首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
地下水污染脆弱性评价方法   总被引:14,自引:0,他引:14  
地下水污染脆弱性是指污染物自顶部含水层以上某一位置到达地下水系统中某一特定位置的趋势和可能性,进一步分为固有脆弱性和特殊脆弱性.地下水污染脆弱性受地下水流系统和地球化学系统的影响和控制.其主要评价方法有主观分级评价法、统计或基于过程的评价法和综合评价法三大类.中国地下水污染脆弱性评价已有很好的工作基础,评价工作中应以地下水系统为单元,以饮用水井、集中供水水源地、区域含水层系统的补给区为重点保护目标,评价方法应综合区域地下水流系统的过程分析和指数评价方法,并利用已有的区域水质资料进行检验,增强评价结论的科学性和可靠性.  相似文献   

2.
石家庄市地下水中氮污染分析   总被引:25,自引:1,他引:25  
通过对石家庄市地下水中“三氮”污染状况的分析,发现硝酸盐是地下水中的主要氮污染物,利用氮同位素方法分析了地下水中硝酸盐氮的来源,讨论了人类开采地下水和施放环境物质对地下水中氮聚集的影响,在人类活动影响强度小的地区,地下水中的硝酸盐污染强度大大低于市区。NO3-浓度与硬度变化趋势表明:氮污染与硬度等指标值升高有一定的联系,但在不同的水文地球化学环境中,在迁移和转化等方面又有着自己的特性。  相似文献   

3.
地下水污染脆弱性是指污染物自顶部含水层以上某一位置到达地下水系统中某一特定位置的趋势和可能性,进一步分为固有脆弱性和特殊脆弱性。地下水污染脆弱性受地下水流系统和地球化学系统的影响和控制。其主要评价方法有主观分级评价法、统计或基于过程的评价法和综合评价法三大类。中国地下水污染脆弱性评价已有很好的工作基础,评价工作中应以地下水系统为单元,以饮用水井、集中供水水源地、区域含水层系统的补给区为重点保护目标,评价方法应综合区域地下水流系统的过程分析和指数评价方法,并利用已有的区域水质资料进行检验,增强评价结论的科学性和可靠性。  相似文献   

4.
Groundwater recharge and agricultural contamination   总被引:21,自引:1,他引:20  
Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water–rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agricultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3 , N2, Cl, SO4 2–, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well as a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3 , a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge. Electronic Publication  相似文献   

5.
Aquifer remediation for a contaminated site is complex, expensive, and long-term. Groundwater modelling is often used as a tool to evaluate remedial alternatives and to design a groundwater remediation system. Groundwater modelling can also be used as a useful process to identify aquifer characteristics and contaminant behaviour that are not realized prior to modelling, to help diagnose what happened and why it happened at contaminant sites. Three real-world modelling cases are presented to demonstrate how groundwater modelling is applied to help understand contamination problems and how valuable the improved understanding is to decision-making and/or to remedial design.  相似文献   

6.
7.
Groundwater arsenic contamination and its health effects in India   总被引:2,自引:0,他引:2  
During a 28-year field survey in India (1988–2016), groundwater arsenic contamination and its health effects were registered in the states of West Bengal, Jharkhand, Bihar and Uttar Pradesh in the Ganga River flood plain, and the states of Assam and Manipur in the flood plain of Brahamaputra and Imphal rivers. Groundwater of Rajnandgaon village in Chhattisgarh state, which is not in a flood plain, is also arsenic contaminated. More than 170,000 tubewell water samples from the affected states were analyzed and half of the samples had arsenic >10 μg/L (maximum concentration 3,700 μg/L). Chronic exposure to arsenic through drinking water causes various health problems, like dermal, neurological, reproductive and pregnancy effects, cardiovascular effects, diabetes mellitus, diseases of the respiratory and gastrointestinal systems, and cancers, typically involving the skin, lungs, liver, bladder, etc. About 4.5% of the 8,000 children from arsenic-affected villages of affected states were registered with mild to moderate arsenical skin lesions. In the preliminary survey, more than 10,000 patients were registered with different types of arsenic-related signs and symptoms, out of more than 100,000 people screened from affected states. Elevated levels of arsenic were also found in biological samples (urine, hair, nails) of the people living in affected states. The study reveals that the population who had severe arsenical skin lesions may suffer from multiple Bowens/cancers in the long term. Some unusual symptoms, such as burning sensation, skin itching and watering of eyes in the presence of sun light, were also noticed in arsenicosis patients.  相似文献   

