable amount of titanium occurs as Ti3+ ions in the lunar pyroxenes. The 505 nm. spin-forbidden peak in Fe2+, together with absorption at 465 nm. by Ti3+, contribute to the pink or pale reddish-brown colors of lunar pyroxenes in transmitted lights.The absorption spectral measurements not only provide information on the redox behavior and crystal chemistry of lunar pyroxenes, but also form a basis for interpreting spectral reflectivity properties of lunar rocks and the Moon's surface.  相似文献   

13.
James L. Gooding 《Icarus》1978,33(3):483-513
Chemical weathering on Mars is examined theoretically from the standpoint of heterogeneous equilibrium between solid mineral phases and gaseous O2, H2O, and CO2 in the Martian atmosphere. Thermochemical calculations are performed in order to identify important gas-solid decomposition reactions involving the major mineral constituents of mafic igneous rocks. Where unavailable in the thermochemical literature, Gibbs free energy and enthalpy of formation are estimated for certain minerals and details of these estimation procedures are given. Partial pressure stability diagrams are presented to show pertinent mineral reaction boundaries at 298 and at 240°K. In the present Martian environment, the thermodynamically stable products of gas-solid weathering of individual minerals at 240°K should be Fe2O3, as hematite or maghemite (from fayalite, magnetite, and Fe-bearing pyroxenes), quartz (from all silicates), calcite (from Ca-bearing pyroxenes and plagioclase), magnesite (from forsterite and Mg-bearing pyroxenes), corundum (from all Al-bearing silicates), Ca-beidellite (from anorthite), and szomolnokite, FeSO4 or FeSO4·H2O (from iron sulfides). Albite, microcline, and apatite should be stable with respect to gas-solid decomposition, suggesting that gas-solid weathering products on Mars may be depleted in Na, K, and P (and, possibly, Cl and F). Certain montmorillonite-type clay minerals are thermodynamically favorable intermediate gas-solid decomposition products of Al-bearing pyroxenes and may be metastable intermediate products of special mineral surface reaction mechanisms. However, the predicted high thermodynamic susceptibility of these clay minerals to subsequent gas-solid decomposition implies that they should ultimately decompose in the present Martian surface environment. Kaolinite is apparently the only clay mineral which should be thermodynamically stable over all ranges of temperature and water vapor abundance in the present environment at the Martian surface. Considering thermodynamic criteria, including possible gas-solid decomposition reactions, it is doubtful that significant amounts of goethite and clay minerals can be currently forming on Mars by mechanisms known to operate to Earth. If major amounts of goethite and clay minerals occur on Mars, they probably owe their existence to formation in an environment characterized by the presence of liquid water or by mechanism possibly unique to Mars. In any case, any goethite or montmorillonite-type clay mineral on Mars must ultimately decompose.  相似文献   

14.
Newly acquired, sequentially spaced, high-resolution near-infrared spectra across the central section of crater Copernicus’ interior have been analyzed using a range of complementary techniques and indexes.We have developed a new interpretative method based on a multiple stage normalization process that appears to both confirm and expand on previous mineralogical estimations and mapping. In broad terms, the interpreted distribution of the principle mafic species suggests an overall composition of surface materials dominated by calcium-poor pyroxenes and minor olivine but with notable exceptions: the southern rim displays strong ca-rich pyroxene absorption features and five other locations, the uppermost northern crater wall, opposite rim sections facing the crater floor, and the central peak Pk1 and at the foot of Pk3, show instead strong olivine signatures.We also propose impact glass an alternative interpretation to the source of the weak but widespread olivine-like spectral signature found in low-reflectance samples, since it probably represents a major regolith constituent and component in large craters such as Copernicus.The high quality and performance of the SIR-2 data allows for the detection of diagnostic key mineral species even when investigating spectral samples with very subdued absorption features, confirming the intrinsic high-quality value of the returned data.  相似文献   