8.
Groundwater abstraction not only affects subsurface water, but also causes changes in the hydrosphere, lithosphere, and biosphere. There are certain symptoms of these environmental changes that might be designated as geoindicators. Geoindicators related to groundwater abstraction and contamination in Lithuania have been classified into three groups related to: (1) the decline/rise of groundwater levels, (2) the deterioration of groundwater quality, and (3) the intensification of water-rock interaction. On the basis of hydrogeological and hydrological investigations carried out over many years, different environmental impacts of intensive groundwater use are demonstrated. The most important among them are the formation of depression cones, intensification of groundwater pollution, saltwater encroachment, and the intensification of karst.  相似文献   

9.
污灌对地下水的污染及防治对策   总被引:4,自引:1,他引:3  
科学利用污水灌溉可以在一定程度上缓解水资源紧缺问题,但如果不进行科学管理,污水灌溉就可能会引起地下水污染。文章回顾了污水灌溉引发的地下水污染方面的研究成果,讨论了污水中可能污染地下水的组分,重点讨论了硝酸盐、硬度、重金属、病原微生物、有机污染物在水土系统中的迁移和衰减机理以及影响这些组分迁移至地下水的因素,最后提出了防治污水灌溉引发地下水污染的建议和今后的研究方向。  相似文献   

10.
The nitrate of groundwater in the Gimpo agricultural area, South Korea, was characterized by means of nitrate concentration, nitrogen-isotope analysis, and the risk assessment of nitrogen. The groundwaters belonging to Ca–(Cl + NO3) and Na–(Cl + NO3) types displayed a higher average NO3 concentration (79.4 mg/L), exceeding the Korean drinking water standard (<44.3 mg/L NO3 ). The relationship between δ18O–NO3 values and δ15N–NO3 values revealed that nearly all groundwater samples with δ15N–NO3 of +7.57 to +13.5‰ were affected by nitrate from manure/sewage as well as microbial nitrification and negligible denitrification. The risk assessment of nitrate for groundwater in the study area was carried out using the risk-based corrective action model since it was recognized that there is a necessity of a quantitative assessment of health hazard, as well as a simple estimation of nitrate concentration. All the groundwaters of higher nitrate concentration than the Korean drinking water standard (<44.3 mg/L NO3 ) belonged to the domain of the hazard index <1, indicating no health hazard by nitrate in groundwater in the study area. Further, the human exposure to the nitrate-contaminated soil was below the critical limit of non-carcinogenic risk.  相似文献   

11.
An integrated study has been carried out to elucidate the distribution and occurrence of arsenic in selected groundwater samples in the area of Sherajdikhan, Bangladesh. Arsenic and other parameters (T, pH, EC, Na+, K+, Ca2+, Mg2+, Cl, NO3 , SO4 2−, HCO3 , PO4 3−, Fe, Mn and DOC) have been measured in groundwater samples collected from shallow/deep tube wells at different depths. Hydrogeochemical data suggest that the groundwaters are generally Ca–Mg–HCO3 and Mg–Ca–HCO3 types with bicarbonate (HCO3 ) as the dominant anion, though the other type of water has also been observed. Dissolved arsenic in groundwater ranged from 0.006 to 0.461 mg/l, with 69% groundwater samples exceeded the Bangladesh limit for safe drinking water (0.05 mg/l). Correlation and principal component analysis have been performed to find out possible relationships among the examined parameters in groundwater. Low concentrations of NO3 and SO4 2−, and high concentrations of DOC, HCO3 and PO4 3− indicate the reducing condition of subsurface aquifer where sediments are deposited with abundant organic matter. Distinct relationship of As with Fe and Mn, and strong correlation with DOC suggests that the biodegradation of organic matter along with reductive dissolution of Fe–Mn oxyhydroxides has being considered the dominant process to release As in the aquifers studied herein.  相似文献   

12.

通常井内的地下水流速是由单井示踪试验或Aqua Vision流速流向仪测定得来,用以计算含水层中的地下水流速。由于表皮结构的影响,导致井筒附近的地下水流场发生变化,引起井筒内的流速与含水层中的流速存在偏差。为了探究表皮效应对井筒内地下水流速的影响,利用COMSOL Multiphysics软件,建立考虑表皮效应的地下水流数值模型,系统分析表皮厚度以及渗透系数对井筒中地下水流速的影响机制,根据模拟结果进一步评估利用井筒内地下水流速换算含水层地下水达西流速已有经验公式的可靠性。结果表明:(1)井筒附近表皮区域渗透系数越大,井筒内的地下水流速越大,且利用经验公式计算的地下水达西流速相对误差均小于0.23%,具有较高可靠性;(2)表皮区域渗透系数小于含水层渗透系数时,随着表皮厚度增大,井筒内地下水流速越小,经验公式计算结果的相对误差呈现增大趋势;(3)表皮区域渗透系数大于含水层渗透系数时,随着表皮厚度增大,井筒内地下水流速增大,计算结果相对误差总体上呈现减小的趋势,但其误差波动性较大,表明在该条件下经验公式计算的稳定性较差。结果显示表皮结构对井筒内地下水流速影响较大,在实际应用中要关注表皮结构的影响。

  相似文献   

13.
The change in groundwater chemistry along the groundwater flow path in the Matsumoto tunnel vicinity was studied, and the origin of the groundwater and dissoluted substances was determined. The relationship between the concentration of HCO3 , Ca2+, and Na+, and CO2 gas pressure in the groundwater indicated that the HCO3 , Ca2+, and Na+ were produced by the reaction of the CO2 gas in the groundwater and feldspar in the rocks. The relationship between the concentration of NO3 and the Eh and pH values in the groundwater indicated that in an oxidative condition, ammonia-oxidizing and nitriteoxidizing bacteria used NH4 + and produced NO3 and H+, and in a reductive condition, denitrifying bacteria used NO3 and produced N2 gas and OH. The stable hydrogen and oxygen isotopic ratio in the groundwater and precipitation indicated that the groundwater originated from precipitation that had fallen on the area. The concentration of3H and the stable hydrogen and oxygen isotopic ratios in the groundwater suggested that it has been getting warmer climatically for more than 60 years. The stable carbon isotopic ratio indicated that the HCO3 in the groundwater, excluding deep well water, originated from CO2 gas produced by organic matter in the soil. The deep well water, which had a higher concentration of HCO3 than the other groundwater sampled, was thought to have acquired HCO3 though contact with rocks. The36Cl/Cl ratio indicated the recharge age of the deep well water sampled at a depth of 760 m at the foot of the plateau was recent.  相似文献   

14.
 This study presents a program for risk management in the contamination of groundwater resulting from leachate in landfills at Mar del Plata (Argentina). The program includes prediction, prevention, monitory observation and mitigation as actions that must be taken prior to, during, and after contamination occurs. This routine aids in the identification of weak points and failures of the program for those who are in charge of making decisions, and will allow better use of limited financial and technical resources based on planning, thus minimizing disconnected determinations. Results of the prediction stage were confirmed through monitoring. The presence of a plume of contamination more than 100 m from the landfill was shown, thus proving that implementation of a monitoring plan to follow the development of the contaminated plume must be implemented, particularly in populated areas which depend on residential wells for their water supply. Received: 8 May 2000 · Accepted: 14 August 2000  相似文献   