15.
Abstract— North West Africa (NWA) 480 is a new martian meteorite of 28 g found in the Moroccan Sahara in November 2000. It consists mainly of large gray pyroxene crystals (the largest grains are up to 5 mm in length) and plagioclase converted to maskelynite. Excluding the melt pocket areas, modal analyses indicate the following mineral proportions: 72 vol% pyroxenes extensively zoned, 25% maskelynite, 1% phosphates (merrillite and chlorapatite), 1% opaque oxides (ilmenite, ulvöspinel and chromite) and sulfides, and 1% others such as silica and fayalite. The compositional trend of NWA 480 pyroxenes is similar to that of Queen Alexandra Range (QUE) 94201 but in NWA 480 the pyroxene cores are more Mg‐rich (En77‐En65). Maskelynites display a limited zoning (An42–50Ab54‐48Or2–4). Our observations suggest that NWA 480 formed from a melt with a low nuclei density at a slow cooling rate. The texture was achieved via a single‐stage cooling where pyroxenes grew continuously. A similar model was previously proposed for QUE 94201 by McSween et al. (1996). NWA 480 is an Al‐poor ferroan basaltic rock and resembles Zagami or Shergotty for major elements and compatible trace element abundances. The bulk rock analysis for oxygen isotopes yields Δ17O = +0.42%, a value in agreement at the high margin, with those measured on other shergottites (Clayton and Mayeda, 1996; Romanek et al., 1998; Franchi et al., 1999). Its CI‐normalized rare earth element pattern is similar to those of peridotitic shergottites such as Allan Hills (ALH)A77005, suggesting that these shergottites shared a similar parent liquid, or at least the same mantle source.  相似文献   

16.
Abstract— Interior samples of three different Nakhla specimens contain an iron-rich silicate “rust” (which includes a tentatively identified smectite), Ca-carbonate (probably calcite), Ca-sulfate (possibly gypsum or bassanite), Mg-sulfate (possibly epsomite or kieserite), and NaCl (halite); the total abundance of these phases is estimated as <0.01 weight percent of the bulk meteorite. Rust veins are truncated and decrepitated by fusion crust and are preserved as faulted segments in partially healed olivine crystals, indicating that the rust is pre-terrestrial in origin. Because Ca-carbonate and Ca-sulfate are intergrown with the rust, they are also indicated to be of pre-terrestrial origin. Similar textural evidence regarding origins of the NaCl and Mg-sulfate is lacking. Impure and poorly crystallized sulfates and halides on the fusion crust of the meteorite suggest leaching of interior (pre-terrestrial) salts from the interior after Nakhla arrived on Earth but coincidental addition of these same salts by terrestrial contamination cannot be excluded. At least the clay-like silicate “rust,” Ca-carbonate, and Ca-sulfate were formed by precipitation from water-based solutions on the Nakhla parent planet although temperature and pressure conditions of aqueous precipitation are unconstrained by currently available data. It is possible that aqueous alteration on the parent body was responsible for the previously observed disturbance of the Rb-Sr geochronometer in Nakhla at or near 1.3 Ga.  相似文献   

17.
《Icarus》1987,72(3):492-506
The effects of particle size and mineral proportions on the spectral characteristics of plagioclase and pyroxene mixtures are investigated. Size separates (<25 μm, 25–45 μm, 45–75 μm, 75–125 μm, 125–250 μm, and 250–500 μm) have been prepared for the following labradorite/enstatite compositional mixtures: 100/0%, 95/5%, 85/15%, 50/50%, and 0/100%. Spectrally, the labradorite and enstatite samples are representative of the plagioclase feldspars and the orthopyroxenes: the labradorite exhibits a weak, broadband centered near 1.25 μm and the enstatite exhibits two well-defined bands centered near 0.9 and 1.9 μm. From analysis of the plagioclase bands of the mixtures, it is found that (1) the amount of plagioclase necessary for the plagioclase band to be observed as a discrete absorption band is dependent on particle size and (2) plagioclase can be detected by flattening of the pyroxene reflectance “peak” between the 0.9- and 1.9-μm absorption bands if significant amounts of plagioclase are present. Analogs for immature and mature lunar highland soils have been created to examine the combined effects of particle size and mineral proportions on spectra of plagioclase and pyroxene mixtures. bidirectional reflectance spectra of these soil analogs are used to examine the detectability of plagioclase in soil-like particle size distributions. Plagioclase in significant amounts is detected by the flattening of the pyroxene reflectance “peak” between the 0.9- and 1.9-μm absorption bands, and the plagioclase absorption band itself is observed with 85% plagioclase present. The soil analogs reveal that particle size accounts for only a minor spectral difference between immature and mature lunar highland soils. From comparisons with spectra of returned lunar samples, agglutinates are found to dominate the spectral variations associated with soil maturity. Spectra of the immature soil analogs can be used to estimate the minimum pyroxene abundance for immature regions observed remotely.  相似文献   