15.
A sinking of the land surface due to the pumping of groundwater has long been recognized as an environmental issue in the Shiroishi plain of Saga, Japan. Land subsidence can have several negative economic and social implications such as changes in groundwater and surface water flow patterns, restrictions on pumping in land subsidence prone areas, localized flooding, failure of well casings as well as shearing of structures. To minimize such an environmental effect, groundwater management should be considered in this area. In this study, a new integrated numerical model that integrates a three-dimensional numerical groundwater flow model coupled with a one-dimensional soil consolidation model and a groundwater optimization model was developed to simulate groundwater movement, to predict ground settlement and to search for optimal safe yield of groundwater without violating physical, environmental and socio-economic constraints. It is found that groundwater levels in the aquifers greatly vary from season to season in response to the varying climatic and pumping conditions. Consequently, land subsidence has occurred rapidly throughout the area with the Shiroishi plain being the most prone. The predicted optimal safe yield of the pumping amount is about 5 million m3. The study also suggests that pumping with this optimal amount will minimize the rate of land subsidence over the entire area. An erratum to this article can be found at  相似文献   

16.
17.
Tailings-derived mine drainage water that is neutral in character, has a high electrical conductivity and contains elevated sulphate, chloride and nickel concentrations, has caused deterioration in groundwater and surface water quality in the mining area of Hitura in Western Finland. This deterioration, and thereby the location of the contaminant plume, was recognized in the water chemistry in the form of a gradual change in ion composition from Ca-HCO3-type water towards a Mg-SO4-rich type. It was possible to define the extent of the pollution by using cluster analysis to distinguish between hydrochemically different regimes and performing an electrical sounding survey. The results indicated that contamination is most intense close to the tailings impoundment and is related to an esker complex running across this area. Nevertheless, the water in the eastern and southern parts of the area upgradient of the hydraulic head is uncontaminated and suitable for water supply purposes.  相似文献   

18.
The work investigates the major solute chemistry of groundwater and fluoride enrichment(F~-) in the shallow phreatic aquifer of Odisha.The study also interprets the hydrogeochemical processes of solute acquisition and the genetic behavior of groundwater F~-contamination.A total of 1105 groundwater samples collected from across the state from different hydro-geomorphic settings have been analyzed for the major solutes and F~-content.Groundwater is alkaline in nature(range of pH: 6.6–8.7; ave.: 7.9) predominated by moderately hard to very hard types.Average cation and anion chemistry stand in the orders of Ca~(2+) Na~+ Mg~(2+) K~+and HCO_3~- Cl~- SO_4~(2-) CO_3~(2-)respectively.The average mineralization is low(319 mg/L).The primary water types are Ca-Mg-HCO_3 and Ca-Mg-Cl~-HCO_3, followed by Na-Cl, Ca-Mg-Cl, and Na-Ca-Mg-HCO_3~-Cl.Silicate-halite dissolution and reverse ion exchange are the significant processes of solute acquisition.Both the geogenic as well as the anthropogenic sources contribute to the groundwater fluoride contamination,etc.The ratio of Na~+/Ca~(2+) 1.0 comprises Na-HCO_3(Cl) water types with F~- 1.0 mg/L(range 1.0–3.5 mg/L)where the F~-bears geogenic source.Positive relations exist between F~-and pH, Na~+, TDS, and HCO_3~-.It also reflects a perfect Na-TDS correlation(0.85).The ratio of Na~+/Ca~(2+) 1.0 segregates the sample population(F~- range: 1.0–4.0 mg/L) with the F derived from anthropogenic sources.Such water types include Ca-Mg-HCO_3(Cl) varieties which are recently recharged meteoritic water types.The F~-levels exhibit poor and negative correlations with the solutes in groundwater.The Na-TDS relation remains poor(0.12).In contrast, the TDS levels show strong correlations with Ca~(2+)(0.91), Mg~(2+)(0.80) and even Cl~-(0.91).The majority of the monitoring points with the anthropogenic sources of groundwater F~-are clustered in the Hirakud Canal Command area in the western parts of the state, indicating the role of irrigation return flow in the F~-contamination.  相似文献   

19.
Groundwater recharge rates to the sandy aquifer in the Nara basin, Japan, were determined by using a theory that describes the simultaneous transfer of heat and water in a porous medium. Seasonal changes in temperatue-depth profiles were used to estimate the recharge rates in a relatively shallow aquifer. Estimations of the recharge rates were done by fitting a dimensionless parameter to the type curves developed by Taniguchi (1993) after the amplitudes of annual variations of groundwater temperatures were measured at several depths. Annual recharge rate estimated by fitting observed temperatures to the type curves was 459 mm in the Nara basin. This value agrees well with values calculated from water-balance methods and values reported in the literature. Résumé: Les taux de recharge d'un aquifère sableux dans le bassin de Nara (Japon) ont été déterminés au moyen d'un modèle qui décrit le transfert simultané de la chaleur et de l'eau en milieu poreux. Les variations saisonnières le long de profils verticaux de température sont utilisées pour estimer les taux de recharge dan un aquifère relativement superficiel. Les estimations de ces taux de recharge ont été réalisées par l'ajustement d'un paramètre sans dimension aux courbes types proposées par Taniguchi (1993) d'après les amplitudes des variations annuelles de la température de l'eau souterraine mesurée à différentes profondeurs. La recharge annuelle estimée par l'ajustement des températures observées aux courbes types est 459 mm dans le bassin de Nara. Cette valeur est en bon accord avec celles caculées à partir du bilan hydrologique et avec celles de littérature. Resumen: Las velocidades de recarga en el acuífero arenoso de la cuenca del Nara, Japón, se determinaron por medio de una teoría que describe la transferencia simultánea de calor y agua en un medio poroso. Los cambios estacionales en los perfiles temperatura-profundidad permitieron estimar las velocidades de recarga en una acuífero relativamente somero. Las estimaciones de la velocidad de recarga se hicieron por ajuste de un parámetro adimensional a las curvas-tipo desarrolladas por Taniguchi (1993). Para ello se utilizaron las amplitudes de las variaciones anuales de las temperaturas del agua a distintas profundidades. La recarga anual en la cuenca del Nara, estimada mediante este método de ajuste de curvas, fue de 459 mm. Este valor es semejante a la recarga calculada a partir de métodos de balance y a la obtenida de la bibliografía.  相似文献   

20.
The present paper deals with major and trace elements geochemistry of the groundwater from Nalgonda district, Telangana. The study area is very important in terms of anthropogenic activity like rapid industrial, urban development, pesticides, pharmaceutical, granite polishing and agro based industries. Inductively coupled plasma mass spectrometer (ICPMS) was employed to determine the concentration of trace elements in collected groundwater samples (bore well). These probe elements were further categorized as toxic elements (Pb, As, Cd, and V), alkaline earths (Sr and Ba), alkali metals (Li, Rb), transition metals (Cr, Mo and Ni), metallic elements (Cu, Fe, Zn, Al, Co), and other non-metallic elements (Se and Si). The groundwater quality was examined in perspective of Indian as well as World Health Organization drinking water standards. Based on the analytical results, groundwater in the study area is found to be slightly alkaline in nature and very hard, the average abundance of the major cations and anions is in the order of Ca+<Na+<Mg+<K+ and Cl-<HCO3 ?<CO3 ?<SO4 ?<NO3 ?<F respectively. The dominant hydro chemical facies of groundwater is Na+ - HCO 3 – Cl and Na+ - Cl – HCO 3 types.The results of trace elements shows that concentration of Pb, As, Cd, V in collected samples exceeding the desirable limits, and in the case of alkaline, alkali, transition, non-metallic elements, seventy per cent of the samples crossed the desirable limits, but all metallic elements viz. Cu, Fe, Zn, Al, Co is within the limits as per Indian as well as World Health Organizations drinking water standards. Factor analysis results shows that seven factors emerged as a significant contributor to the groundwater contamination is about 65.32 per cent. The spatial variation maps decipher trace elemental concentrations both geogenic and anthropogenic origin, by three zones i.e. ‘low’, ‘moderate’ and ‘high’ of the study area based on environment using Arc-GIS. High concentrations of trace elements are indicative of phenomenal rise in chemical composition and likely to have its origin from silicate weathering reactions and dissolution/precipitation processes supported by rainfall and anthropogenic activities, indiscriminate use of fertilizers/pesticides, and disposal of waste and sewage, release of reactive pollutants into the atmosphere by industries. Hence, this work is of immense societal benefit in terms of prevailing human health hazards in the study area with a direct relevance to such industrially populated regions elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号