18.
Abstract— This study provides a complete data set of all five noble gases for bulk samples and mineral separates from three Martian shergottites: Shergotty (bulk, pyroxene, maskelynite), Zagami (bulk, pyroxene, maskelynite), and Elephant Moraine (EET) A79001, lithology A (bulk, pyroxene). We also give a compilation of all noble gas and nitrogen studies performed on these meteorites. Our mean values for cosmic‐ray exposure ages from 3He, 21Ne, and 38Ar are 2.48 Myr for Shergotty, 2.73 Myr for Zagami, and 0.65 Myr for EETA79001 lith. A. Serious loss of radiogenic 4He due to shock is observed. Cosmogenic neon results for bulk samples from 13 Martian meteorites (new data and literature data) are used in addition to the mineral separates of this study in a new approach to explore evidence of solar cosmic‐ray effects. While a contribution of this low‐energy irradiation is strongly indicated for all of the shergottites, spallation Ne in Chassigny, Allan Hills (ALH) 84001, and the nakhlites is fully explained by galactic cosmic‐ray spallation. Implanted Martian atmospheric gases are present in all mineral separates and the thermal release indicates a near‐surface siting. We derive an estimate for the 40Ar/36Ar ratio of the Martian interior component by subtracting from measured Ar in the (K‐poor) pyroxenes the (small) radiogenic component as well as the implanted atmospheric component as indicated from 129Xe, * excesses. Unless compromised by the presence of additional components, a high ratio of ~2000 is indicated for Martian interior argon, similar to that in the Martian atmosphere. Since much lower ratios have been inferred for Chassigny and ALH 84001, the result may indicate spatial and/or temporal variations of 40Ar/36Ar in the Martian mantle.  相似文献   

19.
Ultraviolet spectral reflectance properties (200-400 nm) of a large number of minerals known or presumed to exist on the surfaces of Mars, the Moon, and asteroids, and in many meteorites, were investigated. Ultraviolet reflectance spectra (200-400 nm) of these minerals range from slightly blue-sloped (reflectance decreasing toward longer wavelengths) to strongly red-sloped (reflectance increasing toward longer wavelengths). Most exhibit one or two absorption features that are attributable to FeO charge transfers involving Fe3+ or Fe2+. The UV region is a very sensitive indicator of the presence of even trace amounts (<0.01 wt%) of Fe3+ and Fe2+. The major Fe3+O absorption band occurs at shorter wavelengths (∼210-230 nm), and is more intense than the major Fe2+O absorption band (∼250-270 nm). Ti-bearing minerals, such as ilmenite, rutile and anatase exhibit UV absorption bands attributable to Ti4+O charge transfers. While the positions of metal-O charge transfer bands sometimes differ for different minerals, the variation is often not diagnostic enough to permit unique mineral identification. However, iron oxides and oxyhydroxides can generally be distinguished from Fe-bearing silicates in the 200-400 nm region on the basis of absorption band positions. Within a given mineral group (e.g., low-calcium pyroxene, olivine, plagioclase feldspar), changes in Fe2+ or Fe3+ abundance do not appear to result in a measurable change in absorption band minima positions. Absorption band positions can vary as a function of grain size, however, and this variation is likely due to band saturation effects. The intensity of metal-O charge transfers means that some minerals will exhibit saturated UV absorption bands even for fine-grained (<45 μm) powders. In cases where absorption bands are not saturated (e.g., Fe2+O bands in some plagioclase feldspars and pyroxenes), changes in Fe2+ content do not appear to cause variations in band position. In other minerals (e.g., olivine), changes in band positions are correlated with compositional and/or grain size variations, but this is likely due to increasing band saturation rather than compositional variations. Overall, we find that the UV spectral region is sensitive to different mineral properties than longer wavelength regions, and thus offers the potential to provide complementary capabilities and unique opportunities for planetary remote sensing.  相似文献   

20.
Abstract– Pyroxenes are among the most common minerals in the solar system and are ideally suited for remote geochemical analysis because of the sensitivity of their distinctive spectra to mineral composition. Fe2+ is responsible for the dominant pyroxene absorptions in the visible and near‐infrared, but substitutions of other cations such as Ca2+ change the crystal structure and site geometries and thus the crystal field splitting energies of the Fe cations. To define spectral systematics resulting from major pyroxene cations (Ca2+, Mg2+, and Fe2+), we focus on a suite of pyroxenes synthesized with only Ca2+, Mg2+, and Fe2+ in the two octahedral sites, specifically examining the effect of Ca2+ on pyroxene absorption bands. The modified Gaussian model is used to deconvolve pyroxene spectra into component bands that can then be linked directly to crystal field absorptions. In orthopyroxenes and low‐Ca clinopyroxenes, Ca2+‐content has a strong and predictable effect on the positions of the absorption bands. At a threshold of Wo30, the crystal field environment stagnates and the M2 bands cease to change significantly as more Ca2+ is added. At Wo50, when most of the M2 sites are filled by Ca2+, band positions do not change drastically, although the presence and strengths of the 1 and 2 μm bands are affected by even trace amounts of Fe2+ in the M2 site. It is thus apparent that next‐nearest neighbors and the distortions they impose on the pyroxene lattice affect the electronic states around the Fe2+ cations and control absorption band properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号